Professor; Professor of Electrical Engineering and Computer Science

### About

Professor Kira develops systematic many-body and quantum-optics approaches to quantitatively analyze, guide, and explain contemporary experiments that study phenomena encountered in the broad field of quantum sciences. His typical research effort involves extensive collaborations with experimentalists to rigorously test quantum concepts and designs. As few demonstrations, his team has recently discovered dropletons, a quasiparticle accelerator, quantum-memory effects, quantum interferences in high-harmonic generation, and explained quantum depletion in strongly interacting Bose-Einstein condensates.

**Selected Publications**

Lightwave-Driven Quasiparticle Collisions on a Sub-Cycle Timescale, (F. Langer, M. Hohenleutner, C. Schmid, C. Poellmann, P. Nagler, T. Korn, C. Schüller, M. S. Sherwin, U. Huttner, J. T. Steiner, S. W. Koch, M. Kira, and R. Huber), *Nature* **533**, 225 (2016).

Coherent Cyclotron Motion Beyond Kohn's Theorem, (T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn, C. Schüller, D. Schuh, D. Bougeard, C. Lange, R. Huber, M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira), *Nat. Phys.* **12**, 119 (2016).

*Real-Time Observation of Interfering Crystal Electrons in High-Harmonic Generation,* (M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S.W. Koch, M. Kira, and R. Huber), *Nature* **523**, 572 (2015).

*Coherent Quantum Depletion of an Interacting Atom Condensate,* (M. Kira), *Nat. Comm.* **6**, 6624 (2015).

*Quantum Droplets of Electrons and Holes,* (A.E. Almand-Hunter, H. Li, S.T. Cundiff, M. Mootz, M. Kira, and S.W. Koch), *Nature* **506**, 471 (2014).

Semiconductor Quantum Optics, (M. Kira and S.W. Koch), (Cambridge University Press, 2012).

*Quantum Spectroscopy with Schrödinger-Cat States,* (M. Kira, S.W. Koch, R.P. Smith, A.E. Hunter, and S.T. Cundiff), *Nat. Phys.*** 7**, 799 (2011).

Many-Body Correlations and Excitonic Effects in Semiconductor Spectroscopy, (M. Kira and S.W. Koch), Prog. Quantum Electron **30**, 155 (2006).