LIGO Detects Gravitational Waves for Third Time
- All News & Features
-
- Search News & Features
-
- Physics Grad Kate Miller Featured in Physics in Your Future APS Brochure
- Gravitational waves: U-M physicists involved in second detection
- The Hunt for Dark Matter Continues: PandaX Reaches World’s Best Sensitivity
- Stars Burning Strangely Make Life in the Multiverse More Likely
- Physics Professor Gordon Kane Awarded 2017 APS J. J. Sakurai Prize for Theoretical Particle Physics
- U-M Astrophysicist Katherine Freese Explains the Search for the Universe’s ‘Dark Stars’
- New Dwarf Planet Solar System’s 2nd Most Distant
- Physicist David Gerdes and Team Find New Dwarf Planet In Our Solar System
- Professor Keith Riles – Member of LIGO Team
- Researchers Invent New Material that can Switch Between Being Hard and Soft
- The 2017 Physics Commencement Live Event
- Physics Professors Receive MURI Grant
- Alec Josaitis Recently Awarded International Institute and Rackham Graduate School Individual Research Fellowship
- Dr. Priyashree Roy Earns 2016 Jefferson Science Associates (JSA) Thesis Prize
- LIGO Detects Gravitational Waves for Third Time
- U-M Physics Alum Alex Nitz Helps Detect Colliding Black Holes in Space
- Professor Henriette Elvang Selected for a College of Literature, Science, and Arts John Dewey Award
- Professor Gordon Kane Quoted in "Yearning for New Physics at CERN, in a Post-Higgs Way"
- Professor Rachel Goldman and Team Develop Technique which Could Boost Efficiency of LED Lighting by 50 Percent and May Pave the Way for Invisibility Cloaking Devices
- Dark Energy Survey reveals most accurate measurement of dark matter structure in the universe
- Professor David Gerdes Featured in USA Today Solar Eclipse Article
- U-M Physics Research Fellow Bachana Lomsadze and Professor Steven Cundiff Develop Novel Spectroscopy Technique that Could Revolutionize Chemical Detection
- Kip S. Thorne, Winner of 2017 Nobel Prize in Physics, Has U-M Physics Connections
- LIGO and Virgo Make First Detection of Gravitational Waves Produced By Colliding Neutron Stars
- Leinweber Foundation Gives $8M for Physics Center in U-M Department of Physics
- Four U-M Physics Faculty Named Fellows
- Michigan Fireball Meteor Registers As Quake: Astrophysicist David Gerdes Quoted
- Professor Fred Adams Quoted in Science News Article
- A Modern Rutherford Experiment: Scientists Use Known Energy Neutrinos to Study Nucleus
- It's Givin' Me Excitations: U-M Study Uncovers First Steps of Photosynthesis
- UM Astrophysicist David Gerdes and Team in the Hunt for Planet 9
- U-M Physics Professor Franco Nori Makes 2017 Highly Cited Researchers List
- U-M Society of Physics Students Talk STEM and More
- The 2018 Physics Commencement Live Event
- Professor Timothy McKay Reveals His Science Journey in Recent Podcast
- Physics Students Tali Khain and Noah McNeal Awarded Goldwater Scholarships
- Homer A. Neal 1942-2018
- The Higgs Boson Reveals Its Love for the Top Quark
- Physics Rev E Celebrates 'Milestone Articles' of Physics Faculty
- Physics Graduate Benjamin Isaacoff Awarded Optical Society of America's Guenther Congressional Fellowship
- Professor Katherine Freese and Team's Hunt for Dark Matter Turns to Ancient Minerals
- Professor Benjamin Safdi Awarded DOE’s Early Career Award
- Professor Christine Aidala Serves on National Academy Committee Endorsing Science Case for Electron-Ion Collider
- U-M Physicist Lu Li Cracks Code on Material that Works as Both Conductor, Insulator
- U-M Physicist Wins Nobel Prize
- New Physics Faculty Member Dominika Zgid
- Astrophysicist Katherine Freese Quoted in Astronomy Magazine
- Physicist Jennifer Ogilvie and Team Are Shedding New Light on Photosynthesis
- Professors Hui Deng and Mack Kira Named 2019 Fellows of the Optical Society
- Four Physics Faculty Named 2018 Fellows of the American Physical Society
- Four Physics Faculty Awarded American Physical Society Honors
- Gas-Detecting Laser Device Gets an Upgrade
- U-M Physicists Roberto Merlin, Meredith Henstridge and Team Develop Small Device that Bends Light to Generate New Radiation
- Physics Alum Larry Curtiss and Faculty Advisors Devised Contraption That Lead to Fiber Optics
- Michigan Physics Welcomes LSA Collegiate Postdoctoral Fellow Camille Avestruz
- Support Michigan Physics on Giving Blueday!
- Physicist Timothy Chupp Named Fellow of the American Association for the Advancement of Science
- U-M Physics Senior Noah McNeal Awarded Marshall Scholarship
- Astrophysicist Katherine Freese and Colleague’s Latest Theory About Dark Stars Made Astronomy Magazine's Cover Story
- First Postdoctoral and Graduate Student Fellows Named by Leinweber Center for Theoretical Physics
- Physics Graduate Student Awarded 2018-2019 Rackham International Student Fellowship
- Professor David Gerdes Named Next Physics Department Chair
- Three U-M Physicists Make Highly Cited Researchers 2018 List
- State of Michigan Governor Declares February 28, 2019: Chirped Pulse Amplification Day
- Physicist Dragan Huterer Receives Friedrich Wilhelm Bessel Research Award
- Physicist Sharon Glotzer Elected to National Academy of Engineering
- Professor Rachel Goldman Elected Vice Chair of Division of Materials Physics
- Physicist Liuyan Zhao Awarded NSF CAREER Award
- Physicist Henriette Elvang Awarded Thurnau Professorship
- Physics Senior Sophie Barterian Earns Prestigious Luce Scholarship
- Electric Dipole Moments and the Search for the Origin of Matter
- Three Physics Graduate Students Named Recipients of 2019-2020 Rackham Predoctoral Fellowship
- Professor Christine Aidala receives Fulbright U.S. Scholar Award to Italy
- Professor August Evrard's Problem Roulette Tool Recently Awarded Provost's Teaching Innovation Prize
- Five U-M Physics Faculty Recently Promoted
- Professor Steven Cundiff Discusses Quantum Information Science at the White House
- Professor Stephen Forrest named Henry Russel Lecturer for 2020
- Physicist Roy Clarke and International Team Devise Way to Show How Common Elements Can Make a More Energy-Secure Future
- Professor Jens-Christian Meiners Receives Grant to Tackle the Bends
- Graduate Student Summer Fellows Named by Leinweber Center for Theoretical Physics
- Professor Christine Aidala Wins Presidential Early Career Award for Scientists and Engineers
- U-M Physics Professor Wins Fundamental Physics Innovation Award
- 2019 U-M Physics Graduate Wins American Physical Society LeRoy Apker Award
- Pushing boundaries: Nobel prize winner on science literacy and lasers
- DESI opens its 5,000 eyes to capture the colors of the cosmos
- Team at U-M Sheds Light on New Electromagnetic Ordering
- LUX-ZEPLIN Dark Matter Detector Moved Nearly a Mile Underground
- Support Michigan Physics on Giving Blueday
- Six U-M Physics Students Awarded Competitive National Fellowships
- Professor Liuyan Zhao Wins Prestigious Air Force Young Investigator Research Program (YIP) Award
- Two Graduate Students Awarded Prestigious Department of Energy Fellowships
- Electron-Ion Collider, a New Nuclear Physics Facility, to Be Built at Brookhaven National Laboratory
- Physicist David Gerdes Quoted in Michigan News Article Regarding How COVID-19 Disrupts Research Projects
- Physicist Ben Safdi and Research Team Provide Another Twist in the Dark Matter Story
- U-M Physics Faculty Member Named Fellow of the American Association for the Advancement of Science
- Professor Xiaoming Mao Awarded $7.5M Grant to Bring Metamaterial to Life
- Now Complete, Telescope Instrument is Poised to Begin Its Search for Answers About Dark Energy
- Celebrating Our Undergraduate Awardees
- Celebrating Our Graduate Awardees
- U-M Senior’s COVID-19 Data Model Reaches CDC
- Physics Grad Student Rory Fitzpatrick and Professor Josh Spitz Shed Light on Electron Neutrino Interactions
- Professors Bjoern Penning and Marcelle Soares-Santos Highlighted in Physics Today Article
- U-M Physics Awarded $7.1 Million on Project to Upgrade the ATLAS Experiment
- When Dancers and Aliens Overlap
- Physicist David Lubensky and Team Determine Stress Fibers Help Cells Keep Their Shape—and May Also Regulate Size, During Development
- "Physics: A Resounding Legacy" - A Tribute to Patron Norman E. Barnett
- Physics Professor Joshua Spitz, Graduate Student Johnathon Jordan, and Research Team Propose Using Ancient Minerals from Deep within Earth’s Crust to Measure Cosmic Radiation
- U-M Physics Professors Byron Roe and Joshua Spitz Part of Collaboration to Search for New Physics
- Physics Grad Student Christopher Dessert Part of Team Researching X-Rays from Neutron Stars Which Could Lead to Discovery of New Particle
- Assistant Professor Liuyan Zhao Awarded a Prestigious Sloan Research Fellowship
- Assistant Professor Marcelle Soares-Santos Named 2021 Cottrell Scholar
- U-M Physicists Part of Study that Finds Unexpected Antimatter Asymmetry in the Proton
- Physics Graduate Student Kevin Napier is Lead Author on New Paper Casting Doubt on ‘Planet Nine’
- Physics Undergraduate Jiani Fei Proposes Solution to Quantum Field Theory Problem
- Physicists Hui Deng, Steve Forrest, and Research Team Discover “Egg Carton” Quantum Dot Array Could Lead to Ultralow Power Devices
- U-M Physics Group Led by Professor Tim Chupp Joins in Announcement of Stronger Evidence of New Physics Revealed by Fermilab's Muon g-2 Experiment
- U-M Physics Professors Roberto Merlin, Gregory Tarlé, and Graduate Student Noah Green Help Create Novel Optical Physics Method to Measure the Expansion of the Universe
- Physicist Christine Aidala Featured in LSA Magazine’s Spring 2021 Edition
- Dr. Melissa Hutcheson, Professor Myron Campbell and Research Team Find Possible Deviation from the Standard Model of Physics
- U-M Physics Professor Lu Li, Dr. Kuan-Wen Chen, Dr. Ziji Xiang and Research Teams Reveal a New State of Matter in Kondo Insulator
- Physicist Jennifer Ogilvie, Assistant Research Scientist Yin Song, and Researchers Trace Path of Light in Photosynthesis
-
- Dark Energy Survey Releases Most Precise Look at Universe's Evolution
- Celebrating our 2021 Graduate Awardees!
- Physics Collegiate Fellow Eric Spanton Talks ‘Weird Science’
- An Inconstant Hubble Constant? U-M Research Suggests Fix to Cosmological Cornerstone
- ATLAS Provided the First Observation of the Triboson WWW Process
- 1985 Nobel laureate Klaus von Klitzing gives 29th annual Ta-You Wu lecture
- The Wow Moment, Remote
- MicroBooNE Experiment’s First Results Show No Hint of a Sterile Neutrino
- Magnets with a Twist: U-M Physics Researchers Liuyan Zhao and Her Team Engineer Magnetic Complexity into Atomically Thin Magnets
- Dr. Melissa Hutcheson Wins APS Mitsuyoshi Tanaka Dissertation Award in Experimental Particle Physics
- UM Physicists Michael Schubnell, Gregory Tarlé and Team Part of Dark Energy Spectroscopic Instrument Which Creates Largest 3D Map of the Cosmos
- Michigan Physics graduate Students Make Key Contributions to Experimental Results
- U-M Physics Researcher Co-Chairs Ballistic Missile Defense Report
- Congratulations to Physicist David Lubensky Awarded a 2022 Simons Fellowship
- Please Donate Today (March 17) to the Undergraduate Support Fund for Giving Blueday!
- What’s Inside a Black Hole? U-M Physicist Enrico Rinaldi Uses Quantum Computing, Machine Learning to Find Out
- Dr. Sangmin Choi Recipient of Honorable Mention in Rackham’s 2021 ProQuest Dissertation Awards
- U-M Physics Alum Lia Merminga Appointed Director of Fermi National Accelerator Laboratory
- Physics and Astronomy Senior Anna Simpson One of Five Students to Win Prestigious 2022 Goldwater Scholarship!
- Congratulations to Mark Newman on His Election to the Royal Society
- U-M Renames Randall Laboratory Addition After Pioneering Physicist Homer A. Neal
- Congratulations to Anna Simpson, U-M's 2022 Astronaut Scholar!
- Michigan Physics Welcomes Jalen Rose Leadership Academy Scholars to Ann Arbor Campus
- Successful Startup of Particle Detector Aims to Pin Down Dark Matter
- U-M Researchers Untangle the Physics of High-Temperature Superconductors
- Live From the International Space Station, It’s Saturday Morning Physics
- A team of researchers—Robert McGehee and Aaron Pierce of U-M Physics and Gilly Elor of Johannes Gutenberg University—proposed a new candidate for dark matter: HYPER, or “HighlY Interactive ParticlE Relics.”
- A Special Thank You to Navy Captain Josh Cassada and to NASA!
- Physicist Gregory Tarlé and Team, Find First Observational Evidence Linking Black Holes to Dark Energy
- Support Michigan Physics on Giving Blueday!
- $18M to advance materials research for quantum computing, sustainable plastics and more
- Michigan Physicists and Collaborators New Muon Result Explores Uncharted Territory in Search for New Physics
- U-M Physicist Joshua Spitz Receives 2023 Experimental Physics Investigator Award
- The Universe Caught Suppressing Cosmic Structure Growth
- U-M Collaboration to Receive DOE Grant to Diversify Physics
- Five Physics Researchers From U-M Named American Physical Society Fellows
- Thank You for Your Help Supporting Women in Physics!
- It Happened at Michigan — ‘You’ve got to be excellent’
- Physics Student Sanil Mittal awarded STEM Research Career Award!
- U-M Astronomer: Get to the path of April's total solar eclipse
- Thank You for Supporting Michigan Physics on Giving Blueday!
- U-M Physics Department Franco Nori Named 2024 Charles Hard Townes Medal Recipient
- U-M Anatol Rapoport Distinguished University Professor of Physics Mark Newman Named 2024 Leo P. Kadanoff Prize Recipient
- A New Measurement of the Expansion History of the Universe
- Physics Ph.D. Candidate and Professor Honored with Willie Hobbs Moore Awards
- U-M study: Using ‘tweezers’ to control active fluids
- Muscle machine: How water controls the speed of muscle contraction
- LZ experiment sets new record in search for dark matter
- Join Us! Department Chair and Professor of Physics Open Position
- All Events
- Special Lectures
- K-12 Programs
- Saturday Morning Physics
- Seminars & Colloquia
The Laser Interferometer Gravitational-wave Observatory (LIGO) has made a third definitive detection of gravitational waves, ripples in space and time, demonstrating that a new window in astrophysics has been firmly opened. As was the case with the first two detections, the waves were generated when two black holes collided to form a larger black hole.
The newfound black hole, formed by the merger, has a mass about 49 times that of our sun. This fills in a gap between the masses of the two merged black holes detected previously by LIGO, with solar masses of 62 (first detection) and 21 (second detection).
“This third discovery is exciting, in part because it confirms the abundance of heavy stellar-scale black holes in the Universe,” says University of Michigan Physics Professor Keith Riles. He is the principal investigator of the Michigan Gravitational Wave Group and a member of the LIGO Scientific Collaboration’s (LSC) Executive Committee. “It is also exciting,” he adds, “that the inferred directions of the spin axes of the colliding black holes provide important constraints on theoretical models of black hole formation.”
The new detection occurred during LIGO's current observing run, which began November 30, 2016, and will continue through the summer. LIGO is an international collaboration with members around the globe. Its observations are carried out by twin detectors—one in Hanford, Washington, and the other in Livingston, Louisiana—operated by Caltech and MIT with funding from the National Science Foundation (NSF).
"We have further confirmation of the existence of stellar-mass black holes that are larger than 20 solar masses—these are objects we didn't know existed before LIGO detected them," says MIT's David Shoemaker, the newly elected spokesperson for the LSC, a body of more than 1,000 international scientists who perform LIGO research together with the European-based Virgo Collaboration. "It is remarkable that humans can put together a story, and test it, for such strange and extreme events that took place billions of years ago and billions of light-years distant from us. The entire LIGO and Virgo scientific collaborations worked to put all these pieces together."
LIGO made the first-ever direct observation of gravitational waves in September 2015 during its first observing run since undergoing major upgrades in a program called Advanced LIGO. The second detection was made in December 2015. The third detection, called GW170104 and made on January 4, 2017, is described in a new paper accepted for publication in the journal Physical Review Letters.
In all three cases, each of the twin detectors of LIGO detected gravitational waves from the tremendously energetic mergers of black hole pairs. These are collisions that produce, briefly, more power than is radiated as light by all the stars and galaxies in the Universe at any given time. The recent detection appears to be the farthest yet, with the black holes located about 3 billion light-years away. (The black holes in the first and second detections were located 1.3 and 1.4 billion light-years away, respectively.)
The newest observation also provides clues about the directions in which the black holes are spinning. As pairs of black holes spiral around each other, they also spin on their own axes—like a pair of ice skaters spinning individually while also circling around each other. Sometimes black holes spin in the same overall orbital direction as the pair is moving—what astronomers refer to as aligned spins—and sometimes they spin in the opposite direction of the orbital motion. In addition, black holes can also be tilted away from the orbital plane. Essentially, black holes can spin in any direction.
The new LIGO data cannot determine if the recently observed black holes were tilted but they imply that at least one of the black holes may have been non-aligned compared to the overall orbital motion. More observations with LIGO are needed to say anything definitive about the spins of binary black holes, but these early data offer clues about how these pairs may form.
Two primary models exist to explain how binary pairs of black holes can be formed. The first model proposes that the black holes are born together: they form when each star in a pair of stars explodes, and then, because the original stars were spinning in alignment, the black holes likely remain aligned.
In the other model, the black holes come together later in life within crowded stellar clusters. The black holes pair up after they sink to the center of a star cluster. In this scenario, the black holes can spin in any direction relative to their orbital motion. Because LIGO sees some evidence that the GW170104 black holes are non-aligned, the data slightly favor this dense stellar cluster theory.
The study, once again, puts Albert Einstein's theories to the test. For example, the researchers looked for an effect called dispersion, which occurs when light waves in a physical medium such as glass travel at different speeds depending on their wavelength; this is how a prism creates a rainbow. Einstein's general theory of relativity forbids dispersion from happening in gravitational waves as they propagate from their source to Earth. LIGO did not find evidence for this effect.
“The fact that this coalescence occurred about twice as far from us as the first detection allows us to test for dispersion during propagation better than we could before,” says Professor Riles who adds, “General Relativity has now passed that more rigorous test with flying colors.”
“The LIGO instruments have reached impressive sensitivities,” notes Jo van den Brand, the Virgo Collaboration spokesperson, a physicist at the Dutch National Institute for Subatomic Physics (Nikhef) and professor at VU University in Amsterdam. "We expect that by this summer Virgo, the European interferometer, will expand the network of detectors, helping us to better localize the signals.”
The LIGO-Virgo team is continuing to search the latest LIGO data for signs of space-time ripples from the far reaches of the cosmos. They are also working on technical upgrades for LIGO's next run, scheduled to begin in late 2018, during which the detectors' sensitivity will be improved.
"With the third confirmed detection of gravitational waves from the collision of two black holes, LIGO is establishing itself as a powerful observatory for revealing the dark side of the Universe," says David Reitze of Caltech, executive director of the LIGO Laboratory. "While LIGO is uniquely suited to observing these types of events, we hope to see other types of astrophysical events soon, such as the violent collision of two neutron stars."
LIGO is funded by the National Science Foundation (NSF), and operated by MIT and Caltech, which conceived and built the project. Financial support for the Advanced LIGO project was led by NSF with Germany (Max Planck Society), the U.K. (Science and Technology Facilities Council) and Australia (Australian Research Council) making significant commitments and contributions to the project. More than 1,000 scientists from around the world participate in the effort through the LIGO Scientific Collaboration, which includes the GEO Collaboration. LIGO partners with the Virgo Collaboration, a consortium including 280 additional scientists throughout Europe supported by the Centre National de la Recherche Scientifique (CNRS), the Istituto Nazionale di Fisica Nucleare (INFN), and Nikhef, as well as Virgo’s host institution, the European Gravitational Observatory. Additional partners are listed at: http://ligo.org/partners.php.