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Abstract. We investigate a connection between the geometric and computational proper-
ties of groups with “coarse negative curvature”. In particular, we use the existence of an
automatic structure on hyperbolic groups to characterize when the “boundary at infinity”
is finite, or equivalently, when the corresponding hyperbolic group is virtually cyclic.

1. Introduction

1.1. Overview. For a finitely presented group, we can construct a corresponding geometri-
cal object called a Cayley graph, which we can endow with a metric. In this paper, we con-
sider a special class of groups called hyperbolic groups, which are finitely presentable groups
whose corresponding Cayley graph metric has “coarse negative curvature”. For groups with
this property, we can define a corresponding space called the Gromov boundary, which,
roughly speaking, can be thought of as the “boundary at infinity” of the corresponding
Cayley graph.

It turns out that hyperbolic groups have some nice computational properties. In particular,
these groups have an automatic structure, which means there exist finite state automata
that solve certain decision problems about the group. The automatic structure is powerful
in that, among other things, it can give us a solution to the word problem, a problem that
is undecidable for arbitrary finitely presented groups1.

Let G be a finitely presented hyperbolic group with generating set A. Let Γ be the
corresponding Cayley graph, ∂Γ be the Gromov boundary, and let W be the word acceptor
automaton (this exists as part of the automatic structure). The main result of this paper is
the following:

Theorem 1.1. ∂Γ is finite if and only if no distinct cycles in W share a state.

Now, recall that a group is virtually cyclic if it contains a finite-index cyclic subgroup.
With this notion, we have the following consequence of Theorem 1.1:

Corollary 1.2. G is virtually cyclic if and only if no distinct cycles in W share a state.

In order to see the geometric aspect of this, we note that G being infinite and virtually
cyclic is equivalent to saying that the Cayley graph of G is quasi-isometric to the Cayley
graph of Z, which means there’s a map between the two Cayley graphs (which are metric
spaces) that preserves distance up to some bounded error2. In order to see the forward
direction, we can consider the natural group action of the finite index cyclic subgroup on the
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1See [4, Section 2.3]
2For a complete definition of quasi-isometries, see [2, Ch. 7]
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Cayley graph of G and apply the Švarc-Milnor lemma3. The reverse direction follows from
Theorem 7.6 of [2].

1.2. Acknowledgements. This research was conducted as part of the 2023 University of
Michigan Mathematics REU program. The author would like to thank his mentor Teddy
Weisman for his invaluable guidance, patience, and warmth. Without his advice, this project
wouldn’t have been possible.

2. Background

2.1. Group Presentations. In order to see the computational side of groups, we must think
about groups from the perspective of languages. In this section, we recall the definition of a
group presentation. We will loosely follow the description given in [2, 1.4]. The reader may
also consult [4, 2.1] for a more in-depth investigation.

First, let A = {a1, . . . , an} be an alphabet and let A−1 = {a−1
1 , . . . , a−1

n }. A word over A
is a finite string made up of letters in A ∪ A−1. We can take any word over A and reduce
it by removing all instances of xix

−1
i and x−1

i xi. A word without such instances is called a
reduced word. We can define the free group F (A) to be the set of reduced words over A with
the binary operation being concatenation followed by reduction. One can check that this
forms a group by noting that the identity is the empty word, which we will denote as ε for
the rest of this paper.

Definition 2.1. A group presentation is a pair (A,R) where A is an alphabet and R is a set
of reduced words over A. If we let H be the smallest normal subgroup containing R, then

⟨A | R⟩ := F (A)/H.

A group presentation (A,R) is said to be finite if A and R are finite.

Definition 2.2. A group G is finitely presentable if there exists a finite group presentation
(A,R) such that G ∼= ⟨A | R⟩.
If G admits a group presentation ⟨A | R⟩, we say that A is a generating set of G.

2.2. Hyperbolic Groups and the Gromov Boundary. Let M be a metric space. A
geodesic segment γ : [a, b] → M is an isometric embedding with a ≤ b, and a geodesic ray is
an isometric embedding of [0,∞). M is said to be geodesic if for any x, y ∈ M , there exists
a geodesic segment γ : [a, b] → M such that γ(a) = x and γ(b) = y.
For a metric space M and a set A ⊆ M , Nr(A) :=

⋃
x∈A Br(x). We say that Nr(A) is the

r-neighborhood of A.

Definition 2.3. A geodesic metric space M is said to be δ-hyperbolic provided that for any
geodesic triangle with sides (geodesic segments) α, β, γ, we have α ⊆ Nδ(β)∪Nδ(γ). We say
that M is hyperbolic if there exists some δ > 0 such that M is δ−hyperbolic.

For a δ-hyperbolic metric space M , we can give a precise definition for the ”boundary at
infinity” of M :

Definition 2.4. Let c1, c2 : [0,∞) → M be geodesic rays based at the identity (c1(0) =
c2(0) = ε). We say that c1, c2 are asymptotic provided that supt(c1(t), c2(t)) < ∞. This
defines an equivalence relation on the set of geodesic rays based at the identity. The Gromov
boundary, denoted ∂M , is the set of equivalence classes under this relation.

3See [1, I.8]



THE GROMOV BOUNDARY OF HYPERBOLIC GROUPS AND FINITE STATE AUTOMATA 3

Now we’ll describe how to associate a geometry to a finitely presentable group so we can
think about δ-hyperbolicity and the Gromov boundary in the context of groups. Let G be a
group with presentation ⟨A,R⟩.

Definition 2.5. The Cayley graph Γ(G,A) is a directed, labelled graph where the vertex
set V is G and for any vertices g1, g2 ∈ G, there is a directed edge from g1 to g2 labelled a
provided that g1a = g2 and a ∈ A ∪ A−1.

Remark. The Cayley graph depends on the choice of A, but if we have another generating
set A′, then Γ(G,A) and Γ(G,A′) are quasi-isometric4.

Let d : G × G → R such that for g1, g2 ∈ Γ, d(g1, g2) equals the length of a shortest
path between g1, g2 in Γ. We note that d is well-defined since our Cayley graph must be
connected, and one can check that d is a metric on Γ(G,A). Moreover, Γ(G,A) gives us a
geodesic metric space if we ”attach” unit [0,1] intervals at each edge and identify the end
points with the vertices the edge connects. We call this the geometric realization of Γ(G,A),
but for the rest of this paper, we’ll simply refer to it as Γ(G,A).
We can think of a finite word over A as a path in the Cayley graph starting at the origin

and ending at the vertex corresponding to the group element represented by the word. In
this case, a word w over A is geodesic if the corresponding path is a geodesic segment.
This equivalent to saying that w is geodesic if its a shortest possible representative of its
corresponding group element. For this paper, ŵ will refer to the path in the Cayley graph
while w will refer to the vertex corresponding to the group element it represents.

Definition 2.6. G with generating set A is δ−hyperbolic provided that the metric space
Γ(G,A) is δ-hyperbolic.

Remark. Hyperbolicity is an invariant of G, but the choice of δ depends on the generating
set A5.

We note that geodesic rays only exist for Γ(G,A) when G is infinite. In fact, ∂Γ(G,A) is
empty if and only if G is finite.

We will now describe a couple results about hyperbolic metric spaces and their boundaries
that’ll be useful for proving our main result and understanding why hyperbolic groups have
nice computational properties.

Lemma 2.7 (Asymptotic Rays are Uniformly Close). Let M be a proper δ-hyperbolic metric
space and let c1, c2 : [0,∞) → M be geodesic rays based at the identity such that c1 and c2
are asymptotic. Then, for all t > 0, d(c1(t), c2(t)) < 2δ

Proof. See [1, III.H.3]
■

Lemma 2.8. Let M be a δ-hyperbolic metric space. Then, |∂M | is either 0,2, or uncountably
infinite

Proof. See [3, 11.15] ■

4For more on quasi-isometries, see [2, Ch. 7]
5This follows quasi-isometries preserve hyperbolicity
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2.3. Finite State Automata. Before describing automatic structures, we will briefly recall
the definition of a finite state automaton.

Definition 2.9. A finite state automaton is a 5-tuple (S,A, µ, Y, s0) where S is a finite set
of states, A is an alphabet, µ : S × A → S is the transition function, Y ⊆ S is the set of
accept states, and s0 ∈ S is the starting state.

The idea is that the FSA (finite state automaton) takes in a finite word over A and reads
each letter one by one starting from the left-hand side. Our initial current state is s0, and
when we read the first letter a0 ∈ A, we proceed to the state sk1 := µ(s0, a0). Then, we read
the next letter a1 and proceed to the state sk2 := µ(sk1 , a1). We continue doing this until
the entire word has been read. Then, if the final state is in Y , the FSA accepts the word.
Otherwise, we say it rejects the word. For an FSA F with alphabet A, L(F ) will denote the
set of finite words over A that are accepted by F .
An FSA can equivalently be thought of as a directed, labelled graph. The elements of S

correspond to the set of vertices, and for each s ∈ S, a ∈ A, there is a directed edge from s
to µ(s, a) labelled ’a’. At each vertex, for each a ∈ A, there is at most one edge labeled ’a’
going out of it. In this case, each finite word corresponds to a path starting at s0, and words
that are accepted correspond to directed paths whose last state is an accept state. We will
use this perspective in this paper.

When utilizing the directed graph perspective, we can make a few simplifications that
do not change the set of accepted words. First, we can remove states in S that cannot be
reached from the start state. Second, we can remove all non-accept states from which there
is no path to an accept state. This will involve omitting edges going to these states so that
when running through our simplified FSA, if we read a letter and there is no corresponding
edge from the current state, the word is rejected. This simplified automaton is called a
normalized finite state automaton. For the rest of this paper, we will assume every FSA is
normalized.

For more on finite state automata, the reader may consult [4].

2.4. Automatic Structures. Let G be a finitely presented group with generating set A.

Definition 2.10. An automatic structure on G consists of the following finite state au-
tomata: the word acceptor automaton W over A and the multiplier automaton Mx over
(A,A) for x ∈ A ∪ {ε}. These automata satisfy the following properties:

(1) Every element of G is represented by a word in L(W )
(2) For x ∈ A ∪ {ε}, (w1, w2) ∈ L(Mx) if and only if w1x = w2 and w1, w2 ∈ L(W )

We say that G is strongly geodesically automatic if there exists an automatic structure where
L(W ) is the set of all geodesic words over the generating set.

For our main result, we won’t be needing the multiplier automaton, so we’ll only present
the results necessary to show the existence of the word acceptor for hyperbolic groups. The
reader may refer to [4] for the existence of the multiplier automaton for hyperbolic groups.

It turns out that we can not only show that a hyperbolic group has an automatic structure,
but that it is strongly geodesically automatic. We will now present some results from [4]
that will allow us to see this fact.

First, recall that for a metric space M and X, Y ⊆ M , the hausdorff distance between X
and Y is inf{r > 0 | A ⊆

⋃
x∈A′ Br(x) and A′ ⊆

⋃
x∈ABr(x)}.
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Theorem 2.11. Let G be a finitely presented group with generating set A. Suppose there
exists k > 1 such that for any two geodesic words v, w over A where d(v, w) < 1, the hausdorff
distance between the paths v̂, ŵ is at most k. Then, it follows that G is strongly geodesically
automatic.

Proof. See [4, 3.2]. ■

This tells us that hyperbolic groups are strongly geodesically automatic since one can
check that δ-hyperbolicity implies that the hypothesis of Theorem 2.11 is satisfied.

Now, it is desirable to be able to have a word acceptor automaton that accepts a unique
geodesic word for each group element. We can do this by considering an ordering on our
alphabet A. Then, we can consider a shortlex ordering on words over A, where for words v, w,
v < w if and only if either v is shorter than w, or if they’re the same length, then v comes
before w in lexicographical order (using the ordering on A). This defines a well-ordering, so
for each group element, there exists a minimal geodesic word representing it, which we’ll call
a shortlex geodesic word. Now, if there exists a word acceptor automaton that accepts the
language of shortlex geodesic words, then we say that the group is Shortlex-automatic.

Theorem 2.12. A strongly geodesically automatic group is Shortlex-automatic for any or-
dering of the generators.

Proof. See [4, 2.5]. ■

This result tells us that given a hyperbolic group, there exists a shortlex geodesic word
acceptor FSA. For Theorem 1.1, we will assume thatW only accepts shortlex geodesic words.

3. Characterizing Hyperbolic Groups With Finite Gromov Boundary

Now that we’ve gone over the necessary background on hyperbolic groups and the auto-
matic structure, we’re ready to start proving Theorem 1.1.

First, let G be a δ−hyperbolic group and let A be a finite set of semi-group generators of
G. Let Γ(G,A) (which we’ll denote Γ) be the corresponding Cayley graph of G with respect
to A.

Definition 3.1. For a geodesic ray c : [0,∞) → γ, we define fc : Z≥0 → A to be

fc(t)

{
c(0) t = 0

c(t− 1)−1c(t) t > 0
.

Here fc(k) labels the kth edge in Γ of the geodesic ray c : [0,∞) → Γ.
Let c1, c2 : [0,∞) → Γ be geodesic rays with the same base point such that they differ at

at least one point. Then, there exists a t such that c1(t) = c2(t) and c1(t + 1) ̸= c2(t + 1).
We call any such t a splitting point. We call a geodesic ray c : [0,∞) → Γ shortlex if each
prefix if for every t > 0, the word fc(0)fc(1) . . . fc(t) is shortlex. For the rest of this paper,
we’ll assume that all geodesic rays have their base point at the identity element.

Definition 3.2. Let c1, c2 be shortlex geodesic rays. We can define an equivalence relation
∼E on shortlex geodesic rays as follows: c1 ∼E c2 provided that there exist integers T1, T2

such that for all t, fc1(T1 + t) = fc2(T2 + t). We can define an end-behavior to be an
equivalence class of shortlex geodesic rays based the relation ∼E.

Note that two shortlex geodesic rays can have at most 1 splitting point.
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Lemma 3.3. The shortlex geodesic rays with the same base point corresponding to the same
boundary point x ∈ ∂Γ represent finitely many end behaviors.

Proof. Suppose that there exist infinitely many shortlex asymptotic geodesic rays

c1 : [0,∞) → Γ, c2 : [0,∞) → Γ, c3 : [0,∞) → Γ, . . .

such that for each i ̸= j, ci, cj represent different end-behaviors. First, note that if c, c′ :
[0,∞) → Γ are asymptotic geodesic rays, then for all t, d(c(t), c′(t)) < 2δ. Second, for each t,
|Bδ(c1(t))| < C(δ), where C(δ) is some constant that only depends on δ (this follows because
each vertex in Γ has finite degree). Let K > C(δ) be a positive integer. For each i, j ∈ N
with i ̸= j, let tij be the splitting point of ci, cj. Let AK = {(i, j) | i, j ∈ {1, . . . , K}, i ̸= j}.
Then, let T = max(i,j)∈A tij. Then, it follows that c1(T ) ̸= c2(T ) ̸= . . . ̸= cK(T ); however, for
each i ∈ {1, . . . , K}, ci(T ) ∈ Bδ(c1(T )), giving us a contradiction because |Bδ(c1(T ))| < K.

■

Let W = S,A, µ, Y, s0) be the shortlex word acceptor automaton for Γ. Recall that an
FSA can be represented as a labelled, directed graph. To make this more explicit, the set
of vertices is S and the set of edges, which we’ll call EW , consists of edges (si, ℓ, sj) where
µ(si, ℓ) = sj. Also, note that as mentioned earlier, we will assume that W is normalized.

Definition 3.4. A simple closed path C in W is a sequence of elements of E of the form

C = ((sk1 , ℓk1 , sk2), (sk2 , ℓk2 , sk3), . . . , (skt , ℓkt , sk1))

or equivalently

C = sk1
ℓk1−−→ sk2

ℓk2−−→ . . .
ℓkt−1−−−→ skt

ℓkt−→ sk1

where no two edges in the sequence are equal and for all i, j ∈ {1, . . . ℓ} with i ̸= j, ski ̸= skj .

Definition 3.5. A cycle is an equivalence class of simple closed paths where the equivalence
relation ∼P is defined as follows: we have C1 ∼P C2 provided that we can cyclically permute
C1 to be C2.

For a shortlex geodesic ray c : [0,∞) → Γ, let S(c(n)) denote the state of c(n) in W .
Furthermore, let Ec(n) := ((S(c(n)), fc(n+ 1),S(c(n+ 1)))).

Definition 3.6. Let Ci be a cycle in W . We say that a shortlex geodesic ray c : [0,∞) → Γ
terminates in a cycle Ci of W provided there exists N such that for all n > N , Ec(n) is
contained in Ci. The minimum such N is called the terminating value.

Lemma 3.7. Let C = ((sk1 , ℓk1 , sk2), (sk2 , ℓk2 , sk3), . . . , (skt , ℓkt , sk1)) be a cycle in W such
that the shortlex geodesic ray c : [0,∞) → Γ terminates in C with terminating value N
and Ec(N + 1) = (sk1 , ℓk1 , sk2). Then, it follows that for each 1 ≤ j ≤ t, Ec(N + j) =
(skj , ℓkj , skj+1

).

Proof. We have that the edge Ec(N + 2) is going out of sk2 and is contained in C. By
our definition, a simply closed path cannot contain more than one edge going out of a
state, so it follows that Ec(N + 2) = (sk2 , ℓk2 , sk3). The same reasoning can be applied for
Ec(N + 3), Ec(N + 4), . . . , Ec(N + t), giving us the result. ■

Lemma 3.8. If two shortlex geodesic rays c1, c2 : [0,∞) → Γ terminate in the same cycle,
then they must represent the same end behavior.
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Proof. Suppose that c1, c2 both terminate in the cycle

C = ((si1 , ℓi1 , si2), . . . , (sik−1
, ℓik−1

, sik), (sik , ℓik , si1)).

Let M1 be the minimum such that for all n ≥ M1, Ec1(n) is contained in C. Define M2 in the
same way for c2. Then, we have that Ec1(M1) = (siℓ , ℓiℓ , siℓ) and Ec2(M2) = (sim , ℓim , sim).
Without loss of generality, suppose that ℓ ≤ m. Then, we can apply Lemma 3.7 to get that
Ec1(M1+m− ℓ) = Ec2(M2), which means that for all t > 0, c1(M1+m− ℓ+ t) = c2(M2+ t).
Thus, c1, c2 represent the same end behavior.

■

Lemma 3.9. No two cycles in W share a state if and only if the total number of different
end-behaviors in Γ is finite.

Proof. Let C1, . . . , Ck be the cycles in W . Suppose that there are no cycles in W that share
a state. Our goal is to show that every infinitely long shortlex geodesic word terminates in
some Ci.

Let w : [0,∞) → Γ be a shortlex geodesic. Since W has finitely many states, we can take
a large enough prefix of w such that a state is repeated, which means we’ve gone around a
cycle, which we can call C1. Now, suppose that a large enough prefix escapes C1. Eventually,
w will have to repeat a state, so it will have traversed through a cycle C2. Now, we note
that w cannot reenter C1 because in doing so, it would have to traverse another cycle which
would share a state with C1. If w leaves C2, it will have to enter a new cycle C3. This
process can only happen finitely many times because there are finitely many cycles and w
cannot reenter a cycle it has exited. Thus, w must eventually terminate in a cycle Ci.

Now, suppose that there exist cycles C1, C2 such that

C1 = s
ℓ1−→ s1

ℓ2−→ . . .
ℓk−1−−→ sk

ℓk−→ s

and

C2 = s
t1−→ m1

t2−→ . . .
tj−1−−→ mj

tj−→ s

with t1 ̸= ℓ1. Suppose that w is a sequence of labels (or equivalently a word) from the start
state to the state s. For each n ∈ N, let wn = (ℓ1ℓ2 . . . ℓk)

n(t1t2 . . . tj)
n.

We can consider the infinitely long shortlex geodesic word ww∞
n (where w∞

n means wn

repeating forever). For each n, ww∞
n represents a different end behavior, so there must be

infinitely many end behaviors. ■

Now, we can define a group action of Γ on ∂Γ by left multiplication on the infinitely long
word in ∂Γ, which we then reduce. We can now relate end behaviors to orbits under this
group action.

Lemma 3.10. If two geodesic rays c1, c2 : [0,∞) → Γ represent the same end behavior then
they are part of the same orbit under the group action defined above.

Proof. Suppose there exist T1, T2 such that for all t ∈ Z, fc1(T1 + t) = fc2(T2 + t). Then, we
can left-multiply c1 by c2(T2)c

−1
1 (T1) to get the following infinitely long word:

fc2(1) . . . fc2(T2)fc1(T1 + 1)fc1(T1 + 2) . . .

which is equal to c2. Thus, c1 and c2 are in the same orbit. ■

Lemma 3.11. G is finite if and only if W contains no cycles.
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Proof. Suppose thatW contains a cycle ((sk1 , ℓk1 , sk2), (sk2 , ℓk2 , sk3), . . . , (skt , ℓkt , sk1)). With-
out loss of generality, suppose that sk1 is the start state. Furthermore, suppose that there’s
a path from sk1 to an accept state with edges labeled b1, b2, . . . , bm. Then, for each n ∈ Z,
the word (ℓk1ℓk2 . . . ℓkt)

nb1b2 . . . bm must be a shortlex geodesic word accepted by W . Since
each shortlex geodesic word uniquely represents an element of G, it follows that G must be
infinite.

Now, suppose that G is infinite. Then, we can find shortlex geodesic words of arbitrary
length. In particular, we can find one whose length is larger than the number of states in
W . Thus, in order for W to accept such a word, it would have to contain a path longer than
the total number of states, so it must contain a cycle. ■

Now we’re ready to bring together these results to prove Theorem 1.1. We restate the
result here for convenience.

Theorem 1.1. ∂Γ is finite if and only if no distinct cycles in W share a state.

Proof. For the forward direction, we can split it into two cases: when ∂Γ is empty and when
it’s non-empty. If ∂Γ is empty, then it follows that G must be finite. Thus, it follows from
Lemma 3.11 that W doesn’t contain any cycles, giving us the result. Now, if |∂Γ| is finite
and non-empty, it follows from Lemma 3.3 that the total number of end behaviors is finite.
Using Lemma 3.9, this implies that no two cycles in W share a state.
For the reverse direction, we can consider the case where W has no cycles separately. In

this case, it follows that G must be finite, which means that ∂Γ is empty. Now, if W contains
cycles and no two cycles share a state, then by Lemma 3.9, the number of end behaviors
is finite. This means that by Lemma 3.10 the number of orbits given by Γ acting on its
boundary must be finite. Suppose, for contradiction, that the boundary contains infinitely
many points. It follows that the boundary must be uncountable due to Lemma 2.8. However,
the boundary is covered by the union of all orbits, so since there are a finite number of orbits
and every orbit is countable, we have a contradiction. Thus, the number of boundary points
must be infinite. ■

Recall that as a consequence, we have the following:

Corollary 1.2. G is virtually cyclic if and only if no distinct cycles in W share a state.

Proof. By Theorem 1.1, it suffices to show that G being virtually cyclic is equivalent to ∂Γ
being finite. This follows from Theorem 2.28 of [5]. ■

4. Concluding Remarks and Future Work

In this paper, we’ve only tried to characterize the cardinality of the boundary using the
automatic structure. It turns out that we can endow the Gromov boundary with a topology6,
so one can ask whether there is any way of characterizing connectivity of the boundary using
the automatic structure. In particular, the goal here is to find some sort of computable
procedure that takes in as input the word acceptor and multiplier automata and decides if
the boundary of the corresponding group is connected.

In addition to the results described in the previous section, we have spent time trying to
tackle this problem of characterizing connectedness. Our main approach has been to try to

6See [1, III.H.3]
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look at the ends7 of the Cayley graph since the number of ends corresponds exactly with the
number of connected components in the boundary. Thus, the question becomes whether you
can use the automatic structure to determine if for any two geodesic rays c1, c2 : [0,∞) → Γ
based at the identity and for every R, we can find a path from c1(R + k) to c2(R + k) that
avoids the ball of radius R about the identity, where k is some constant that depends on the
Cayley graph.

In the future, the we hope to continue thinking about this question and possibly find some
sort of algorithm to decide whether the boundary is connected.
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