Skip to Content

Search: {{$root.lsaSearchQuery.q}}, Page {{$root.page}}

MCAIM Colloquium Seminar

Hard Particle Self-Assembly From the Perspective of Geometric Frustration
Wednesday, November 9, 2022
3:00-4:00 PM
4448 East Hall Map
It is well established that the appearance and properties of self-assembled structures are affected by the geometry of their constituents. This is especially true for hard polyhedrally shaped particles, which interact solely via excluded volume to form a plethora of entropically stabilized crystal structures. Yet, a priori prediction of these structures is non-trivial for anything but the simplest of space-filling shapes, such as cubes, especially when the thermodynamically preferred structure differs from the densest packing structure. By sufficiently curving space, however, we can eliminate the geometric constraints that prevent polyhedra from forming locally dense packings and theoretically create tessellations for all regular polyhedra. Using Monte Carlo simulations, we show that most hard polyhedra belonging to the family of Platonic solids can self-assemble into space-filling crystal structures when constrained to the surface of a hypersphere. By increasing the hypersphere radius to gradually flatten space, we introduce geometric frustration that prevents the particles from tessellating the hypersphere, and inevitably introduces defects. Lastly, we compare systems assembled in curved and flat space by applying different local environment metrics and show that all the observed assemblies of Platonic shapes in Euclidean space can be interpreted as shadows of tessellations and defects on the hypersphere.

Talk in person in East Hall 4448 and on Zoom:

Join Zoom Meeting:
https://umich.zoom.us/j/94775967057

Meeting ID: 947 7596 7057

Sponsored by the Van Loo Symposium Fund Speaker(s): Philipp Schoenhoefer (University of Michigan Chemical Engineering)
Building: East Hall
Event Type: Workshop / Seminar
Tags: Mathematics
Source: Happening @ Michigan from Department of Mathematics, Department of Physics, Michigan Center for Applied and Interdisciplinary Mathematics, MCAIM Colloquium - Department of Mathematics