Skip to Content

Social, Behavioral & Experimental Economics (SBEE): When Words Sweat: Identifying Signals for Loan Default in the Text of Loan Applications

Oded Netzer
Monday, September 17, 2018
11:45 AM-12:45 PM
3100 (Ehrlicher Room) North Quad Map
The authors present empirical evidence that borrowers, consciously or not, leave traces of their intentions, circumstances, and personality traits in the text they write when applying for a loan. This textual information has a substantial and significant ability to predict whether borrowers will pay back the loan over and beyond the financial and demographic variables commonly used in models predicting default. The authors use text-mining and machine-learning tools to automatically process and analyze the raw text in over 120,000 loan requests from, an online crowdfunding platform. The authors find that loan requests written by defaulting borrowers are more likely to include words related to their family, mentions of God, the borrower’s financial and general hardship, pleading lenders for help, and short-term focused words. The authors further observe that defaulting loan requests are written in a manner consistent with the writing style of extroverts and liars. Using a counterfactual analysis, the authors demonstrate that applying their finding can yield a 9.7% additional return on investment.
Building: North Quad
Event Type: Workshop / Seminar
Tags: Economics, seminar
Source: Happening @ Michigan from Social, Behavioral, and Experimental Economics (SBEE), Department of Economics, Department of Economics Seminars