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Abstract

Given a cardinal κ and an underlying set X, a κ-ary function clone on X is a set of functions
f : Xn → X for n < κ, which contains all projection functions and is closed under composition. In 1941,
Emil Post fully characterized all clones of finite functions f : 2n → 2 in a lattice famously titled Post’s
lattice, ordered by inclusion. We seek to extend the view of clones to include countably-infinite Borel
functions and characterize this extended notion of Post’s lattice in terms of the preservation of countable
relations.
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1 Introduction

In propositional logic, all propositional formulas, up to logical equivalence, can be considered as functions
f : 2n → 2 where 2 = {0, 1}. In Post’s lattice, Emil Post characterized all ‘classes’ of propositional logic,
where various restrictions are in place for propositional formulas, such as positive logic where there are no
negations. As shown in fig. 1 below, there are countably many such classes. Before discussing Post’s lattice
and classes, we introduce some preliminary functions and notation.

1.1 Preliminaries

For two elements a, b ∈ 2, define

a ∧ b := min(a, b), a ∨ b := max(a, b), ¬a := 1− a.

Two other functions of note are 0(x⃗) and 1(x⃗), defined over any 2n, which maps any n-tuples to 0 or 1,
respectively. Typically, when referring to functions, inputs are omitted (i.e. ‘∧’ instead of ‘a ∧ b’).

In 2n, a⃗n refers to an n-tuple of elements in 2, and fn refers to a function f : 2n → 2. Lastly, a partial
order ≤ is defined on 2n by a⃗ ≤ b⃗ ⇐⇒ ai ≤ bi ∀i < n. This ordering is not a total order.

1.2 Post’s Lattice

In fig. 1 below, each point in the lattice is a class of functions, ordered upward by inclusion. The top class,
P<ω
2 is the class of all functions, and ⟨∅⟩ is the smallest class, the class of atomic formulas modulo logical

equivalence. There are five classes directly below P<ω
2 . M , the class of monotone functions. Modulo logical

equivalence, this consists of all positive propositional formulas. T0 and T1 are the classes where f (⃗0) = 0
and f (⃗1) = 1, respectively. D is the class where f(x) = ¬f(¬x⃗). A is the class of linear functions. These
are referred to as the ‘maximal’ classes of Post’s lattice.

We seek to extend the notion of Post’s lattice to capture countably-infinite propositional logic. In order
to do so, we must properly define ‘classes,’ called clones.

∗Contact me at zibai@umich.edu if you have any questions.
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Figure 1: Post’s Lattice

M =Pol{≤}=⟨∧,∨,0,1⟩

MT0,1 =⟨∧,∨,0⟩

MT0,2

MT0,3

...

MT0,∞

MT1,1 =⟨∧,∨,1⟩

MT1,2

MT1,3

...

MT1,∞

⟨∧,0(x⃗),1(x⃗)⟩ =Pol{∧}

⟨∧,0(x⃗)⟩ ⟨∧,1(x⃗)⟩

⟨∧⟩

⟨∨,0(x⃗),1(x⃗)⟩ =Pol{∨}

⟨∨,0(x⃗)⟩ ⟨∨,1(x⃗)⟩

⟨∨⟩

⟨0(x⃗),1(x⃗)⟩

⟨0(x⃗)⟩ ⟨1(x⃗)⟩

P<ω
2 =Pol∅=⟨∧,∨,¬,0,1⟩

T0,1T1,1 =⟨?:⟩

T0,2T1,1

T0,3T1,1

...

T0,1T1,2

T0,1T1,3

...

MT0,1T1,1 =⟨∧,∨⟩

MT0,2T1,1 =⟨♢3
2,∧⟩

MT0,3T1,1

=⟨♢4
3⟩

...

MT0,∞T1,1 =⟨∇3=x∧(y∨z)⟩

MT0,1T1,2⟨♢3
2,∨⟩=

MT0,1T1,3

⟨♢4
2⟩=

...

MT0,1T1,∞

A =Pol{+3}

AT0,1Pol{+}=⟨+,0(x⃗)⟩= AT1,1⟨ ⇐⇒ ,1(x⃗)⟩=

⟨∅⟩

⟨¬,0(x⃗)⟩

⟨¬⟩

T0,1 =Pol{0}=⟨̸⇒,∨⟩

T0,2 =Pol{x∧y=0}

T0,3 =Pol{x∧y∧z=0}

...

T0,∞ =⟨̸⇒⟩

T1,1 =Pol{1}=⟨∧,⇒⟩

T1,2 =Pol{x∨y=1}

T1,3 =Pol{x∨y∨z=1}

...

T1,∞ ⟨⇒⟩

T0,∞T1,1 =⟨x∧(y⇒z)⟩ T0,1T1,∞⟨x∨(y ̸⇒z)⟩=

D =Pol{¬}=⟨♢3
2,¬⟩

DT0,1=DT1,1⟨♢3
2,+

3⟩=

DM⟨♢3
2⟩=

AD

ADT0,1T1,1 =⟨+3⟩

The sides of the lattice are symmetrical. This is due to the unique nontrivial isomorphism between clones, δ(f(x⃗)) = ¬f(¬x⃗)
[2, Theorem 9.2.15]. For any function f , δ(f) is referred to as the ‘De Morgan dual’ of f . For example, δ(∧) = ∨.

2



2 Clones

There are two dominating perspectives towards clones. One of them is in terms of clones being generated by
sets of functions, and another is in terms of clones preserving relations. This section will introduce clones
and develop these two views.

2.1 Background

Let κ be a cardinal and X be a set. Denote

P<κ
X :=

⊔

n<κ

XXn

,

as the set of all functions f : Xn → X where n < κ.

Definition 2.1 (Clones). A <κ-ary clone on X is a subset F ⊆ P<κ
X that contains projection functions

F ∋ πn
i : Xn → X

x⃗ 7→ xi

where i ≤ n < κ, and is closed under composition. In other words, for fn, 0 ≤ i < n, and gmi ∈ F ,

F ∋ f ◦ g⃗ : Xm → X

x⃗ 7→ f((gi(x⃗))i<n).

In other words, a clone is a substructure of the multi-sorted (infinitary) algebraic structure P<κ
X with

constants πn
i and operations ◦. A function f being ‘<κ-ary’ means f : Xn → X for some n < κ.

Example (Post’s Lattice Clones; X = 2, κ = ω).

• P<ω
2 is the clone of all functions in Post’s lattice. Modulo logical equivalence, this consists of all

propositional formulas, with each πn
i acting as an atomic formula.

• M<ω is the clone of finite, all monotone functions; a⃗n ≤ b⃗n implies that for fn, f (⃗a) ≤ f (⃗b).

• T<ω
0 is the clone of finite, 0-preserving functions; fn(⃗0n) = 0.

Let κ be a cardinal. Denote the set of <κ-ary clones on X as

Clo(X) = Clo<κ(X) ⊆ P(PX) = P
(⊔

n<κ

XXn

)
∼=
∏

n<κ

P
(
XXn

)
.

Clo<κ(X) is a lattice, ordered by set inclusion, and is closed under arbitrary intersection. Thus, any subset
A ⊆ PX has a smallest clone containing it, denoted ⟨A⟩<κ

, the clone generated by A. A is called a generating
set of ⟨A⟩<κ

. When listing generated clones, braces are typically omitted; ⟨f⟩ is written instead of ⟨{f}⟩.
Lemma 2.1. If F ⊆ P<κ1

X is a <κ1-ary clone and κ2 ≥ κ1, the < κ2-ary clone ⟨F ⟩<κ2 restricts back to F ,

⟨F ⟩<κ2 ∩ P<κ1

X = F.

In fact, ⟨−⟩<κ2 has (−) ∩ P<κ1

X as a retraction.

Clo<κ1(X) Clo<κ2(X)
⟨−⟩<κ2

(−)∩P<κ1
X

⊣ (1)

By definition, ⟨−⟩<κ2 is left-adjoint to the restriction map,

⟨F ⟩<κ2 ⊆ G ⇐⇒ F ⊆ G ∩ P<κ1

X .

The images of clones under ⟨−⟩<κ2 : Clo<κ1(X) → Clo<κ2(X) are called essentially <κ1-ary clones.
Note that ⟨K⟩<κ2 is the smallest <κ2-ary clone that restricts to K.
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Example (Generating Sets of Clones).

• P<ω
2 = ⟨∧,∨,¬⟩<ω

= ⟨∧,¬⟩<ω
,

• ⟨P<ω
2 ⟩<ω1 = ⟨∧,¬⟩<ω1 ,

• M<ω = ⟨∧,∨, 0(x), 1(x⃗)⟩<ω
,

• T<ω
0 = ⟨̸⇒,∨⟩<ω

.

Each clone is clearly generated by some generating set A. Generating sets can help describe how clones
are formed. In propositional logic, it is known that all statements can be built from ∧,∨ and ¬, as described
by the above generating set for P<ω

2 .
As said before, M<ω and T<ω

0 are ‘maximal’ in Post’s lattice. A clone C ⊆ K is maximal with respect
to K if for any function f ∈ K \ C, ⟨C ∪ {f}⟩ = K.

The other main approach towards clones is through the preservation of relations, such as ≤ in the case
of monotone functions. Functions which preserve relations are called polymorphisms of said relations.

2.2 Polymorphisms

Suppose f : Xn → X is an n-ary function, and R ⊆ Xp is a p-ary relation for cardinals n and p. The
following are synonymous:

• f preserves R,

• f is a polymorphism of R,

• f is a homomorphism from the product structure (X,R)n → (X,R),

• R is closed under f ,

• R is a substructure of the product structure (X, f)p.

More precisely, for any n × p matrix (xi
t)i<n,t<p of elements in X, if x⃗i = (xi

t)t<p ∈ R for each i, then
f((x⃗i)i<n) := (f((xi

t)i<n))t<p ∈ R.

Example (Polymorphism of a Relation). Let f3(x⃗) = (x0 ∧ x1) ∨ x2. This is a monotone function, or a
polymorphism of ≤. Take (0, 1, 0) ≤ (0, 1, 1), This is expressed as



0 0
1 1
0 1




where each row is an element of ≤, or in other words, the first element of the row is less than or equal to
the second. Map each column under f ; f(0, 1, 0) = 0, f(0, 1, 1) = 1.

[
0 1

]
∈≤ as 0 ≤ 1.

Definition 2.2 (Pol and Inv). Let P be a set of cardinals. For a set of P -ary relations R, Pol<κR is the set
of <κ-ary functions which are polymorphisms of all relations in R. Similarly, given a set of <κ-ary functions
F , InvPF is the set of P -ary relations which are preserved by all functions in F–the P -ary inversions of F .

If R ⊆ T are sets of P -ary relations, then Pol<κT ⊆ Pol<κR. This is analogously true for InvP . In fact,
Pol<κ and InvP form a Galois connection.

Significant to the study of clones is that for any set of P -ary relations R, Pol<κR is a <κ-ary clone.
Thus, an alternative view of clones is as polymorphisms of relations.

Example (Clones as Polymorphisms).

• P<ω
2 = Pol<ω∅,

• M<ω = Pol<ω{≤}, hence why M<ω are called the monotone functions,

• T<ω
0 = Pol<ω {⃗0}, hence the name ‘⃗0-preserving functions.’

For two cardinals κ1 ≤ κ2, dual to the fact that for a <κ1-ary clone K, ⟨K⟩<κ2 is the smallest < κ2-ary
clone that restricts to K, if K = Pol<κ1R, then Pol<κ2R is the largest <κ2-ary clone that restricts to K.
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3 The Countable-Borel Extension of Post’s Lattice

In Post’s Lattice, there are only finite functions f : 2n → 2. However, when extending to include functions
f : 2ω → 2 in countably-infinite propositional logic, not all infinite functions can be expressed; only Borel
functions can be described.

3.1 Borel Functions in Cantor Space

In 2 with the discrete topology, every set is closed and open (clopen), and so any continuous function
f : 2ω → 2 has a clopen preimage in Cantor space. In 2n, the finite product of 2, every set is necessarily
clopen and thus every function is continuous. Due to the topology on Cantor space, the continuous functions
f : 2ω → 2 are exactly the functions that depend on finitely many variables, called ‘essentially-finite,’ which
are re-expressed as finite functions f : 2n → 2. Thus, the ‘properly-infinite’ functions are the discontinuous
ones. In countably-infinite propositional logic, every formula is expressed by countably-infinite ‘ands’, finite
‘ands’, countable ‘ors’, finite ‘ors’, and negations. Infinite ‘and’ and infinite ‘or’ are expressed as

∧ω
(x⃗) := x0 ∧ x1 ∧ . . .

∨ω
(x⃗) := x0 ∨ x1 ∨ . . . .

Cantor space also has natural extensions of meets, joins, and the order in 2n by the following,

a⃗ω ∧ b⃗ω := (a0 ∧ b0, a1 ∧ b1, . . .) c⃗ω ≤ d⃗ω : ⇐⇒ ai ≤ bi ∀i ∈ N.

The order defined here is also not a total order.
In Cantor space, the basis of the topology consists of the clopen sets within it, and so the Borel sets

form a collection of sets inductively obtained from countable unions and intersections of clopen sets and
other Borel sets defined before them. With respect to preimages of Borel functions f : 2ω → 2,

∧
,
∨
, and ¬

correspond to countable unions, intersections, and complements.

Example (Borel Functions). Let

hω(x⃗) =
∧

i∈N
gωi (x⃗)

Where gi(x⃗) are Borel. h(x⃗) = 0 if and only if at least one of gi(x⃗) = 0. Thus,

h−1(0) =
⋃

i∈N
g−1
i (0)

Ultimately, the set of Borel f : 2ω → 2 and the finite functions identified with continuous functions,
denoted B, consist of all finite and countably-infinite propositional formulas. Thus,

B =
〈∧

,
∨

,¬
〉<ω1

=
〈∧

,¬
〉<ω1

.

The focus of our study will be the lattice of subclones of B, the countable-Borel lattice.
Since ⟨P<ω

2 ⟩<ω1 ⊆ B ⊆ P<ω1
2 , every subclone of B restricts to a clone in Post’s lattice. Thus, the

extended lattice can be viewed in terms of sublattices of clones (ordered by inclusion) that restrict to a clone
Pol<ωR = K ⊆ P<ω

2 , as illustrated by fig. 2. The rest of this text will focus on developing and describing
fig. 2.

Given a set of countable-Borel clones that restrict to a Post clone K, immediately, ⟨K⟩<ω1 and Pol<ω1R
restrict to K. The former–called the countable-Borel clone generated by K–is the minimal element of the
sublattice, and the latter is the maximal. Such maximal elements are denoted with a bold font, such as K
in this instance.

The following lemma, stated without proof, is crucial to many forthcoming arguments.

Lemma 3.1. If F ⊆ B is a clone, then each fω ∈ F is a limit in 22
ω

of essentially-finitary operations in F .

Since all clones in the countable-Borel lattice are ‘extensions’ of clones within Post’s lattice, we can focus
our view onto specific sections of the lattice.
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Figure 2: The Countable-Borel Extension of Post’s Lattice

=Pol{≤}=⟨∧,∨,0,1⟩
=⟨∧,∨,0⟩

=⟨∧,∨,1⟩

=Pol{∧}

=Pol{∨}

=Pol∅=⟨∧,∨,¬,0,1⟩

=⟨?:⟩

=⟨∧,∨⟩
=⟨♢3

2,∧⟩

=⟨♢4
3⟩

=⟨∇3=x∧(y∨z)⟩

⟨♢3
2,∨⟩=

⟨♢4
2⟩=

=Pol{+3}

Pol{+}=⟨+,0(x⃗)⟩=

⟨ ⇐⇒ ,1(x⃗)⟩=

B=⟨∧,
∨
,0(x⃗),1(x⃗),¬⟩

⟨P<ω
2 ⟩<ω1=Pol{lim}=⟨∧,∨,0(x⃗),1(x⃗),¬⟩

Pol{0⃗}

Pol{lim=0⃗}

⟨∨,̸⇒⟩

Pol{1⃗}

Pol{lim=1⃗}

⟨∧,⇒⟩

Pol{≤}

Pol{↓
∧} Pol{↑∨}

⟨∧,∨,0(x⃗)⟩

⟨∧,∨,1(x⃗)⟩

⟨?:⟩

⟨∧,∨⟩ ⟨∧,
∨⟩

⟨∧,∆⟩ ⟨∇,∨⟩

⟨∧,∨⟩

Pol{¬}

Pol{¬,0,1}

Pol{¬,lim=0}

⟨♢3
2,+

3⟩

Pol{+3}

(−)∩P<ω
2

⟨−⟩<ω1
⊣

⟨−⟩<ω1

⊣

=Pol{0}=⟨̸⇒,∨⟩

=Pol{x∧y=0}

=Pol{x∧y∧z=0}

=⟨̸⇒⟩

=Pol{1}=⟨∧,⇒⟩

=Pol{x∨y=1}

=Pol{x∨y∨z=1}

⟨⇒⟩

=⟨x∧(y⇒z)⟩

⟨x∨(y ̸⇒z)⟩=

=Pol{¬}=⟨♢3
2,¬⟩

⟨♢3
2,+

3⟩=

⟨♢3
2⟩=

=⟨+3⟩

⟨∧,∨,0(x⃗),1(x⃗)⟩

⟨♢3
2,¬⟩

⟨−⟩<ω1 is the topological closure of ⟨−⟩<ω1 .
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3.2 Maximal Clones

Again, the maximal clones of Post’s lattice are

• T<ω
0 = Pol<ω {⃗0},

• T<ω
1 = Pol<ω {⃗1},

• M<ω = Pol<ω{≤},
• D = Pol<ω{¬},
• A = Pol<ω{+3}.

From Lemma 3.1, with the exception of the last of the following, the maximal clones of B are T0 = Pol<ω1 {⃗0},
T1 = Pol<ω1 {⃗1}, M = Pol<ω1{≤},D = Pol<ω1{¬}, and ⟨P<ω

2 ⟩<ω1 . Of particular interest are the clone of
finite functions and the absence of any extension of the affine functions. The essence of the following argument
can be applied to many of the following clones in the text,

Theorem 3.1 (Base Case of Wadge’s Lemma). The clone of essentially-finite functions in B, ⟨P<ω
2 ⟩<ω1 , is

a maximal clone.

Proof. Fix f ∈ B \ ⟨P<ω
2 ⟩<ω1 , and let G = ⟨{f} ∪ P<ω

2 ⟩<ω1 . Since f is properly-infinite, it is discontinuous,
implying that f−1(0) or f−1(1) is not closed. Since ¬ ∈ G, without loss of generality, f−1(0) is not closed.
There exists a sequence (x⃗n) ⊆ f−1(0) that converges to a boundary point x⃗∞ ∈ f−1(1). Then, there exists
a continuous function g : 2ω → 2ω such that (1, . . . , 1︸ ︷︷ ︸

n

, 0, 0, . . .) 7→ x⃗n, and 1⃗ 7→ x⃗∞. Then, each πi ◦ g ∈ G,

and thus
∧

= f ◦ g ∈ G, which implies that G = B.

Affine Functions

Not only is there no natural ‘extension’ of the affine clone that is maximal in the countable-Borel lattice, by
a corollary of the Pettis theorem [1, Theorems 9.9,9.10], every Borel-affine function is necessarily continuous
and therefore essentially-finite. Hence, every subclone B of the affine clone A in Post’s lattice, has only one
clone in the countable-Borel lattice that restricts to it, namely ⟨B⟩<ω1 .

The rest of Post’s lattice can be categorized into two sections. The ‘top’ of the lattice, which consists of
intersections of the maximal clones of the lattice, and the ‘sides’ of the lattice, where only one ‘side’ needs
to be considered due to the De Morgan dual. For both of these sections, the following two functions are of
great relevance

∇ω(x⃗) := x0 ∧ (x1 ∨ x2 ∨ . . .) ∆ω(x⃗) := x0 ∨ (x1 ∧ x2 ∧ . . .) = δ(∇).

3.3 The Sides of Post’s Lattice

Whereas the maximal clones in the countable-Borel lattice are clearly defined as polymorphism clones, the
sides aren’t as clear. This complication in terms of the view of relations perhaps lends to a more complex
structure than the top of the lattice. This is best illustrated through the countable-Borel extensions of ⟨∧⟩
and ⟨∨⟩.

Clones that Restrict to ⟨∧⟩ and ⟨∨⟩
In Post’s lattice, these clones, being towards the bottom, are some of the simplest. For example, in ⟨∧⟩,
all functions within the clone take the form of xi1 ∧ . . . ∧ xin . However, when extending the clone into the
countable-Borel setting, Lemma 3.1 leads to pathological behavior. In fact, we predict that there may be
uncountably many clones K that restrict to ⟨∧⟩. For example, there are the natural extensions of ⟨∧⟩<ω

:
⟨∧⟩<ω1 and ⟨∧⟩<ω1 , but also clones such as ⟨lim inf⟩<ω1 , where

lim infω(x⃗) :=
∨

S⊆N
S is finite


 ∧

j∈N\S
xj


 .
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The lower sides, ⟨∧⟩ , ⟨∧, 0(x⃗)⟩ , ⟨∧, 1(x⃗)⟩ , ⟨∧, 0(x⃗), 1(x⃗)⟩, and their duals, are still under investigation.

Clones that Restrict to T0,∞ and T1,∞

In fig. 1, for finite n,

f ∈ T<ω
0,n iff

(
∀(x⃗i)i<n,

n−1∧

i=0

x⃗i = 0⃗ implies that

n−1∧

i=0

f(x⃗i) = 0

)
,

and f ∈ T<ω
0,∞ if and only if ∀n ∈ N, f ∈ T<ω

0,n . Of particular relevance to other clones is the countable-Borel

clone of T0,ω which restricts to T<ω
0,∞. In this clone,

f ∈ T0,ω iff

(
∀(x⃗n)n∈N,

∧

n∈N
x⃗n = 0⃗ implies that

∧

n∈N
f(x⃗n) = 0

)
iff ∃i ∈ N : f(x⃗) ≤ xi.

Using the second characterization of T0,ω, one can see that T0,ω = ⟨̸⇒,∇⟩<ω1 . An alternative proof takes
the approach of Section 4.3, by considering the operator

γ(f(x1, ...)) := x0 ∧ f(x1, ...).

The latter approach also provides the intersection of T0,ω with clones that restrict to M<ω, T<ω
1 , and MT<ω

1

by mapping the generating sets under γ.
There are at least two clones in the countable-Borel lattice which restrict to each T<ω

0,n and their variants;
this section is still under investigation, however.

4 The Top of Post’s Lattice

This section focuses on the top of the countable Post’s Lattice, which consists of the sublattices of the clones
that restrict to the maximal clones of P<ω

2 and their intersections. We omit the superscript for Pol and ⟨−⟩
as we are solely working within the countable-Borel lattice.

4.1 Monotone Functions

Firstly, ⟨M<ω⟩<ω1 = ⟨∧,∨, 0(x⃗), 1(x⃗)⟩, and M = Pol{≤} = ⟨∧,
∨
, 0(x⃗), 1(x⃗)⟩ is the maximal clone of

monotone-Borel functions. The generating set of M is known by a function being monotone if and only if it
is positive [1, Theorem 28.11]. There are four clones which restrict to M<ω in the manner of fig. 3.

Figure 3: Countable Borel Clones which Restrict to M<ω

M = ⟨∧,
∨
, 0(x⃗), 1(x⃗)⟩ = Pol{≤}

⟨∧,∨,0(x⃗),1(x⃗)⟩
=

Pol{ ↓
∧}

⟨∧,∨,0(x⃗),1(x⃗)⟩
=

Pol{ ↑∨}

⟨M<ω⟩<ω1 = ⟨∧,∨, 0(x⃗), 1(x⃗)⟩

Functions which preserve ↓
∧

preserve the convergence of decreasing sequences. In other words, if lim(x⃗n) = x⃗∞ where (x⃗n)
is a decreasing sequence, then lim

n→∞
(f(x⃗n)) = f(x⃗∞). Analogously, functions which preserve ↑∨ preserve the convergence of

increasing sequences.
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In the sublattice of clones that restrict to M<ω, ⟨∧,∨, 0(x⃗), 1(x⃗)⟩ and ⟨∧,∨, 0(x⃗), 1(x⃗)⟩ are the smallest
properly-infinite clones. In other words,

Lemma 4.1. Let fω ∈ M be a discontinuous, monotone function. Then ⟨∧,∨, 0(x⃗), 1(x⃗)⟩ or ⟨∧,∨, 0(x⃗), 1(x⃗)⟩ ⊆
⟨∧,∨, 0(x⃗), 1(x⃗), f⟩.

Proof. Similar to Theorem 3.1, if f−1(0) is not closed, there exists a monotonically increasing sequence
(x⃗n)n∈N ⊆ f−1(0) converging to x⃗∞ ∈ f−1(1). Thus, there exists a continuous, monotonically increasing
g : 2ω → 2ω that maps each 1n0 7→ x⃗n and 1⃗ 7→ x⃗∞.

Since πn ◦ g ∈ M<ω,
∧

= f ◦ g ∈ ⟨∧,∨, 0(x⃗), 1(x⃗), f⟩.
If f−1(1) is not closed, we can analogously create a decreasing sequence that converges in f−1(0) and

have
∨ ∈ ⟨∧,∨, 0(x⃗), 1(x⃗), f⟩.

Also, ⟨∧,∨, 0(x⃗), 1(x⃗)⟩ and ⟨∧,∨, 0(x⃗), 1(x⃗)⟩ are the maximal clones with respect toM as f ∈ ⟨∧,∨, 0(x⃗), 1(x⃗)⟩
for all monotonic f where f−1(0) is open (resp. f ∈ ⟨∧,∨, 0(x⃗), 1(x⃗)⟩ for all monotonic f where f−1(1) is
open). Since ⟨∧,∨, 0(x⃗), 1(x⃗)⟩ and ⟨∧,∨, 0(x⃗), 1(x⃗)⟩ are both the smallest and the maximal properly-infinite
subclones of M, fig. 3 is indeed the sublattice of clones that restrict to M<ω.

4.2 0-Preserving and 1-Preserving Functions

All of our discussion of 0⃗-preserving functions can be applied to 1⃗-preserving functions by the De Morgan
dual. There are three clones that restrict to T<ω

0 , which restrict in the manner of fig. 4.

Figure 4: Countable Borel Clones which Restrict to T0
<ω

T0 = ⟨̸⇒,
∨⟩ = Pol{⃗0}

⟨̸⇒,∨,∧⟩ = Pol{lim = 0⃗}

⟨T<ω
0 ⟩<ω1 = ⟨̸⇒,∨⟩

A function preserves lim = 0⃗ if for all sequences (x⃗n) that converge to 0⃗, lim
n→∞

(f(x⃗n)) = 0. In other words, f is continuous at

0⃗.

Firstly, the smallest properly-infinite clone that restricts to T<ω
0 is ⟨̸⇒,∨,∧⟩.

Lemma 4.2. For every discontinuous, 0-preserving function f ∈ T0,
∧ ∈ ⟨̸⇒,∨, f⟩.

Proof. If f−1(0) is not closed, an adaptation of Theorem 3.1 suffices.
If f−1(1) is not closed, fix a boundary point y outside of f−1(1). Since Cantor space is totally-

disconnected, there exists two open sets A ∋ y and B ∋ 0⃗ where A ⊔ B = 2ω. Consider the clopen set
C ⊂ B containing 0⃗ corresponding to g−1(0) for g ∈ T<ω

0 . Then, (g∧¬f)−1(0) is not closed and so Theorem
3.1 applies.

Note that ∇(x⃗) ∈ ⟨̸⇒,∨,∧⟩. This can be used to prove that if 0⃗ ∈ Int(f−1(0)) for f ∈ T0, then
f ∈ ⟨̸⇒,∨,∧⟩.

If fω /∈ ⟨̸⇒,∨,∧⟩, then 0⃗ is in the boundary of f−1(0) and so
∨ ∈ ⟨̸⇒, f⟩. Through the characterization

of Borel functions in Cantor space, T0 = ⟨̸⇒,
∨⟩. Thus, there are only three clones that restrict to T<ω

0 , as
demonstrated by fig. 4.
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4.3 Self-Dual Functions

In [2, Theorem 3.2.3.2], the self-dual functions of Post’s lattice are investigated through two operators.
Firstly, for fn+1(x0, ..., xn),

α(f)(x1, . . . , xn) := f(0, x1, . . . , xn).

Next, for fn(x1, ..., xn),

β(f)(x1, . . . , xn) := (¬x0 ∧ f(x1, . . . , xn))∨(x0 ∧ ¬f(¬x1, . . . ,¬xn)) = x0 ? f(x1, . . . , xn) : ¬f(¬x1, . . . ,¬xn).

For any clone F not containing constant functions, ⟨F ∪ {0}⟩ = α(F ), so α(F ) is a clone.
Recall that D<ω is the clone of self-dual functions in Post’s lattice. For any function f ∈ P<ω

2 ,

• α(β(f)) = f ,

• β(f) ∈ D<ω,

• β(α(f)) = f ⇐⇒ f ∈ D<ω.

Thus, α, β give a bijection

P2 D.
β

α

For any subclone F ⊆ D<ω, β(α(F )) = F ⊆ α(F ). For any G ⊆ P<ω
2 , α(β(G)) = G. If G is a clone,

0(x⃗) ∈ G, and β(G) ⊆ G (which immediately holds from G = α(F )), then β(G) = D ∩G ⊆ D is a clone.
We have an order-isomorphism

{G ∈ Clo<ω(2) s.t. 0 ∈ G and β(G) ⊆ G} {G ∈ Clo<ω(2) s.t. G ⊆ D}.
β=D<ω∩(−)

α

For any subset G ⊆ P<ω
2 , β(⟨G⟩) ⊆ ⟨β(G)⟩. Also, β(⟨G⟩) ⊆ ⟨G⟩ if and only if β(G) ⊆ ⟨G⟩.

In Post’s lattice, the clones which are closed under β, contain 0(x⃗) and are not below A<ω areMT<ω
0,2 , T

<ω
0 ,

and P<ω
2 . These respectively correspond to the three self-dual clones not below A<ω; DM<ω, DT<ω

0 =
DT<ω

1 = DT0T
<ω
1 , and D<ω.

The operators α and β extend to countable-Borel clones K ⊆ B, where for fω,

α(f)(x0, . . .) := f(0, x0, . . .) and β(f)(x0, . . .) := x0 ? f(x1, . . .) : ¬f(¬x1, . . .).

These operators satisfy the above properties in the countable-Borel setting. Thus, there are two countable-
Borel clones which restrict to D<ω, namely

• ⟨D<ω⟩<ω1 = ⟨β(∧), β(¬)⟩ =
〈
♢3
2,¬
〉
,

• D = Pol{¬} = ⟨β(∧), β(¬)⟩ = ⟨∧(¬x0, x1, . . .) ∨∇(x⃗),¬⟩,

where ♢3
2(x⃗) := (x1 ∧ x2)∨ (x1 ∧ x3)∨ (x2 ∧ x3). As in the case of Post’s lattice, the clones which restrict to

DM<ω and DT0T
<ω
1 follow from the same argument and will be discussed in the following subsection.

4.4 Intersections of Maximal-Post Clones

This subsection focuses on clones which restrict to intersections of maximal clones in Post’s lattice.
Firstly, the intersection of an essentially-finite clone K and any clone I equals ⟨K ∩ I ∩ P<ω

2 ⟩<ω1 . Thus,
our interest is solely in intersections of properly-infinite clones. Note in the following illustrations that each
countable-Borel clone that restricts to an intersection-Post clone X<ω∩Y <ω is the intersection of two clones
that each restrict to X<ω and Y <ω.

Once again, not depicted in the following figures, for each of the following clones in the sublattices that
restrict to M<ω, T<ω

1 and MT<ω
1 , their intersections with T0,ω are described by mapping the generating

functions under γ.
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T0T1 Clones

Since the properly-infinite clones in the T0 and T1 sublattices depended on whether or not 0⃗ or 1⃗ were in
the interiors or boundaries of their respective sets, it is natural to approach this sublattice in a similar vein.
Thus, the subclones of T0T1 end up conditioning on whether or not lim = 0⃗ or lim = 1⃗ are preserved. Indeed,
there are five clones that restrict to T0T

<ω
1 in the manner of fig. 5.

Figure 5: Countable Borel Clones which Restrict to T0T1
<ω

T0T1 = ⟨?:,∧,
∨⟩ = Pol{⃗0, 1⃗}

⟨?:,∧⟩
=

Pol{lim=0⃗,⃗1}
⟨?:,∨⟩
=

Pol{lim=1⃗,⃗0}

⟨?:,∇⟩
=

Pol{lim=0⃗,lim=1⃗}

⟨T0T
<ω
1 ⟩<ω1 = ⟨?:⟩

MT0 and MT1 Clones

Again, the following discussion of monotone 0⃗-preserving functions applies to monotone 1⃗-preserving func-
tions by the De Morgan dual. There are six clones that restrict to MT<ω

0 , forming a sublattice as in fig. 6.

Figure 6: Countable Borel Clones which Restrict to MT0
<ω

MT0 = ⟨∧,
∨
, 0(x⃗)⟩ = Pol{≤, 0⃗}

⟨∧,∇,0(x⃗)⟩
=

Pol{lim=0⃗,≤}
⟨∧,∨,0(x⃗)⟩

=
Pol{0⃗, ↑∨}

⟨∨,∇,0(x⃗)⟩
=

Pol{lim=0⃗, ↑
∨}

⟨∧,∨,0(x⃗)⟩
=

Pol{lim=0⃗, ↓
∧}

⟨MT<ω
0 ⟩<ω1 = ⟨∧,∨, 0(x⃗)⟩
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MT0T1 Clones

There are nine clones that restrict to MT0T
<ω
1 , illustrated in fig. 7.

Figure 7: Countable Borel Clones which Restrict to MT0T1
<ω

MT0T1 = ⟨∧,
∨⟩ = Pol{≤, 0⃗, 1⃗}

⟨∧,∨,∇⟩
=

Pol{lim=0⃗,⃗1,≤}
⟨∧,∨,∆⟩

=
Pol{0⃗,lim=1⃗,≤}

⟨∧,∨,∇,∆⟩
=

Pol{lim=0⃗,lim=1⃗,≤}
⟨∧,∨⟩
=

Pol{lim=0⃗,⃗1, ↓
∧}

⟨∧,∨⟩
=

Pol{0⃗,lim=1⃗, ↑
∨}

⟨∧,∨,∆⟩
=

Pol{lim=0⃗,lim=1⃗, ↓
∧}

⟨∧,∨,∇⟩
=

Pol{lim=0⃗,lim=1⃗, ↑
∨}

⟨MT0T
<ω
1 ⟩<ω1 = ⟨∧,∨⟩

DT0T1 Clones

As discussed in the previous subsection, DT0 = DT1 = DT0T1. Thus, there are three clones that restrict to
DT0T

<ω
1 , given by the images of the generating sets of clones which restrict to T<ω

0 under β. These clones
are namely

• ⟨DT0T
<ω
1 ⟩<ω1 =

〈
♢3
2,+

3
〉
,

•
〈
♢3
2,+3, β(

∧
)
〉
= Pol{¬, lim = 0⃗, lim = 1⃗} =

〈
♢3
2,+

3,
∧
(¬x0, x1, . . .) ∨∇(x⃗)

〉
,

• DT0T1 = Pol{¬, 0⃗, 1⃗} =
〈
♢3
2,+

3, β(
∨
)
〉
=
〈
♢3
2,+

3,∇(¬x0, x1, . . .) ∨
∧
(x⃗)
〉
,

forming a sublattice analogous to fig. 4. Note that +3(x⃗) := x0 + x1 + x2, where + is the exclusive-or
operation.

DM Clones

Since the clones which restrict toDM<ω are images of the clones that restrict toMT<ω
0,2 , we require knowledge

of said clones. As discussed, they are not known and are being investigated.
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