UPDATE: A newly discovered rocky body has added evidence to the circumstantial case for it.

Some astronomers think this alleged planet, called Planet Nine, exists because of the way some objects in space, called "Trans-Neptunian Objects," or TNOs, behave. These TNOs are rocky objects smaller than Pluto that orbit the sun at a greater average distance than Neptune. But the orbits of the most distant of these TNOs—those whose average distance from the sun is more than 250 times as far as Earth's distance—seem to point in the same direction. This observation first led astronomers to predict the existence of Planet Nine.

For these TNOs to be aligned in the orbits they currently occupy because of Planet Nine's influence, astronomers say, they would have been in the solar system for longer than a billion years. However, some astronomers think in that amount of time, some of these objects should have either smashed into another planet, been thrown into the sun, or ricocheted off into space by other planets' gravitational force.

The U-M research, led by Juliette Becker, a graduate student in the Department of Astronomy, consisted of a large set of computer simulations, which uncovered two findings about these TNOs. First, the researchers established a version of Planet Nine that would most likely cause our solar system to look the way it currently does, by preventing the TNOs from being destroyed or thrown out of the solar system. Second, the simulations predict that there is a process that they call "resonance hopping" by which a TNO jumps between stable orbits. This process can prevent the TNOs from being ejected from the solar system.

In each individual simulation, the researchers tested different versions of Planet Nine to see whether that version of the planet, with its gravitational forces, resulted in the same version of the solar system we see today.

"From that set of simulations, we found out that there are preferred versions of Planet Nine that make the TNO stay stable for longer, so it basically increases the probability that our solar system exists the way it does," Becker said. "Through these computer simulations, we were able to determine which realization of Planet Nine creates our solar system—the whole caveat here being, if Planet Nine is real."

Full story and press release: http://ns.umich.edu/new/releases/25168-in-search-of-the-ninth-planet

Also covered here: