OPTIMIZATION OF MODEL PREDICTIVE CONTROL
USING NEURAL NETWORK AND ILQR: AN
APPLICATION TO THE MOBILE ROBOT SYSTEM

CONGYAN (CRUISE) SONG
MENTOR: DAO NYGUEN

1. INTRODUCTION

Optimal control problems ask for an optimal control that minimizes the
known cost function within a dynamical system. They have wide applica-
tions in engineering as well as industry, but solving such problems often
presented difficulties in computations. There are mainly two categories of
the control algorithms: open loop control and closed loop control. Open
loop control solves the optimal control problem with a pair of specific initial
and terminal conditions; therefore, one must recalculate to find the new op-
timal control if the conditions change. In contrast, close loop control looks
for the optimal policy function that is flexible with the changes of initial
conditions. Due to such flexibility, close loop control is more effective in
applications compared to the open loop control, but it is also much more
difficult to compute, especially in high dimension.

With the advances in the machine learning and Al, solving high-dimensional
closed loop control problems become more approachable. The first attempt
to apply similar techniques used in image recognition and image generations
to solve optimal control problems was made in [2], and it demonstrated the
feasibility to solve control problems with dimension up to 50 by applying
deep learning-based algorithms.

Our goals in this project are to examine one of the most popular con-
trol algorithms called model predictive control (MPC), and to explore the
advantages and challenges of deploying machine learning to empower MPC
solvers. Lastly, We will define a new system called Mobile Robot System as
an example of our approach.

2. BACKGROUND

Definition 2.1 (Discrete-time Optimal Control Problem).

T
(1) min ZLk(;rk,uk) + M(I‘T)

T-1
{Ik,uk}k:o k=0

s.t. Tpy1 = fi(zp, ug)
1

2 CONGYAN (CRUISE) SONG MENTOR: DAO NYGUEN

where Lj is the running cost, M is the terminal cost, f; is the dynamic

system, and zy, ug will be the state variable and control variable, respec-
tively. For example, if our objective is to drive a car from location A to B
over some time interval T' with minimum gas usage. Then at time &, x; will
denote the position and speed of the car, ug will be the control input (could
be acceleration and driving direction), the Ly is the current gas usage, and
M will be the remaining gas usage to get to destination B.

Model predictive control (MPC) is used for the cases when the control
problem has a large time horizon, and its idea is to approximate the solution
to global optimal control problems by solving a sequence of auxiliary optimal
control problems with short time intervals: “At each time step ¢, the MPC
solvers receives a measured state and solves an optimal control problem
whose state trajectory starts from the measured state at ¢ and is defined on
a shorter time interval” [1].

Obtaining a good approximation of the value function is one of the main
difficulties of MPC formulation. The solution is to use so-called reference
trajectory, produced by human expertise or other planning algorithms [3],
which aims for a small total cost of the MPC solution in the global optimal
control problem.

3. EMPOWER MPC wITH MACHINE LEARNING

Then once we have a better understanding of the MPC, we will move
on to applying machine learning techniques in MPC. Here we discuss three
ways of empowering MPC with machine learning.

3: Machine
Learning-Based
e Feedback .

L Controller Tl
Reference .-~ A e State
Trajecotry -~ NN
iecotry. MPC Solver Control *<1>«
Model RN
?re;.e:‘lr;r;ce Control
Trajectory Planner #} Control Prediction «——————Dynamical System
LT State
"I‘ e ’ Optimizer
; ol A
. <" Value .
L !
2: Machine 1: Machine
Learing Learning
Enhanced Enhanced
Planner Optimizer

FiGUrE 1. Three ways of enhancing MPC using ML

OPTIMIZATION OF MODEL PREDICTIVE CONTROL USING NEURAL NETWORK AND ILQR: AN APPLICATION T(

Firstly, machine learning techniques can enhance the optimizer in the
MPC solver, therefore accelerate solving the MPC problem. Attempt has
been made to apply the neural-network warm start technique in solving
optimal control problems [4]. Secondly, one can use machine learning tech-
niques to enhance the global planner, which is crucial for the MPC’s perfor-
mance. By applying a learning algorithm alongside dynamic programming,
[6] demonstrates a way of finding the value function offline and use such
approximated value function instead of the heuristic approximation. Lastly,
machine learning can be used to approximate the feedback control, originally
done by [2].

We will explore three open questions in applying machine learning to
empower MPC: 1) How to generate the training data? 2) How to
train the machine learning model efficiently? 3) How to use the
approximate value or policy function? As mentioned in [I].

4. MPC SIMULATOR

4.1. Quadratic Programming Solver. Our first goal is to implement a
MPC simulator using quadratic programming.

Definition 4.1 (Quadratic Programming).
1
(2) min §ZTHZ +qTz+r
z

subj. to Gz < w
where z € R®, H € R**%, g € R®, G € R™*%,

One can rewrite the equation (1) to be the form of (2), and then the
problem could be solved by using quadratic programming solver. We chose
to use the QP solver imported from the CVXOPT! library in Python for our
implementation of a simple MPC simulator. Then we designed some control
inputs to test the simulator, results shown below.

4.2. Tterative Linear Quadratic Regulator. Although QP solver pro-
duces the exact solution, but due to the high computational cost (in some
cases, O(N?)), we then turn to some methods that produce approximated
optimal solution, but have a faster convergence rate. In this project, we
chose to examine the Iterative Linear Quadratic Regulator (iLQR) algo-
rithm.

Definition 4.2 (Iterative Linear Quadratic Regulator (iLQR)). The flow
of the algorithm is described as follow:

(1) Initialize with initial state xo and initial (could be random) control
sequence U.

(2) Do a forward pass, i.e. simulate the system using (z¢, U) to get the
trajectory .

(3) Do a backward pass, estimate the value function and dynamics for
each (x, u) in the state-space and control signal trajectories.

https://cvxopt.org/copyright.html

4 CONGYAN (CRUISE) SONG MENTOR: DAO NYGUEN

01 02 03 04 05 06 07 0.00
X trajectory

0.0 0.1 0.2 03 0.4 0.5 0.6 0.7

(A) minimal constraints (B) more constraints

FI1GURE 2. Figures that shown different trajectory under dif-
ferent constraints. Objective is to travel from lower-left to
upper-right in the graph, the results make sense as we can
see adding more constraints force us to make a ”detour”.

(4) Calculate an updated control signal U and evaluate cost of trajectory
resulting from (29, U)
(a) If | (cost(zo, U) — cost(xo, U)| < threshold then we've converged
and exit.
(b) If cost(zo, U) < cost(zo, U), then set U = U, and increase the
update size. Go back to step (2).

(c) If cost(zg, U) > cost(xp, U), then decrease the update size. Go
back to step (3).

5. CLASSICAL EXAMPLE OF INVERTED PENDULUM SYSTEM

5.1. System formulation. We first attempted to apply to our methods
to the quintessential inverted pendulum system. We define the state and
control vectors z and u as so:

X = [9 9]
u = [7]
such that 7 € [—1,1] and € € [0, 27].

Essentially, the state of the system comprises of the angle of the the pen-
dulum about a pivot at the base and its time derivative. We define our
control input as the torque applied at the base of the pendulum (i.e. a mo-
tor response).

_ The goal is to keep the pendulum the upright. Perfectly balanced suggests
f = 0 and we define our coordinate system for upright to be § =0
Xgoal = [0 0]
We then applied the iLQR to the inverted pendulum system, and the
simulations are shown below [3

OPTIMIZATION OF MODEL PREDICTIVE CONTROL USING NEURAL NETWORK AND ILQR: AN APPLICATION T(

91sec t=13.5786sec
1.406% degrees ANG=90.0 degrees
m POS=0 m

theta=-118.5938 deg tReta=90.0 deg

5.0 —!LIJ —.ﬂ.I] —%.D —'l.I] D’O L'O E?O 3’0 4».'0 5

(A) With random constant control (B) With control produced by iLQR

FIGURE 3. Simulations of the inverted pendulum with dif-
ferent control input, objective is to stay upright.

5.2. An alternative approach: Neural Network.

Definition 5.1 (Neural Network). Let us define the following function(unit):

a= U(Z wjxj +b),
J

where x; are inputs, w; weights, b the bias and o an activation function.
A neural network is a combination of these units.

The way we set up the Neural Network model is as followed:

e Generate training data:

(1) Discretize state space: To get data that is representative of
the state space but also computationally tractable, we create a
mesh for the intervals § € [0,27] and 8 € [—2m, 27] parameter-
ized over 20 values in each interval.

(2) Generate optimal controls using the iLQR Algorithm:
Using our mesh developed from (a), we run each state as an
initial condition to the iLQR algorithm. From each run of the
algorithm, we will obtain a list of states x, ; and corresponding
optimal controls w4 that we will then mérge to form a larger
data set.

(3) Compile results from iLQR: From performing (a), (b) over
a length of N steps of size tgp = 0.02, we developed a set of
training data consisting of 3000 sets of states with respective
optimal control inputs.

e Construct and Train Neural Network:

(1) Neural net specifications: Using PyTorch, we constructed

a Neural Network with 1 input layer, 2 hidden layers, and an

6 CONGYAN (CRUISE) SONG MENTOR: DAO NYGUEN

Action path

1.00 4 .
NN on training data

—— ILQR on training data

0.75 A

0.50 4

0.25 A

0.00 4

Force (N)

-0.25 4

-0.50 4

-0.75 1

—-1.00 1

T T T T T . - . :
000 025 050 075 100 125 150 175 2.00
time (s)

FIGURE 4. Training data

output layer. The activation function for the hidden variables
were rectified linear units (ReLUs) as they are generally the
recommended function of choice, as used in [2]. We used a
batch size of 100 and learning rate of 0.01.

(2) Train Neural Network: We trained this neural network with-
out any GPU acceleration. Passing an input Xy 6 the neural
network generates an output control u,,,,. We defined our loss
as the mean squared error between u,,,, and predicted output
control u, ; we generated from the ILQR. We iterated through
1000 epochs, (i.e. we passed the entire training set forward and
backward through the NN 1000 times).

e Benchmark Neural Network: We evaluated performance through
2 methods:

(1) Compare iLQR and NN control outputs when given the same
initial conditions.

(2) Initialize iILQR with NN: so far we have initialized ILQR
through randomly sampling from a uniform distributed interval
[—1,1]. We see if using the NN output as an initial control
policy allows for faster convergence for iLQR.

5.3. Results.
(1) Comparing ILQR and NN:

e Comparing against training data [4 and new test data

o We see that the NN output controls very generally coincide with
iLQR output with training data while it does not align well with
test data.

e This can be possibly due to oversights such as over training with
the test data or not a sufficiently varied training data set.

OPTIMIZATION OF MODEL PREDICTIVE CONTROL USING NEURAL NETWORK AND ILQR: AN APPLICATION T(

Action path

24 — ILQR
— neural net

Force (N)
o

3 4 5 6
time (s)

o
[
N]

FIGURE 5. Test data

Theta

theta (rad)
o =
\
>

ENA T\

—— theta dot ILQR /\}
-3 — thetadotNN L—J N
T T T T T T T
0 L 2 3 4 5 6
time (s)

FI1GURE 6. Theta

e We can compare the states realized by both the models (0 |§| and
iB).

e While they both are very different between models, we can see
some slight similarities in 6 while it seems that 6 oscillates very
sharply and with little to no correspondence to the iLQR solu-
tion.

(2) Initializing iLQR with NN: Using the NN controls as an initialize
also results in the iLQR algorithm taking much longer to converge
than with a randomly sampled initialization. This may be a conse-
quence of the the vast differences in behaviour of the 2 models as
shown earlier.

8 CONGYAN (CRUISE) SONG MENTOR: DAO NYGUEN

Theta dot

—— theta dot ILQR
21 — theta dot NN

theta dot (rad)

time (s)

FiGURE 7. Theta dot

6. MOBILE ROBOT SYSTEM

6.1. Motivation. Sweeping process models describe the dynamical pro-
cesses presented in elastoplasticity and related mechanical areas, providing
a convenient framework for handling simulation and related issues in various
applications. The mobile robot system, taken from the area of robotics, have
dynamics that can be formalized as a perturbed sweeping process, allowing
us to describe the controlled dynamics system with ease.

6.2. System formulation. We formulate a mobile robot model with ob-
stacles which dynamics can be described as a sweeping process. This model
describes n mobile robots (n > 2) of the same radius R. For each robot, the
goal is to reach the target by the shortest path during a fixed time interval
[0, T] while avoiding the other n — 1 robots as obstacles.

Definition 6.1 (Configuration vector).
z = (4, ...,2") € R*™,

where 2! € R? is the center of ith robot with coordinates (||x?||cosb;, ||2*||sind;),

and 6; denotes the smallest positive angle between the positive z-axis and
Ox'.

Definition 6.2 (Admissible configuration set). To avoid the collision be-
tween the admissible configuration set as follow:

Qo := {z = (2',...,2") € R*|D;j(z) > where i,j € {1,...,n}},
With those definitions, we then define the cost functional to be
1
min J{z,u] := |lo(T))

with € Qq, which implies the goal of the model to minimize the distance
between the robots and the target at origin O at the terminal time 7'

OPTIMIZATION OF MODEL PREDICTIVE CONTROL USING NEURAL NETWORK AND ILQR: AN APPLICATION T(

Action path

Force (N)
o [
1 1
——

time (s)

FIGURE 8. Action path for mobile robot model

Each robot was assigned with its own spontaneous speed, moving from
the initial position to the target. The control, when acting on the robot of
interest, can only change the speed of the robot for the purpose of minimizing
the distance from terminal position to the target, with no actual physical
implications. In the event of the collision, the two robots move to the target
with the same speed without changing direction.

6.3. Results with iLQR. Again, we implemented the iLQR to find the
optimal control, with slight modifications: we imposed an user self-defined
order on the controls, which means the iLQR is restricted to only considering
one robot at a time, while treating the rest of the robots as obstacles.

It only takes 27 iterations for the iLQR to converge, with a terminal state
of [-3.02299509¢e+-01, 6.73779375e — 08, —3.02299509e+01, 6.73779375¢ — 08|
which corresponds to [z, &, y,y]. The convergence rate and the accuracy are
both reasonably well, backed by the action path and cost-to-go below, see
Firgure 8 and 9.

7. NEXT STEPS

Bounded by the time constraints, there are plenty of improvements we
can make. Future works are divided into mainly two categories, one is on
the methodology side of integrating iLQR and Neural Network, another is
on the application side of further applying our model on the mobile robot
system.

e Methodologies:

10 CONGYAN (CRUISE) SONG MENTOR: DAO NYGUEN

Total cost-to-go

239700 A

239650 A

239600 A

Total cost

239550 A

239500 A

T
0 5 10 15 20 25
Iteration

FIGURE 9. Cost-to-go for mobile robot model

(1) Investigate what is required for a sufficient training data set for
NN to function feasibly as a controller. Also, determine optimal
hyper parameters for NN.

(2) With a fine tuned and designed controller, apply as a solver for
the local optimal control problems in MPC and compare against
other algorithms used with MPC.

e Applications:

(1) Instead of considering one robot at a time, remove the order on
the controls and optimizes all robots simultaneously.

(2) Apply the NN model trained by iLQR to the mobile robot sys-
tem and investigate the convergence rate and accuracy.

REFERENCES

[1] Weinan E, Jiequn Han, and Jihao Long. Empowering optimal control with machine
learning: A perspective from model predictive control, 2022.

[2] Jiequn Han and Weinan E. Deep learning approximation for stochastic control prob-
lems. https://doi.org/10.48550/arXiv.1611.07422, November 2016.

[3] Steven M. Lavalle. Planning Algorithms. Cambridge University Press, 2006.

[4] Tenavi Nakamura-Zimmerer, Qi Gong, and Wei Kang. Adaptive deep learning for high-
dimensional hamilton—jacobi-bellman equations. SIAM Journal on Scientific Comput-
ing, 43(2):A1221-A1247, 2021.

[6] Mingyuan Zhong, Mikala Johnson, Yuval Tassa, Tom Erez, and Emanuel Todorov.
Value function approximation and model predictive control. In 2018 IEEE Symposium
on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pages
100-107, 2013.

https://doi.org/10.48550/arXiv.1611.07422

	1. Introduction
	2. Background
	3. Empower MPC with Machine Learning
	4. MPC Simulator
	4.1. Quadratic Programming Solver
	4.2. Iterative Linear Quadratic Regulator

	5. Classical Example of Inverted Pendulum System
	5.1. System formulation
	5.2. An alternative approach: Neural Network
	5.3. Results

	6. Mobile Robot System
	6.1. Motivation.
	6.2. System formulation.
	6.3. Results with iLQR

	7. Next Steps
	References

