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Abstract

This thesis addresses the pricing challenge of variance swap through the application
of signature methods, a novel addition to quantitative finance area in recent years.
Under certain assumptions, we build a signature model on volatility and we conduct
a special case of the general underlying process, where the model is driven by a one-
dimensional underlying Brownian motion. To compute the expected signatures, we
refer to a matrix-form operator which extracts signature values at the initial level. By
modelling volatility, we construct variance swap strike price as a function of signature
values. Finally we derive a parameter-dense model for the final calibration, a task
characterized as a high-dimensional regression. We discuss the calibration results on
two cases. In the context of the ‘static’ case, our approach yields precise calibration
results. However, in the ‘sampled’ case, our calibration accuracy is not as high. This
discrepancy can be attributed to the current limitations of our method, which include
a lack of incorporation of additional parameters and the absence of more complex
processes.
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1 Introduction

1.1 Background Information For Variance Swap

A variance swap is a type of financial derivative enabling investors to trade or hedge against
the volatility of an underlying asset. It is a contract where two parties agree to exchange the
realized variance of the underlying asset for a predetermined fixed payment. Typically, the
underlying asset of a variance swap is an equity index, such as the S&P 500, or a specific
stock. Variance swaps provide a unique benefit: they offer direct exposure to an asset’s
volatility, in contrast to call and put options, which may involve directional risk. The gains
and losses associated with a variance swap are determined by the difference between the
realized and implied volatility, as illustrated in Figure 1.

Figure 1: Variance Swap Cash Flows [Allen et al., 2006[3]]

Variance swaps are commonly used by investors and traders to hedge against, or speculate
on, changes in volatility. By entering into a variance swap, market participants can effectively
isolate and trade the volatility component of an asset’s price movement, independently of
the asset’s direction. This enables investors to manage their exposure to market volatility
separately from their exposure to the asset’s returns. Variance swaps offer a flexible and
efficient means to gain exposure to volatility and are often utilized by institutional investors,
hedge funds, and other sophisticated market participants. Such exposure to volatility can be
particularly advantageous for investors during periods of significant stock market turbulence,
as seen during the 2008 financial crisis and the COVID-19 pandemic.

1.2 Literature Review

Recent developments in machine learning and big-data analysis for finance applications have
given rise to novel machine learning based approaches to solve challenging asset pricing prob-
lems. For example, neural networks were used by Ferguson & Green (2019)[6] to approximate
pricing functions of derivatives. Similarly, Buehler et al. (2019) focuses on optimal hedging
also with neural networks. Although the learning methods have strong ability to adapt to
complex patterns in data, model interpretability can be an issue. In contrast, model-based
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methods can capture volatility dynamics by using mathematical models such as the Heston,
Ornstein-Uhlenbeck process, etc., which could take more detailed features of rough paths
into consideration.

Cuchiero et al. (2022)[1] attempt to use mathematical objects, signatures, to assist the
incorporation of stochastic process in pricing problems. They formulate the time extended
signature as the linear regression basis of continuous path functionals, aiming at applying
data-driven, parameter-dense and tractable signature-based model in achieving outstanding
calibration results in their pricing challenge. This modeling approach is supported by previ-
ous theory on rough paths like Lyons (1998)[9]. We refer to asset price modeling process as
a signature method or a signature-based model.

Furthermore, in their most recent work, Cuchiero et al. (2023)[2] achieves highly ac-
curate results in joint calibration to S&P500(SPX) and Volatility Index(VIX) options with
signature-based model. The section 4 "Expected signature of polynomial diffusion processes"
in Cuchiero et al. (2023)[2] also provides a direct inspiration of how signature method could
be incorporated into describing polynomial processes and deriving close forms of expectation
terms. Our work of taking signature model into computation starts from the pricing formula
of variance swap and a small portion of our formula have a similar form with VIX index
presented as Theorem 5.1 in Cuchiero et al. (2023)[2]. Nevertheless, our model for Vari-
ance Swap would be much more complex than their model for VIX index and could involve
calibration work on higher-order term.

1.3 Model Choice

Signature-based models can be used to encode path information of underlying processes
under various modeling structures. For example, a signature-based model can incorporate
different mathematical processes such as Brownian Motion (in our project) or the Ornstein-
Uhlenbeck process (in Cuchiero et al. (2023)[2]’s case) to approximate the volatility process.

Furthermore, an additional advantage of signature-based models is that they can be im-
plemented using both discrete and continuous time models for the underlying processes.
Variance swap pricing are usually based on discrete monitoring (i.e., a discrete time signal
process), while traditional pricing methods tend to have assumptions on continuous monitor-
ing (such as the Heston model). The signature method could be incorporated with discrete
price points, potentially reducing the gap between the theoretical model and the real-world
contract term.

In this project, we use signature model in modeling stochastic volatility. This is compared
to traditional models for Volatility (e.g. Heston Model). The signature model is based on
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the theory of rough paths and focuses on the path properties of stochastic processes, thus
we expect to have a better calibration results by capturing more path details. Inspired by
Cuchiero et al. (2023)[2], we build a model for the volatility process σt from the price process
S = (St)t≥0 with dynamics given by

dSt = rStdt + σS
t (ℓ)StdBt, S0 ∈ R+.

Here, r is the risk-free interest rate, and Bt is a one dimensional Brownian motion process.
The process Bt is correlated with σS

t with correlated coefficient ρ. Then we model σS
t as,

σS
t (ℓ) = ℓ∅ +

∑
ℓI

ℓI⟨eI , Ẑt⟩,

where Zt is the signature of process Ẑt = (t,Wt, Bt). Here, Wt is the underlying Brownian
motion that drives the volatility, and is referred to the primary process. In this model, Ẑt

serves as a linear regression basis for the volatility process, ℓ = (ℓ∅, ℓI) are the parameters
learned from the observed price data. Our goal is to calibrate on these parameters ℓ to derive
accurate calibration results.

In comparing our study with the work of Cuchiero et al. (2023)[2], here are two key
differences. First, Cuchiero et al. (2023) [2] use a complex multidimensional process Xt

(see Definition3.1), while our study focuses on a simpler case using a one-dimensional Brow-
nian motion (Wt) as the primary process. This approach simplifies our methodology to
concentrate on specific aspects of the model.

Second, the methods we use for pricing VIX options and futures are more complex than
those of Cuchiero et al. (2023)[2] While their pricing formula partly matches the vari-
ance swap pricing model, we need more complex components for variance swap. It requires
higher-level computational methods. This highlights a significant contrast: Cuchiero et al.
(2023)[2]’s work features a simpler pricing approach within a broader model, whereas our
study involves more complex calculations within a more streamlined model of volatility.

2 Signature Model

The concepts and notions of signature and its application in rough path theory originally
goes back to Chen (1957)[8] and Lyons (1998)[9]. We consider the time extended signature of
an Rd path to serve as the linear regression basis for continuous path functionals. Cuchiero
et al. (2022)[1] introduce the Universal Approximation Theorem, which describes the fact
that the continuous path functionals on compact sets can be uniformly approximated by
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a linear function of the time extended signature. Specifically, the signature is an object
associated with a path which captures many of the path’s important analytic and geometric
properties. The detailed theoretical properties and some numerical applications are discussed
in Chevyrev & Kormilitzin (2016)[7].

2.1 Mathematical Foundations

In this section we present the necessary mathematical foundations that we use in constructing
our model.

For n, d ∈ N, the n-fold tensor product of Rd is given by

(Rd)⊗n = (Rd)⊗(Rd)⊗...⊗ (Rd)︸ ︷︷ ︸
n

,

where we construct an nd-dimensional space out of n vectors from d-dimensional space.
For d ∈ N, the extended tensor algebra on Rd is given by

T(Rd) = {a = (a0, a1, ..., an) : ai ∈ (Rd)⊗i, i = 0, 1, 2, ..., n}.

Suppose a = (ai)
∞
i=0, b = (bi)

∞
i=0 ∈ T((Rd)), define the sum + and product ⊗ by

a + b := (ai + bi)
∞
i=0,

a ⊗ b := (
i∑

k=0

ak ⊗ bi−k)
∞
i=0.

Suppose a multi-index I := (i1, i2, ..., in), then we set |I| := n. Remark that we also set
I ′ := (i1, ..., in−1) and I ′′ := (i1, ..., in−2) whenever needed.
We also have the notation {I : |I| = n} := {1, 2, ..., d}n.
Now we combine the multi-index with the tensor basis:

eI = ei1 ⊗ ei2 ⊗ ... ein ,

where ei1 , ei2 , ..., ein denotes the canonical basis vectors of Rd. Denoting that e∅ is the basis
element corresponding to (Rd)⊗0.

Suppose we have eI : |I| = N to be an orthonormal basis of (Rd)⊗N . Then for any
a ∈ T((Rd)), it can be written as

a =
∑

|I|>=0

aIeI ,
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where aI ∈ R is a coefficient for a vector basis on multi-index I. Equivalently,

aI = ⟨eI , a⟩.

2.2 Definitions And Theorems

In probability theory, a semimartingale could be understood as a model of a fair game where
knowledge of past events never helps to predict future winnings. In financial mathematics
context, the semimartingales are widely used to model asset prices since the financial instru-
ments not only describe trends and patterns of the market, but also have a certain level of
unpredictability.

We consider a filtered probability space (Ω,F , (Ft)t≥0,Q), where (Ft)t≥0 is a filtration
representing all available information and Q is a risk-neutral probability measure. Here we
present the definition of the signature of a continuous semimartingale.

Definition 2.1 (Definition 2.1 in Cuchiero et al. (2022)[1]). Let (Yt)t∈[0,T ] be a continuous
Rd-valued semimartingale. The signature of X is the T ((Rd))-valued process (s, t) 7→ Ys,t

whose components are recursively defined as

⟨e∅,Ys,t⟩ = 1,

⟨eI ,Ys,t⟩ =
∫ t

s

⟨eI′ ,Ys,t⟩ ◦ dX in
r ,

for each I = (i1, i2, ..., in), I ′ = (i1, i2, ..., In−1) and 0 ⩽ s ⩽ t ⩽ T , where ◦ denotes the
Stratonovich integral. Its projection YN on T (N)(Rd) is given by

YN
s,t =

∑
|I|⩽N

⟨eI ,Ys,t⟩eI ,

and is called signature of Y truncated at level N.
The equivalent notation:

Yt = (1,

∫ t

0

1◦dY 1
s , ...,

∫ t

0

1◦dY d
s ,

∫ t

0

(

∫ t

0

1◦dY 1
s )◦dY 1

s , ... ,

∫ t

0

(

∫ t

0

1◦dY d
s )◦dY d

s , ... ).

Signature is a collection of iterated integrals of the given multidimensional path. The
integrals are listed in the collection in a strict order. Similar to 1.2.1 presented in Chevyrev
& Kormilitzin (2016)[7], here is an example for a single signature term.
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Example.

⟨e1,Ys,t⟩ =
∫ t

0

1 ◦ dY 1
s = Y 1

t − Y 1
s ,

Note that ⟨e1 ⊗ e2,Ys,t⟩ ≠ ⟨e2 ⊗ e1,Ys,t⟩ as ⟨e1 ⊗ e2,Ys,t⟩ =
∫ t

0
(
∫ t

0
1 ◦ dY 1

s ) ◦ dY 2
s while

⟨e2 ⊗ e1,Ys,t⟩ =
∫ t

0
(
∫ t

0
1 ◦ dY 2

s ) ◦ dY 1
s .

Definition 2.2 and Proposition 2.1 together articulate a conclusion that is of significant
importance in the computation of expected values of signatures, particularly when the terms
are subjected to multiplication. To be more specific, every polynomial on the signature may
be realized as a linear function via shuffle product.

Definition 2.2 (Definition 2.2 in Cuchiero et al. (2022) [1]). (Shuffle Product) Given two
multi-indices I = (i1, i2, ..., in) and J = (j1, j2, ..., jm), the shuffle product is defined recur-
sively as

eI � eJ = (eI′ � eJ)⊗ ein + (eI � eJ ′)⊗ ejm ,

where eI � e∅ = e∅� eI = eI .

Proposition 2.1. (Shuffle Property)[Proposition 2.3 in Cuchiero et al. (2022)[1]] Let ((Xt))t ∈ [0, T ]

be a continuous Rd-valued semimartingale and I, J be two multi-indices. Then

⟨eI ,Ys,t⟩⟨eJ ,Ys,t⟩ = ⟨eI � eJ ,Ys,t⟩,

Proof.
We prove this proposition by induction with Stratonovich integrals. See appendix A.

With the motivation from Cuchiero et al. (2023)[2] and Cuchiero et al. (2022)[1], we
model the volatility process σt in our pricing formula for variance swap. The main idea of
this modelling choice is to track the volatility process with the linear combinations of the
signature of the underlying process.

Definition 2.3. Our goal is to parameterize the volatility process σt as a signature model
(Sig-SDE), which is, applying signature model to describe the dynamics of St as

σt(ℓ) = ℓ∅ +
∑
|I|≤n

ℓI⟨eI , Ẑt⟩,

where Ẑt is the signature of Ẑt = (t,Wt, Bt) with the primary process Wt and Brownian
motion Bt from pricing form. Furthermore, by Proposition 2.1,

(σt(ℓ))
2 = ℓ∅ +

∑
|I|,|J |≤n

ℓIℓJ⟨eI � eJ , Ẑt⟩.
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3 Expected Signature

In order to incorporate concept of signature into the pricing formula, it is essential to compute
the expected values for signature terms. We use a very important definition in Cuchiero et
al. (2023)[2] that introduces a matrix operator G that helps us to approximate expected
signature values. As mentioned in Definition 2.1, to derive signature values, we need to have
a underlying process who satisfies certain properties (namely a semimartingale). First we
introduce a general form of the primary process X. Cuchiero et al. (2023)[2] incorporated
multidimensional Ornstein–Uhlenbeck processes (OU processes) as their primary process. In
our case, we adjust the process so that the primary process is Brownian motion. Also notice
that the general primary process Xt is partly driven by the underlying Brownian motion Wt.

Definition 3.1. A d-dimensional real-valued process Y is called a d-dimensional polynomial
diffusion process if it is a weak solution of

dYt = b(Yt)dt+
√

a(Yt)dWt, Y0 = y0,

where maps a : Rd 7→ Sd
+ and b : Rd 7→ Rd such that each aij is a polynomial of degree at

most 2 and bj is a polynomial of degree at most 1 for each i, j = 1, ..., d+ 1.

Let Yt denote the signature of Yt. Lemma 4.1 in Cuchiero et al. (2023)[2] shows specific
details in drift coefficient a and diffusion coefficient b. Specifically, the signature terms are
mapped to these coefficients by certain multi-indices bj and aij, where i, j ∈ {1, ..., d},

bj(Yt) = ⟨bj,Y1
t ⟩,

aij(Yt) = ⟨aij,Y2
t ⟩.

Lemma 4.2 in Cuchiero et al. (2023)[2] indicates as the truncated signature (Yn
t )t≥0 also

admits a polynomial representation similar to form given in Definition 3.1, then for each
|I| ≤ n, we have

⟨eI ,Yn
t ⟩ =

∫ t

0

⟨LeI ,Yn
s ⟩ds +

∫ t

0

⟨eI′ ,Yn
s ⟩σi|I|(Ys)dWs,

where the operator L : T (Rd) → T (Rd) satisfies L(T (n)(Rd)) ⊆ T (n)(Rd) and is given by

LeI = eI′ � bi|I| +
1

2
eI′′ � ai|I|−1i|I| ,

where bi|I| and ai|I|−1i|I| are the multi-indices used in drift and diffusion coefficients’ mappings.
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Notice that the L-operator maps from T (Rd) to T (Rd), then it is reasonable to write a
matrix representation on it.

Definition 3.2. [Definition 4.3 in Cuchiero et al. (2023)[2].] For each |I| ≤ n set, then
ηIJ ∈ R such that

HeI =
∑
|J |≤n

ηIJeJ .

Then we fix a labelling injective function H : {I : |I| ≤ n} → {1, 2, ..., dn}. We then call the
matrix G ∈ Rdn×dn where

GH(I)H(J) = ηIJ ,

the dn dimensional matrix representative of H.

Now we have everything to construct a conclusion that we could use to compute the
expected signature. Given the information up to time T , FT , we would like to calculate the
expected value for ⟨eI ,YT+t⟩.

Definition 3.3 (Theorem 4.4 in Cuchiero et al.(2023)[2]). Let (Yt)t≥0 be the polynomial process
given by Theorem 3.1. Let G be the dn-dimensional matrix representative of the L-operator
corresponding to Y. Then for each T, t ≥ 0, |I| ≤ n we introduce a lifting operator P which
is defined as:

PI
t (YT ) = E

[
⟨eI ,YT+t⟩

∣∣∣∣FT

]
=
∑
|J |≤n

(etG
⊺
)L(I)L(J)⟨eJ ,YT ⟩.

By conditioning on FT , we’re taking the conditional expectation as a function of the signature
terms of the underlying process at time T . FT , the filtration up to time T , is the acquisition
of all relevant information up to time T . Indeed, the signature values of the underlying
process at time T is the information we have at time T .

In their work Cuchiero et al. (2023)[2], to incorporate signature-based model in explicit
VIX pricing expression, operator P is enough for computation. In our case, the variance
swap pricing form, it involves higher order terms that could not be elegantly presented by
P. Therefore, we define more complex operator for our variance swap pricing formula.

Lemma 3.1. In variance swap pricing form, it involves terms in the form of

E
[
⟨eI ,Yt2⟩⟨eH ,Yt1⟩

∣∣∣∣Ft0

]
,

10



thus we introduce operator Φ, which could be seen as a function of operator P. Specifically,
when 0 ≤ t0 < t1 < t2, by Tower’s property,

Φ(I,t2),(H,t1)(Yt0) = E
[
⟨eI ,Yt2⟩⟨eH ,Yt1⟩

∣∣∣∣Ft0

]
= E

[
E
[
⟨eI ,Yt2⟩

∣∣Ft1

]
⟨eH ,Yt1⟩

∣∣∣∣ Ft0

]
= E

[ ∑
|J |≤n

(e(t2−t1)G⊺
)L(I)L(J)⟨eJ ,Yt1⟩⟨eH ,Yt1⟩

∣∣∣∣ Ft0

]

= E
[ ∑

|J |≤n

(e(t2−t1)G⊺
)L(I)L(J)⟨eJ � eH ,Yt1⟩

∣∣∣∣ Ft0

]

=
∑
|J |≤n

(e(t2−t1)G⊺
)L(I)L(J)E

[
⟨eJ � eH ,Yt1⟩

∣∣∣∣ Ft0

]
=
∑
|J |≤n

(e(t2−t1)G⊺
)L(I)L(J)P

J�H
t1−t0

(Yt0).
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4 Calibration Of Variance Swap Price With Signature Model

In section 3, the G matrix operator and the lifting operator P and Φ are defined on general
primary process Xt, whose dynamics were given in Definition 3.1. However, we need to
revisit the fact in our project that our primary process is one-dimensional Brownian motion
Wt. To be more specific, given the problem setup in Cuchiero et al. (2023)[2], we could
choose the parameters in H-operator to formulate Xt as Wt.

Given Lemma 4.1. in Cuchiero et al. (2023)[2], if we let bcj, b
k
j , a

k
ij, a

kh
ij = 0 and acij = 1,

then we have dXt = dWt. Now we’ve formulated the general polynomial diffusion process
Xt as the Brownian motion Wt.

Therefore here we use the calibration on the most Wt. Ŵt = (t,Wt) is the time-extended
process where Ŵt being its signature. Notice that for the last term in the formula, namely
the K3 in Theorem 4.1, involves the brownian motion B from the pricing formula. So for K3

computation, we use Ẑt = (t,Wt, Bt) as the underlying process we’re calibrating on. Ẑt is
the signature of Ẑt. Given a filtered probability space (Ω,F ,Ft,Q) on which we define the
stochastic process

dSt = rStdt + σtStdBt, S0 ∈ R+,

where St is the pricing process, σt is the volatility process represented by signature model.
Bt here is a Brownian motion which is correlated with σt.

The variance swap contract is structured to ensure that losses are minimized when market
volatility exceeds the agreed strike price. Thus in the following theorem, we formulate the
closed form for our objective strike price K̂. To make the market free of arbitrage, the fair
strike price K̂ under risk-free measure Q is given by

K̂ = EQ
[ N∑

k=1

[
log(

Stk+1

Stk

)
]2∣∣∣∣F0

]
.

Then from SDE formulated earlier, we get

Stk+1
= Stke

r(tk+1−tk)−
∫ tk+1
tk

σ2
s
2
ds+

∫ tk+1
tk

σsdBs .
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Then K̂ is given by (see proof in appendix)

K̂ = E
[ N∑

k=0

(
r2(tk+1 − tk)

2 +
(
1 − r(tk+1 − tk)

) ∫ tk+1

tk

σ2
sds+

1

4
(

∫ tk+1

tk

σ2
sds)

2

−
∫ tk+1

tk

σ2
sds

∫ tk+1

tk

σsdBs

)∣∣∣∣F0

]
.

Theorem 4.1. *3 Assume Definition 2.3, Definition 3.3, Definition 3.1 and the linear signa-
ture presentation for dynamic process, the risk-neutral strike K̂ for variance swap is given
by

K̂ =
N∑
k=0

(
r2(tk+1 − tk)

2 +
(
1 − r(tk+1 − tk)

)
K1

tk,tk+1
+

1

4
K2

tk,tk+1
− K3

tk,tk+1

)
,

where

(1) K1
tk,tk+1

= E
[ ∫ tk+1

tk
σ2
sds

∣∣∣∣F0

]
=
∑

|I|,|J |≤n ℓIℓJ

(
PI�J⊗0

tk+1
(Ŵ0) − PI�J⊗0

tk
(Ŵ0)

)
,

(2) K2
tk,tk+1

= E
[
(
∫ tk+1

tk
σ2
sds)

2

∣∣∣∣F0

]
=
∑

|I|,|J |,|M |,|N |≤n ℓIℓJℓMℓN

(
P

(I�J⊗0)�(M�N⊗0)
tk+1

(Ŵ0)

+ P
(I�J⊗0)�(M�N⊗0)
tk

(Ŵ0)− 2Φ(I�J⊗0,tk+1),(M�N⊗0,tk)(Ŵ0)

)
,

(3) K3
tk,tk+1

= E
[ ∫ tk+1

tk
σ2
sds
∫ tk+1

tk
σsdBs

∣∣∣∣F0

]
=
∑

|I|,|J |,|M |≤n ℓIℓJℓM

(
P

(I�J⊗0)�M̃d+1

tk+1
(Ẑ0)

+ P
(I�J⊗0)�M̃d+1

tk
(Ẑ0)− Φ(I�J⊗0,tk+1),(M̃

d+1,tk)(Ẑ0) − Φ(M̃d+1,tk+1),(I�J⊗0,tk)(Ẑ0)

)
.

Proof. See appendix A.

Notice that the K1 is similar to the computation of the VIX squared introduced in
Theorem 5.1 from Cuchiero et al. (2023)[2]. However when incorporated the signature
models, we use different notations specified in Definition 3.3. When constructing K1, K2 and
K3, we organized the expectation terms with similar structures and summarized them into
Definition 3.3 and Definition 3.1, which makes our complete formula more orderly and easier
to interpret.

3Theorem 4.1.* is a joint effort with my collaborators, Prof. Qi Feng, Prof. Bingyan Han and Haisu Ding
in Han et al. (2023)[10].
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5 Data Analysis

5.1 Data Description

We utilize a dataset comprising annualized variance swap prices on the S&P 500 Index (SPX),
sourced from the Bloomberg Terminal at Ross School of Business, University of Michigan.
The dataset spans from 2008 to 2023, and we are particularly interested in modeling periods
during abnormal price behavior, such as the 2008 financial crisis and the economic impacts
of the COVID-19 pandemic during 2019-2020.

Figure 2: SPX Variance Swap Annualised
Prices 2008 - 2023

Figure 3: SPX Variance Swap Annualised
Prices during the 2008 Financial Crisis

In convention, the volatility is calculated using daily returns, where the annualised volatil-
ity is presented as,

σ2
realized =

252

T

T∑
i=1

[
log(

Si

Si−1

)

]2
, (1)

where Si is the underlying price on day i, and T is the maturities in number of days. In daily
setup, the calculation is conducted for each trading day. To reduce computational intensity
in this project, we switch to modeling monthly returns. Therefore we conduct calculation
once for each month. Then in our case, we have

σ2
realized =

12

M

M∑
i=1

[
log(

Si

Si−1

)

]2
≈ 12

M
K, (2)

where Si is the underlying price on month i, M is the maturities in number of months and
K = E[

∑M
i=1[log(

Si

Si−1
)]2] is the risk-neutral strike price.
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5.2 Method Specification

Observe Definition 3.3, Definition 3.1 and the proof for Theorem 4.1, for efficiency pur-
pose, the etG

⊺ matrices should be stored and loaded when needed as the matrix exponential
computation in such case is time consuming and hard to approximate.

Notice that G matrix is determined by the primary process of different choices. In their
work in Cuchiero et al. (2023)[2], they choose multidimensional OU-processes X which
differs from our case, one-dimensional Brownian motion W , then the G matrices are not
align with each other in our cases consequently. We’re not using consistent G matrices in
this project either. For computation of K1 and K2, G matrices are generated on Ŵ = (t,W ).
For K3, which involves the pricing form Brownian motion B, G matrices are generated on
Ẑ = (t,W,B). The size of G matrices also differ for different index lengths. (In Definition 3.2,
|I| determines different size of G matrices.) In K3 case, W and B represents two correlated
Brownian motions that form a 2-dimensional diffusion process given in Definition 3.1. In
this case, the diffusion coefficients aij are actually the correlation coefficients ρij of different
processes. Namely in our current computation, we assume the correlation coefficient between
W and B to be -0.2. Specifically, our input ρ-matrix into Gs’ computation for K3 is given
by

ρ =

(
1 −0.2

−0.2 1

)
.

Also, we assume interest rate r to be 0.05.
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5.3 Model Validation Test

We conduct a validation test on our existing model by manually defining the parameters and
generating artificial prices using these parameters. The plot below presents the fact that
our model is able to recover the parameters we previously set, as all newly calibrated prices
recover the artificial prices.

5.4 Static Case

On each trading day, we could observe the variance swap price on 1 month, 2 months, 3
months, 6 months, 12 months, 24 months maturities. We pick a single trading day and
calibrate the 6 pricing points together. In this case we choose the truncation level to be 1
and the number of parameters is 4. On trading day T , the calibration on variance swap
prices on different maturities M = {1m, 2m, 3m, 6m, 12m, 24m} consists in minimizing the
functional

L(ℓ) =
∑
m∈M

(K̂T
m −K∗T

m )2,

where L denotes the real value loss function. K̂T
m and K∗T

m are the calibrated and observed
strike prices respectively.
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Figure 4: Variance Swap prices calibration (Static Case)

The left column in Figure 4 represents the original calibration results. The three date we
picked: 2008-11-09 has a high variance swap price level during the 2008 financial crisis era,
2009-10-29 is an ‘ordinary’ day where the price level are comparatively low, 2020-03-18 has
a high price level during COVID-19 pandemic period.

Our model shows good calibration results on most price points, except for the first three
maturities, the results are slightly off. We manually add penalties to the first three maturities
in the cost function. Then we derived the ‘adjusted’ calibration on the right. We observe
much better calibrated prices on 2-months and 3-months maturities while failed to improve
on 1-month maturity.
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5.5 Use Static Setup To Test Model’s Consistency Within A Short Period

Within a short period of time (a series of sequential trading days), the calibrated parameters
should be considered as the estimates ℓ∗ = (ℓ∗∅, ℓ

∗
0, ℓ

∗
1, ℓ

∗
2) of the consistent ‘real’ parameters

ℓ = (ℓ∅, ℓ0, ℓ1, ℓ2). As the model is tracking the volatility within the short period, the model
results should be consistent during the period. From Table 1, we could observe that the
calibrated parameters have lower variance than the calibrated parameters in Table 2 where
we chose distant trading days. Parameters ℓ should not be stationary in a long term as the
market evolves, so it should only be consistent within a specified time window.

Dates \Parameters ℓ∗∅ ℓ∗0 ℓ∗1 ℓ∗2
2008-11-10 1.63652 -0.07049 0.30366 -0.07712
2008-11-11 1.64862 -0.07365 0.3089 -0.08266
2008-11-12 1.68402 -0.07924 0.31386 -0.10649
2008-11-13 1.63192 -0.0651 0.29517 -0.07174
2008-11-14 1.67081 -0.0718 0.30424 -0.09012

Table 1: Calibrated parameters from 2008.11.10 to 2008.11.14

Dates \Parameters ℓ∗∅ ℓ∗0 ℓ∗1 ℓ∗2
2008-11-10 1.63652 -0.07049 0.30366 -0.07712
2009-04-06 1.52544 -0.0379 0.23967 -0.00226
2009-08-27 1.38714 -0.02374 0.20564 0.09479
2010-01-21 1.3193 -0.02288 0.19698 0.13739
2008-06-21 1.37418 -0.0233 0.20951 0.10141

Table 2: Calibrated parameters from 2008.11.10 with 100 trading days’ gaps

The purpose of calibration is to adjust the parameters of a model so that its output aligns
with real-world prices. Apart from providing some evidence on the model’s accuracy, we can
offer reference opinions for customized orders using an approach similar to interpolation.
Notice that now we’re calibrating on 6 standard maturities variance swap. What if there
are some taylor-made contracts that have non-standard maturities like 17 days? What we
could do is once we acquire the 6 standard maturities variance swap prices, we conduct
calibration on these 6 pricing points. Once we derived the calibrated parameters, with
these parameters and the customized maturity, we could offer a variance swap price to this
taylor-made contract.
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5.6 Sampled Case

Now we pick one maturity, sample a path with different number of days to derive signature
values. Then we calibrate these number of days together. This sampled case could be a good
model performance test on series of prices. We pick maturity M, the calibration for each
day in T consists in minimizing the functional

L(ℓ) =
∑
t∈T

(K̂t
M −K∗t

M)2,

where L denotes the real value loss function. K̂T
m and K∗T

m are the calibrated and observed
strike prices respectively.

Figure 5: Variance Swap prices calibration (Sampled Case)

In this case we still choose the truncation level to be 1 and the number of parameters is
4. The four calibration presented above are all on 1-month maturity variance swap price.
As we’re using annualized prices, and with observations from Figure 2 and 3, on different
maturities, the model’s performance should be similar (see Figure 6). Calibration results
are mostly good for 4 parameters versus 5 data points (two plots on the first row), while
the calibration is poor when our model’s 4 parameters are trained on 10 price points (two
plots on the second row). Other than the number of parameters, another factor that could
influence our model performance is the primary process we chose. We incorporated correlated
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Brownian motions as our primary process. However, correlated Brownian motions may not
provide advanced physical features which could potentially improve fitting. For example,
the next stage of this project could be incorporating mean-reverting process like OU-process
instead of correlated Brownian motions. Moreover, in this case, we choose d = 1, which
means our underlying Brownian Motion is one-dimensional. One-dimensional Brownian
motion may not be sufficient to capture all the dynamics of the pricing process; exploring
higher-dimensional models could yield more accurate and comprehensive results.

Figure 6: 12 Month Maturity Variance Swap prices calibration (Sampled Case). We observe
a similar result with 1 Month Maturity case in Figure 5.

6 Conclusion

In this thesis, we explored a new approach for pricing variance swaps using signature meth-
ods, a recent development in quantitative finance. Our focus was to build a model that
accurately captures the behavior of volatility in financial markets. This approach is based
on the concept of rough path theory, which provides a detailed understanding of stochastic
processes. Our signature model, designed to represent volatility, has shown its effectiveness
in handling complex financial instruments. The model’s performance was tested against
real market data, particularly during periods of significant market fluctuations like the 2008
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financial crisis and the COVID-19 pandemic. The results were encouraging, demonstrating
the model’s potential in capturing market dynamics.

We applied our model in two scenarios: static and sampled cases. The static case showed
the model’s accuracy in predicting prices for standard variance swaps. The sampled case, al-
though more challenging, pointed out areas for further improvement. This includes exploring
more complex mathematical processes or considering models with more parameters.

In summary, the findings from this study are valuable for professionals in finance, offering
a new tool for the understanding and managing volatility. The signature model’s ability to
summarize key information from price movements can lead to better risk management and
strategic decisions in financial markets. Our signature-based model is a significant addition
to financial modeling techniques. It stands out in its ability to handle complex market
conditions and provides detailed insights into volatility. Future research could enhance this
model further, applying it to other financial instruments and improving its predictive power.
This thesis lays a foundation for future advancements in financial modeling, promising to be
of great benefit both in theory and practice.
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A Appendix: Proof for Propostion 2.1

We prove this proposition by induction with Stratonovich integrals.
Induction Basis. ⟨e∅,Xs,t⟩⟨eJ ,Xs,t⟩ = 1 ⟨eJ ,X⟩ = ⟨e∅ � eJ ,Xs,t⟩ , which agrees with the
proposition.
Induction Steps. Assumed that for arbitrary subsets S1 and S2 of multi indices I and J , we
have

⟨eS1 ,Xs,t⟩⟨eS2 ,Xs,t⟩ = ⟨eS1 � eS2 ,Xs,t⟩

After that,

⟨eI ,Xs,t⟩⟨eJ ,Xs,t⟩ =
∫ t

s

⟨eJ ,Xs,u⟩ ◦ d⟨eI ,Xs,u⟩+
∫ t

s

⟨eI ,Xs,u⟩ ◦ d⟨eJ ,Xs,u⟩

=

∫ t

s

⟨eI′ ,Xs,r⟩⟨eJ ,Xs,r⟩ ◦ dXin
r +

∫ t

s

⟨eI ,Xs,r⟩⟨eJ ′ ,Xs,r⟩ ◦ dXjm
r

=

∫ t

s

⟨eI′ � eJ ,Xs,r⟩ ◦ dXin
r +

∫ t

s

⟨eI � eJ ′ ,Xs,r⟩ ◦ dXjm
r

= ⟨eI′ � eJ ⊗ ein ,Xs,t⟩+ ⟨eI � eJ ′ ⊗ ejm ,Xs,t⟩

= ⟨eI′ � eJ ⊗ ein + eI � eJ ′ ⊗ ejm ,Xs,t⟩

= ⟨eI � eJ ,Xs,t⟩

B Appendix: Proof for Theorem 4.1

Given

K̂ = EQ
[ N∑

k=1

[
ln(

Stk+1

Stk

)
]2∣∣∣∣F0

]
and

Stk+1
= Stke

r(tk+1−tk)−
∫ tk+1
tk

σ2
s
2
ds+

∫ tk+1
tk

σsdBs ,
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we derive

K̂ = E
[ N∑

k=0

(
r(tk+1 − tk)−

∫ tk+1

tk

σ2
s

2
ds+

∫ tk+1

tk

σsdBs

)2∣∣∣∣F0

]

= E
[ N∑

k=0

(
r2(tk+1 − tk)

2 − r(tk+1 − tk)

∫ tk+1

tk

σ2
sds + 2r(tk+1 − tk)

∫ tk+1

tk

σsdBs

+
1

4
(

∫ tk+1

tk

σ2
sds)

2 −
∫ tk+1

tk

σ2
sds

∫ tk+1

tk

σsdBs + (

∫ tk+1

tk

σsdBs)
2

)∣∣∣∣F0

]
= E

[ N∑
k=0

(
r2(tk+1 − tk)

2 − r(tk+1 − tk)

∫ tk+1

tk

σ2
sds

+
1

4
(

∫ tk+1

tk

σ2
sds)

2 −
∫ tk+1

tk

σ2
sds

∫ tk+1

tk

σsdBs +

∫ tk+1

tk

σ2
sds

)∣∣∣∣F0

]
= E

[ N∑
k=0

(
r2(tk+1 − tk)

2 +
(
1 − r(tk+1 − tk)

) ∫ tk+1

tk

σ2
sds+

1

4
(

∫ tk+1

tk

σ2
sds)

2

−
∫ tk+1

tk

σ2
sds

∫ tk+1

tk

σsdBs

)∣∣∣∣F0

]

Then with Definition 3.3 and Lemma 3.1, we express the formula for K in signature terms.

step 1. We take K1
tk,tk+1

= E
[ ∫ tk+1

tk
σ2
sds|F0

]
. With Remark ?? where we apply
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signature formula in term σ and Theorem 3.3

K1
tk,tk+1

= E
[ ∫ tk+1

tk

σ2
sds

∣∣∣∣F0

]
= E

[ ∫ tk+1

tk

∑
|I|,|J |≤n

ℓIℓJ⟨eI � eJ , Ŵs⟩ds
∣∣∣∣F0

]

= E
[ ∫ tk+1

0

∑
|I|,|J |≤n

ℓIℓJ⟨eI � eJ , Ŵs⟩ds
∣∣∣∣F0

]
− E

[ ∫ tk

0

∑
|I|,|J |≤n

ℓIℓJ⟨eI � eJ , Ŵs⟩ds
∣∣∣∣F0

]

= E
[ ∑

|I|,|J |≤n

ℓIℓJ⟨eI � eJ ⊗ e0, Ŵtk+1
⟩
∣∣∣∣F0

]
− E

[ ∑
|I|,|J |≤n

ℓIℓJ⟨eI � eJ ⊗ e0, Ŵtk⟩
∣∣∣∣F0

]

=
∑

|I|,|J |≤n

ℓIℓJE
[
⟨eI � eJ ⊗ e0, Ŵtk+1

⟩
∣∣∣∣F0

]
−

∑
|I|,|J |≤n

ℓIℓJE
[
⟨eI � eJ ⊗ e0, Ŵtk⟩

∣∣∣∣F0

]
=

∑
|I|,|J |≤n

ℓIℓJP
I�J⊗0
tk+1

(Ŵ0) −
∑

|I|,|J |≤n

ℓIℓJP
I�J⊗0
tk

(Ŵ0)

=
∑

|I|,|J |≤n

ℓIℓJ

(
PI�J⊗0

tk+1
(Ŵ0) − PI�J⊗0

tk
(Ŵ0)

)

step 2. K2
tk,tk+1

= E
[
(
∫ tk+1

tk
σ2
sds)

2|F0

]
. With Theorem 3.3 and Remark 3.1

K2
tk,tk+1

= E
[
(

∫ tk+1

tk

σ2
sds)

2|F0

]
= E

[
(

∫ tk+1

0

σ2
sds −

∫ tk

0

σ2
sds)

2
∣∣∣F0

]
= E

[
(

∫ tk+1

0

σ2
sds)

2 + (

∫ tk

0

σ2
sds)

2 − 2(

∫ tk+1

0

σ2
sds

∫ tk

0

σ2
sds)

∣∣∣F0

]
=

∑
|I|,|J |,|M |,|N |≤n

ℓIℓJℓMℓN

(
P

(I�J⊗0)�(M�N⊗0)
tk+1

(Ŵ0) + P
(I�J⊗0)�(M�N⊗0)
tk

(Ŵ0)

− 2Φ(I�J⊗0,tk+1),(M�N⊗0,tk)(Ŵ0)

)

step 3. Before we dive into the actual computation of the cross term, we introduce the
special case when we take the extra correlated Brownian process B into the picture.
If we take W as our multidimensional brownian process and the underlying primary
process under the signature model of σ =

∑
|I|≤n ℓI⟨eI , Ŵ⟩, here we need to define

the process Z = (W,B) and the time-extended version Ẑ = (t,W,B) as well as its
signature Ẑ.
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Assumption B.1. Cuchiero et al. (2022) [1] For all i ∈ 1, 2, ..., d, we have

d[W i, Zd+1]t =
∑
|J |≤m

aJi(d+1)⟨eJ , Ẑt⟩dt

for some m ∈ N and a ∈ R where Ẑ = (t,W,B).

Now we compute the special case correlated with B.

∫ T

0

σsdZ
d+1
s =

∫ T

0

σs ◦ dZd+1
s − 1

2
[σ, Zd+1]T

=

∫ T

0

∑
|I|≤n

ℓI⟨eI , Ẑs⟩ ◦ dZd+1
s − 1

2
[
∑
|I|≤n

ℓI⟨eI , Ẑ⟩, Zd+1]T

=
∑
|I|≤n

ℓI⟨eI ⊗ ed+1, ẐT ⟩ −
1

2

∫ T

0

∑
|I|≤n

ℓI⟨eI′ , Ẑs⟩d[Zi|I| , Zd+1]s

=
∑
|I|≤n

ℓI

(
⟨eI ⊗ ed+1, ẐT ⟩ −

1

2

∫ T

0

⟨eI′ , Ẑs⟩d[Zi|I| , Zd+1]s

)
(3)

=
∑
|I|≤n

ℓI

(
⟨eI ⊗ ed+1, ẐT ⟩ −

1

2

∑
|J |≤m

aJi|I|(d+1) ⟨eI′ � eJ ⊗ e0, ẐT ⟩
)

(4)

=
∑
|I|≤n

ℓI

(
⟨eI ⊗ ed+1 −

1

2

∑
|J |≤m

aJi|I|d+1 eI′ � eJ ⊗ e0, ẐT ⟩
)

=
∑
|I|≤n

ℓI ⟨ẽd+1
I , ẐT ⟩

where ẽd+1
I = eI ⊗ ed+1 − 1

2

∑
|J |≤m aJi|I|d+1 eI′ � eJ ⊗ e0.

(Note that the highest order of ẽd+1
I is n+m)

From (3) to (4) with assumption B.1 :∫ T

0

⟨eI′ , Ẑs⟩d[Zi|I| , Zd+1]s =

∫ T

0

⟨eI′ , Ẑs⟩
∑
|J |≤m

aJi|I|d+1⟨eJ , Ẑs⟩ds

=

∫ T

0

∑
|J |≤m

aJi|I|d+1⟨eI′ , Ẑs⟩⟨eJ , Ẑs⟩ds

=
∑
|J |≤m

aJi|I|d+1⟨eI′ � eJ ⊗ e0, ẐT ⟩
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Remark. When we are not incorporate any process form (like OU, Heston) into our
model and we are calibrating directly on the underlying Brownian motions, the term
could be written as

ẽd+1
I = eI ⊗ ed+1 −

1

2
σi|I|ρi|I|d+1 eI′ ⊗ e0

Now we compute the explicit formula of the cross term.

K3
tk,tk+1

= E
[ ∫ tk+1

tk

σ2
sds

∫ tk+1

tk

σsdZ
d+1
s

∣∣∣∣F0

]

= E
[ ∫ tk+1

tk

σ2
sds

∫ tk+1

tk

σsdZ
d+1
s

∣∣∣∣F0

]
= E

[
(

∫ tk+1

0

σ2
sds−

∫ tk

0

σ2
sds)(

∫ tk+1

0

σsdZ
d+1s−

∫ tk

0

σsdZ
d+1s)

∣∣∣∣F0

]
= E

[ ∫ tk+1

0

σ2
sds

∫ tk+1

0

σsdZ
d+1s+

∫ tk

0

σ2
sds

∫ tk

0

σsdZ
d+1s

−
∫ tk+1

0

σ2
sds

∫ tk

0

σsdZ
d+1s−

∫ tk+1

0

σsdZ
d+1s

∫ tk

0

σ2
sds

∣∣∣∣F0

]
=

∑
|I|,|J |,|M |≤n

ℓIℓJℓM

(
P

(I�J⊗0)�M̃d+1

tk+1
(Ẑ0) + P

(I�J⊗0)�M̃d+1

tk
(Ẑ0)

− Φ(I�J⊗0,tk+1),(M̃
d+1,tk)(Ẑ0) − Φ(M̃d+1,tk+1),(I�J⊗0,tk)(Ẑ0)

)
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