Ruotolo Lab: New Method to ID Proteins
- News
-
- Search News
-
- Dreyfus-Teacher Scholar Award for Szymczak
- Sanford Named to AAAS
- Biemann Medal for Hakansson
- Sanford Honored with Election to National Academy of Sciences
- McNeil Lab: A more accurate sensor for lead paint
- Schindler Named 2016 Packard Fellow
- Sloan Fellowships for Pratt and Schindler
- Walter Lab: Resolving Subcellular miRNA Trafficking and Turnover at Single-Molecule Resolution
- Maldonado Lab: Cheaper, greener way to grow cystalline seminconductor films
- New polymer allows researchers to study how proteins fold, function
- Researchers focus on cell membranes to develop Alzheimer's treatments
- Video: Research on Lipid Bilayer and Relation to Amyloid-β
- Biteen Lab: Accounting for the "scooching effect"
- Pratt Lab: Molecular Iodine Found in Arctic Atmosphere
- Marsh & McNeil Named AAAS Fellows
- Ramamoorthy Lab: Nanodiscs catch mis-folding amyloid proteins
- Ault Named 2018 Sloan Fellow
- Biteen Lab: Starch Utilization System Assembles around Stationary Starch-Binding Proteins
- Biteen Lab: Starch Utilization System Assembles around Stationary Starch-Binding Proteins
- Pratt & Ault Labs: Harmful algal blooms can become airborne
- Meet Professor Bunsen Burns
- Shedding New Light on Photosynthetic Pigments
- Ruotolo Lab: New Method to ID Proteins
- Energy Research And Education Fuel McCrory CAREER Award
- Building Motors to Drive Nanorobots
- Fast, sensitive mass spectrometer will help UM chemists profile proteins and metabolites
- Award Season for Michigan Chemistry
- Chem Alum Receives Honorary Degree, Gives Rackham Commencement Address
- Alum Named Science Teacher of the Year
- MichiganChem boosts facility for atomic resolution
- DOE Early Career Award for Kerri Pratt
- ACS Honors Alum Weihong Tan
- Michigan Adds Chemistry Education Faculty Position
- Mapp Lab: New research clarifies how ‘fuzzy’ proteins can be used to develop novel drugs
- Karle Symposium Showcases Our Innovative Research
- UM scientists improve synthesis of PET imaging molecules
- MichiganChem Goes to the North Pole
- Diversity Service Award for Nicolai Lehnert
- Two elected Fellows of Royal Society of Chemistry
- Graduate Student Coordinator Honored
- 2018 Mentoring Award Recognizes Unique Programs
- Chen Named AAAS Fellow
- Chem 211 makes organic chem lab real for intro students
- Stephenson Lab: Designing a safer drug building block through photocatalysis
- "Compute-To-Learn" Bridges Classroom to Real-World Experiences
- Meet Roy Wentz: Chemistry's Custom Glassblower
- Michigan Students to Organize American Chemical Society Grad Symposium
- Anna Mapp honored for exceptional efforts to recruit and mentor students from non-traditional backgrounds
- Chemistry Alums Boyd and Pérez-Temprano Named to Talented 12
- Sharing Chemistry with the Community
- Awards Luncheon Offers Recognition for Outstanding Students
- Chemistry Faculty and Staff Collect Honors for Their Work
- Chemistry Writing: More Than Just Lab Reports
- Featured on the UM Gateway: Chemistry D-RISE Alum
- Hot climate, cool science :: Novel instrumentation applied to Arctic atmosphere earns Pratt "40 under 40" honors
- Kennedy Awarded Martin Medal for Achievements in Separation Science
- UM Chemists finding new opportunities in quantum science
- Alumna Sumita Mitra Inducted into National Inventors Hall of Fame
- Walter lab: RNA molecule senses a small metal ion to ramp up bacterium’s detox machine
- Create for Chemistry art contest
- Matzger Lab: A fix for insoluble drugs
- Dope Labs podcast explores the science behind pop culture phenomena
- Travel begets new data and new insights for Michigan Chem grad students
- Kopelman Lab: Nanoparticles + photoacoustic imaging-- a route to better cancer treatment decisions?
- Wang Lab: A productive first year
- National ACS Awards for Four Michigan Faculty
- Montgomery Named Thurnau Professor
- Mental Health, Well-Being and Research
- U-M to 3M: Transitioning to Industry after your PhD
- Chemistry Coping with COVID-19
- Chem Alums Create Crowdfunding Platform
- NSF Graduate Research Fellowships Announced
- Chem Master's Application Re-opened
- Chemistry Awards Announced
- New podcast: "My Fave Queer Chemist”
- Meet Josh Buss
- M|CORE: Preview program lowers barriers to graduate school
- Soellner Joins Michigan Chemistry
- Meet Chem Lecturer Nicole Tuttle
- Archived News
- UM Chemistry Featured Elsewhere
- Events
Proteins are the worker bees of the cell, mainly ganging up to form macromolecular, multicomponent complexes to perform intricate cellular tasks.
Trying to characterize such protein complexes and all of their functions within organisms is a discipline called "proteomics." Historically, scientists have studied the form and function of proteins by dissolving them with enzymes and sequencing the resulting tiny broken pieces, called peptides. But studying proteins this way causes the loss of a lot of essential information, says Brandon Ruotolo, an associate professor of chemistry at the University of Michigan.
Ruotolo and his team, including researchers from UCLA, University of Leeds and University of Antwerp, have developed a new way to study protein complexes that doesn't involve destroying the intact assemblies in the process. Their method has been published in the journal Analytical Chemistry.
"Proteins are the main drivers of pretty much every critical cellular process—everything from cell division to cell death," Ruotolo said. "They also dominate drug targets because of their central importance in the context of life as we know it. Understanding how these proteins work, compositionally, at a very basic level, is very important for understanding how diseases work."
Both the traditional approach and Ruotolo's method use a device called a mass spectrometer, which measures the weight, or mass, of ionized molecules by drawing the molecules into a vacuum. In the traditional approach, after scientists have broken protein complexes down into peptides, they use a technology called electrospray ionization to give those peptides an electric charge. The mass spectrometer then measures the mass of these charged peptides, and breaks them down further using a background gas.
But using enzymes to digest proteins makes it difficult to understand the role of smaller chemical entities that accumulate on proteins, called post-translational modifications. Each time your cell expresses a protein, it can also produce hundreds of these individual post-translational modification states, collectively termed proteoforms, Ruotolo says.
It is the arrangement of these proteoforms within protein complexes that often determines their function. In traditional approaches to study protein complexes, these proteoforms are lost.
"The main movers and shakers in the cell are not individual proteins running around doing jobs—it's actually dozens of proteins that come together to form super-molecular complexes that do very complicated jobs in the cell," Ruotolo said. "Now, the real task is to understand how these big machines work."
Ruotolo's team uses electrospray ionization to ionize intact protein complexes. Like the peptides typically analyzed in proteomics studies, these multiprotein complexes can be sequenced by a mass spectrometer, but it is often not possible to sequence anything more than a small fraction of the assembly's structure. Ruotolo's team has developed a chemical modification strategy that significantly improves the ability to sequence large, multiprotein complexes directly by mass spectrometry.
"This is important because in the mass spectrometer, you have connectivity between the starting proteoform and the sequence ions," Ruotolo said. "In the enzymatic digestion, that connectivity is broken."
In his study, Ruotolo's team developed their method using three different protein complexes. They hope to adapt their method to be able to study larger protein complexes, many times the size of those in their study.
"I think we're learning every day that even a class of cancers, like leukemia, is actually composed of many different diseases," Ruotolo said. "The types of measurements we're developing will only increase our ability to observe that granularity and provide information that could hopefully inform the ability to discover new therapies."
The group has also published a paper in Analytical Chemistry detailing software, which was developed in collaboration with researchers in the Department of Computational Medicine and Bioinformatics at U-M. The software is capable of rapidly capturing sequence information from protein complexes.
--Morgan Sherburne, UM News
More information: