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Abstract

This project addresses the intricate pricing challenge of variance swaps through the
application of signature methods - a novel addition to quantitative finance area in
recent years. We’ll construct a parameter-dense model for the ultimate calibration
process, a task characterized as a high-dimensional regression.

1 Introduction

Variance swap is a type of financial derivative that allows investors to trade or hedge against
the volatility of an underlying asset. It is a contract in which two parties agree to exchange
the realized variance of the underlying asset for a predetermined fixed payment.
The underlying asset of a variance swap is typically an equity index, such as the S&P 500, or
a specific stock. The swap’s payoff depends on the difference between the realized variance
of the asset’s returns over a specified period and a pre-agreed variance strike price. The
realized variance represents the actual volatility observed in the market during the contract’s
duration. It is calculated based on the squared returns of the underlying asset over a specific
time frame. The variance strike price K is a fixed level set at the inception of the swap,
representing the expected or implied volatility of the underlying asset.

Theorem 1.1. Mathematically, the payoff for a variance swap can be expressed as:

Payoff = N × (σ2
realized −K)

Where

• N is the notional amount of the swap

• σ2
realized is the realized variance of the underlying asset over the life of the swap.

• K is the variance strike, or the fixed variance level agreed upon at the initiation of the
contract.
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Theorem 1.2. The realized variance σ2
realized can be computed from the logarithmic returns

of the underlying asset:

σ2
realized =

1

T

T∑
i=1

r2i

Where

• ri is the logarithmic return at time i: ri = ln( Si

Si−1
)

• Si is the price of the underlying asset at time i.

• T is the total number of observations (e.g., trading days) over the life of the swap.

Variance swaps are commonly used by investors and trades to hedge against or speculate
on changes on volatility. By entering into a variance swap, market participants can effec-
tively isolate and trade the volatility component of an asset’s price movement, seperate from
the asset’s direction. This allows investors to manage their exposure to market volatility
independently from their exposure to the asset’s returns. Variance swaps provides a flexible
and efficient means of gaining exposure to volatility, and they are often utilized by institu-
tional investors, hedge funds and other sophisticated market participants. More information
on variance swap we refer to [JP Morgan] Variance Swap[3].

In recent years, with the rise of big data and machine learning in finance, there have been
efforts to employ neural networks and other machine learning models to predict the variance
swap rates. Ferguson & Green (2019)[7] approximates pricing functions of derivatives using
neural networks, whereas Buehler et al. (2019) focuses on optimal hedging using similar ap-
proaches. Although the learning methods have strong ability to adapt to complex patterns
in data, model interpretability can be an issue. In contrast, model-based methods can cap-
ture volatility dynamics by using mathematical models such as Heston, Ornstein-Uhlenbeck
process, etc., which describe the evolution of underlying assets.

With the inspiration of rough path theory work like T. Lyons (1998)[5], we find the
recent development of signature method in quantitative finance. C. Cuchiero, et al.(2022)[1]
formulates the time extended signature as the linear regression basis of continuous path
functionals, aiming at applying data-driven, parameter-dense and tractable signature-based
model in achieving outstanding calibration results in asset pricing problems.
Furthermore, C. Cuchiero, et al.(2023)[2] achieves highly accurate results in joint calibration
to SPX and VIX options with signature-based models and the section 4 ”Expected signature of
polynomial diffusion processes” in C. Cuchiero, et al.(2023)[2] provides a direct inspiration
of how signature approaches could be incorporated into describing polynomial processes
and deriving close forms of expectation terms. Our work of taking signature model into
computation starts from the pricing formula of variance swap and a small portion of our
formula could have a similar form with VIX index presented as Theorem 5.1 in C. Cuchiero,
et al.(2023)[2]. Nevertheless, our model would be much more complex that VIX index and
could involve higher dimensional calibration.

Theorem 1.3. We consider asset price models whose dynamics are described by linear func-
tions of the (time extended) signature of a primary underlying process, which is Brownian
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motion in our case. Throughout the paper we fix a filtered probability space (Ω,F ,Ft,Q) on
which we define the stochastic process

dSt = rStdt + σtStdBt, S0 ∈ R+

where St is the pricing process, σt is the volatility process that will be represented by signature
model. Bt here is a Brownian motion which is correlated with σt.

The variance swap contract is structured to ensure that losses are minimized when market
volatility exceeds the agreed strike price. Thus in the following theorem, we formulate the
closed form for our objective strike price K.

Theorem 1.4. To price discretely sampled variance swaps, we first define pricing formula
for vanilla variance swaps. Let the sampling dates be defined as

0 = t0 < t1 < ... < tN = T

where T is the maturity date. The payoff of vanilla variance swap at T is defined as Theorem
1.1 and Theorem 1.2. where K is the strike price of the variance swap. To make the market
free of arbitrage, the fair strike price K under risk-free measure Q is given by

K = EQ[
N∑
k=1

[ln(
Stk+1

Stk

)]2|F0]

From Theorem 1.3, we get

Stk+1
= Stke

r(tk+1−tk)−
∫ tk+1
tk

σ2
s
2
ds+

∫ tk+1
tk

σsdBs

Then

K = E
[ N∑
k=0

(
r(tk+1 − tk)−

∫ tk+1

tk

σ2
s

2
ds+

∫ tk+1

tk

σsdBs

)2∣∣F0

]
= E

[ N∑
k=0

(
r2(tk+1 − tk)

2 − r(tk+1 − tk)

∫ tk+1

tk

σ2
sds + 2r(tk+1 − tk)

∫ tk+1

tk

σsdBs

+
1

4
(

∫ tk+1

tk

σ2
sds)

2 −
∫ tk+1

tk

σ2
sds

∫ tk+1

tk

σsdBs + (

∫ tk+1

tk

σsdBs)
2

)∣∣F0

]
= E

[ N∑
k=0

(
r2(tk+1 − tk)

2 − r(tk+1 − tk)

∫ tk+1

tk

σ2
sds

+
1

4
(

∫ tk+1

tk

σ2
sds)

2 −
∫ tk+1

tk

σ2
sds

∫ tk+1

tk

σsdBs +

∫ tk+1

tk

σ2
sds

)∣∣F0

]
= E

[ N∑
k=0

(
r2(tk+1 − tk)

2 +
(
1 − r(tk+1 − tk)

) ∫ tk+1

tk

σ2
sds+

1

4
(

∫ tk+1

tk

σ2
sds)

2

−
∫ tk+1

tk

σ2
sds

∫ tk+1

tk

σsdBs

)∣∣∣∣F0

]
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2 Signature Model

In the section we’ll be introducing the signature based model. The signature is an object
associated with a path which captures many of the path’s important analytic and geometric
properties. The detailed theoretical properties and some numerical applications are discussed
in Chevyrev & Kormilitzin (2016)[8].

2.1 Notions

• (Tensor Algebra) For n, d ∈ N, the n-fold tensor product of Rd is given by

(Rd)⊗n = (Rd)⊗(Rd)⊗...⊗ (Rd)︸ ︷︷ ︸
n

where we construct an nd -dimensional space out of n vectors from d-dimensional
space.
For d ∈ N, the extended tensor algebra on Rd is given by

T(Rd) = {a = (a0, a1, ..., an) : ai ∈ (Rd)⊗i, i = 0, 1, 2, ..., n}

which could provide a structural understanding of term signature, which should be
represented as a collection of iterated integrals of a path.

• (Operations) Suppose a = (ai)
∞
i=0, b = (bi)

∞
i=0 ∈ T((Rd)), define the sum + and prod-

uct ⊗ by

a + b := (ai + bi)
∞
i=0,

a ⊗ b := (
i∑

k=0

ak ⊗ bi−k)
∞
i=0

• (Multi-index) Suppose a multi-index I := (i1, i2, ..., in), then we set |I| := n. Remark
that we also set I ′ := (i1, ..., in−1) and I ′′ := (i1, ..., in−2) whenever needed.
We also have the notation {I : |I| = n} := {1, 2, ..., d}n.
Now we combine the multi-index with the tensor basis:

eI = ei1 ⊗ ei2 ⊗ ... ein

where ei1 , ei2 , ..., ein denotes the canonical basis vectors of Rd. Denoting that e∅ is the
basis element corresponding to (Rd)⊗0.

• Suppose we have eI : |I| = N to be an orthonormal basis of (Rd)⊗N . Then for any
a ∈ T((Rd)), it can be written as

a =
∑

|I|>=0

aIeI

where aI ∈ R is a coefficient for a vector basis on multi-index I. Equivalently,

aI = ⟨eI , a⟩
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2.2 Definitions

Theorem 2.1 (Definition 2.1 [1]). Let (Xt)t∈[0,T ] be a continuous Rd-valued semimartin-
gale. The signature of X is the T ((Rd))-valued process (s, t) 7→ Xs,t whose components are
recursively defined as

⟨e∅,Xs,t⟩ = 1

⟨eI ,Xs,t⟩ =
∫ t

s

⟨eI′ ,Xs,t⟩ ◦ dX in
r

for each I = (i1, i2, ..., in), I
′ = (i1, i2, ..., In−1) and 0 ⩽ s ⩽ t ⩽ T , where ◦ denotes the

Stratonovich integral. Its projection XN on T (N)(Rd) is given by

XN
s,t =

∑
|I|⩽N

⟨eI ,Xs,t⟩eI

and is called signature of X truncated at level N.
The equivalent notation:

Xt = (1,

∫ t

0

1◦dX1
s , ...,

∫ t

0

1◦dXd
s ,

∫ t

0

(

∫ t

0

1◦dX1
s )◦dX1

s , ... ,

∫ t

0

(

∫ t

0

1◦dXd
s )◦dXd

s , ... )

Signature is a collection of iterated integrals of the given multidimensional path. The
integrals are listed in the collection in a strict order. Similar to 1.2.1 presented in Chevyrev
& Kormilitzin (2016)[8], here is an example for a single signature term.

Example.

⟨e1,Xs,t⟩ =
∫ t

0

1 ◦ dX1
s = X1

t −X1
s

Note that ⟨e1 ⊗ e2,Xs,t⟩ ̸= ⟨e2 ⊗ e1,Xs,t⟩ as ⟨e1 ⊗ e2,Xs,t⟩ =
∫ t

0
(
∫ t

0
1 ◦ dX1

s ) ◦ dX2
s while

⟨e2 ⊗ e1,Xs,t⟩ =
∫ t

0
(
∫ t

0
1 ◦ dX2

s ) ◦ dX1
s

Theorem 2.2 (Definition 2.2 [1]). (Shuffle Product) Given two multi-indices I = (i1, i2, ..., in)
and J = (j1, j2, ..., jm), the shuffle product is defined recursively as

eI � eJ = (eI′ � eJ)⊗ ein + (eI � eJ ′)⊗ ejm

where eI � e∅ = e∅� eI = eI .

Proposition 2.1. Shuffle Property[Proposition 2.3 [1]] Let ((Xt))t ∈ [0, T ] be a continuous
Rd-valued semimartingale and I, J be two multi-indices. Then

⟨eI ,Xs,t⟩⟨eJ ,Xs,t⟩ = ⟨eI � eJ ,Xs,t⟩

Proof. We prove this proposition by induction with Stratonovich integrals.
Induction Basis. ⟨e∅,Xs,t⟩⟨eJ ,Xs,t⟩ = 1 ⟨eJ ,X⟩ = ⟨e∅ � eJ ,Xs,t⟩ , which agrees with the
propostion.
Induction Steps. Assumed that for arbitrary subsets S1 and S2 of multi indices I and J , we
have

⟨eS1 ,Xs,t⟩⟨eS2 ,Xs,t⟩ = ⟨eS1 � eS2 ,Xs,t⟩
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After that,

⟨eI ,Xs,t⟩⟨eJ ,Xs,t⟩ =
∫ t

s

⟨eJ ,Xs,u⟩ ◦ d⟨eI ,Xs,u⟩+
∫ t

s

⟨eI ,Xs,u⟩ ◦ d⟨eJ ,Xs,u⟩

=

∫ t

s

⟨eI′ ,Xs,r⟩⟨eJ ,Xs,r⟩ ◦ dXin
r +

∫ t

s

⟨eI ,Xs,r⟩⟨eJ ′ ,Xs,r⟩ ◦ dXjm
r

=

∫ t

s

⟨eI′ � eJ ,Xs,r⟩ ◦ dXin
r +

∫ t

s

⟨eI � eJ ′ ,Xs,r⟩ ◦ dXjm
r

= ⟨eI′ � eJ ⊗ ein ,Xs,t⟩+ ⟨eI � eJ ′ ⊗ ejm ,Xs,t⟩
= ⟨eI′ � eJ ⊗ ein + eI � eJ ′ ⊗ ejm ,Xs,t⟩
= ⟨eI � eJ ,Xs,t⟩

Proposition 2.2 (Chen’s identity). [Lemma 2.10 [1]] Let (Xt)t∈[0,T ] be an Rd-valued semi-
martingale. Then

Xs,t = Xs,u ⊗ Xu,t

for each s ⩽ u ⩽ t ⩽ T . This can equivalently be written as

⟨eI ,Xs,t⟩ =
∑

eI1⊗eI2=eI

⟨eI1 ,Xs,u⟩⟨eI2 ,Xu,t⟩

where I represents an arbitrary multi-index.

Proof. We prove this by induction on the length of the multi-index I.
Induction Basis. When |I| = 0, obviously the statement holds.
Induction Steps. Assumed that the statement holds for all multi-indices J ⊆ I, where |J | < n
and I = (i1, i2, ..., in). Then,

⟨eI ,Xs,t⟩ =
∫ t

s

⟨eI′ ,Xs,r⟩ ◦ dXin
r

=

∫ u

s

⟨eI′ ,Xs,r⟩ ◦ dXin
r +

∫ t

u

⟨eI′ ,Xs,r⟩ ◦ dXin
r

= ⟨eI ,Xs,u⟩+
∫ t

u

∑
eI′1

⊗eI′2
=eI′

⟨eI′1 ,Xs,u⟩⟨eI′2 ,Xu,r⟩ ◦ dXin
r

= ⟨eI ,Xs,u⟩+
∑

eI′1
⊗eI′2

=eI′

⟨eI′1 ,Xs,u⟩⟨eI′2 ⊗ ein ,Xu,t⟩

=
∑

eI1⊗eI2=eI

⟨eI1 ,Xs,u⟩⟨eI2 ,Xu,t⟩

Note: paying attention to the difference between shuffle � and tensor product ⊗.

Theorem 2.3. Our goal is to parameterize the volatility process σt as a signature model
(Sig-SDE), which is, applying signature model to describe the dynamics of St as

σt(ℓ) = ℓ∅ +
∑
|I|≤n

ℓI⟨eI , Ŵt⟩
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where W is the underlying d-dimensional Brownian motion and Ŵt = (t,Wt).

Remark. With the same motivation,

(σt(ℓ))
2 = ℓ∅ +

∑
|I|,|J |≤n

ℓIℓJ⟨eI � eJ , Ŵt⟩

3 Expected Signature

Theorem 3.1. Since every polynomial function in the signature has a linear representation,
suppose the d-dimensional real-valued process X is a weak solution of

dXt = b(X̂t)dt+

√
a(X̂t)dWt

where W is a d-dimensional Brownian motion and a and b are linear maps. Thus we can
define X as a polynomial process:

dXt = b(Xt)dt+
√
a(Xt)dWt, X0 = x0

where maps a : Rd 7→ Sd
+ and b : Rd 7→ Rd such that each aij is a polynomial of degree at

most 2 and bj is a polynomial of degree at most 1 for each i, j = 1, ..., d + 1. Furthermore,
to define the correlation between processes X and B, we introduce process Z = (Xt, Bt) and

denote its time extension by Ẑ = (t,X,B) with its signature (Ẑt)t≥0. Thus, the correlation
matrix process between X and B can be defined as

ρij =
[Zi, Zj]√
[Zi]
√

[Zj]
∈ [−1, 1]

for all i, j = 1, ..., d+1, where [ , ] denotes the quadratic variation. In this case, the volatility
process σt can be defined equivalently as a signature model (Sig-SDE) of the primary process
Z:

σt(ℓ) = ℓ∅ +
∑

|I|≤n,ei ̸=d+1

ℓI⟨eI , Ẑt⟩

Theorem 3.2. [Lemma 4.1 in [2] ] Let (Xt)t≥0 be the polynomial process given by (4) and
b, a be the corresponding drift and diffusion coefficients. Then

bj(x) = bcj +
d∑

k=1

bkjxk

aij(x) = acij +
d∑

k=1

akijxk +
d∑

k,h=1

akhij xkxh

for bcj, b
k
j , a

c
ij, a

k
ij, a

kh
ij ∈ R

Moreover we have,
bj(Yt) = ⟨bj,Y1

t ⟩
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and
aij(Yt) = ⟨aij,Y2

t ⟩

where

bj = bcje∅ +
d∑

k=1

(bkjX
k
0 e∅ + bkj ek) = (bcj +

d∑
k=1

bkjX
k
0 )e∅ +

d∑
k=1

bkj ek

aij = (acij +
d∑

k=1

akijX
k
0 +

d∑
k,h=1

akhij X
k
0X

h
0 )e∅ +

d∑
k=1

(akij + 2
d∑

h=1

akhij X
h
0 )ek +

d∑
k,h=1

akhij ek � eh

Theorem 3.3 (Lemma 4.2 [2].). Let (Xt)t≥0 be the polynomial process given by (4) and take
b, a from Theorem 3.2. The truncated signature (Xn

t )t≥0 is a polynomial process and for each
|I| ≤ n it holds that

⟨eI ,Xn
t ⟩ =

∫ t

0

⟨LeI ,Xn
s ⟩ds +

∫ t

0

⟨eI′ ,Xn
s ⟩σi|I|(Xs)dWs

where the operator L : T (Rd) → T (Rd) satisfies L(T (n)(Rd)) ⊆ T (n)(Rd) and is given by

LeI = eI′ � bi|I| +
1

2
eI′′ � ai|I|−1i|I|

Definition 3.1. [Definition 4.3 in [2].] For each |I| ≤ n set then ηIJ ∈ R such that

LeI =
∑
|J |≤n

ηIJeJ

Then we fix a labelling injective function L : {I : |I| ≤ n} → {1, 2, ..., dn}. We then call the
matrix G ∈ Rdn×dn where

GL(I)L(J) = ηIJ

the dn dimensional matrix representative of L.

Theorem 3.4 (Theorem 4.4 in [2].). Let (Xt)t≥0 be the polynomial process given by (4).
((F )t)t≥0 be the filtration generated by (Yt)t≥0 and let G be the dn-dimensional matrix rep-
resentative of the dual operator corresponding to X. Then for each T, t ≥ 0, |I| ≤ n we
have

E[⟨eI ,XT+t⟩|FT ] =
∑
|J |≤n

(etG
⊺
)L(I)L(J)⟨eJ ,XT ⟩

Here we introduce a lifting operator P which is defined as:

PI
t (XT ) = E[⟨eI ,XT+t⟩|FT ] =

∑
|J |≤n

(etG
⊺
)L(I)L(J)⟨eJ ,XT ⟩
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Remark. Here’s an another case when 0 ≤ t0 < t1 < t2, by Tower’s property and
Theorem 3.4

E
[
⟨eI ,Xt2⟩⟨eH ,Xt1⟩ |Ft0

]
= E

[
E[⟨eI ,Xt2⟩|Ft1 ] ⟨eH ,Xt1⟩ | Ft0

]
= E

[ ∑
|J |≤n

(e(t2−t1)G⊺
)L(I)L(J)⟨eJ ,Xt1⟩⟨eH ,Xt1⟩ | Ft0

]
= E

[ ∑
|J |≤n

(e(t2−t1)G⊺
)L(I)L(J)⟨eJ � eH ,Xt1⟩ | Ft0

]
=
∑
|J |≤n

(e(t2−t1)G⊺
)L(I)L(J)E

[
⟨eJ � eH ,Xt1⟩ | Ft0

]
=
∑
|J |≤n

(e(t2−t1)G⊺
)L(I)L(J)P

J�H
t1−t0

(Xt0)

= Φ(I,t2),(H,t1)(Xt0)
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4 Calibration of variance swap price with signature

model

Theorem 4.1. Assume Theorem 1.4 and the linear signature presentation for dynamic pro-
cess, the risk-neutral strike K for variance swap is given by

K =
N∑
k=0

(
r2(tk+1 − tk)

2 +
(
1 − r(tk+1 − tk)

)
K1

tk,tk+1
+

1

4
K2

tk,tk+1
− K3

tk,tk+1

)
where

• (1) K1
tk,tk+1

=
∑

|I|,|J |≤n ℓIℓJ

(
PI�J⊗0

tk+1
(Ŵ0) − PI�J⊗0

tk
(Ŵ0)

)

• (2) K2
tk,tk+1

=
∑

|I|,|J |,|M |,|N |≤n ℓIℓJℓMℓN

(
P

(I�J⊗0)�(M�N⊗0)
tk+1

(Ŵ0) + P
(I�J⊗0)�(M�N⊗0)
tk

(Ŵ0)

− 2Φ(I�J⊗0,tk+1),(M�N⊗0,tk)(Ŵ0)

)

• (3) K3
tk,tk+1

=
∑

|I|,|J |,|M |≤n ℓIℓJℓM

(
P

(I�J⊗0)�M̃d+1

tk+1
(Ẑ0) + P

(I�J⊗0)�M̃d+1

tk
(Ẑ0)

− Φ(I�J⊗0,tk+1),(M̃
d+1,tk)(Ẑ0) − Φ(M̃d+1,tk+1),(I�J⊗0,tk)(Ẑ0)

)
Proof. See appendix A.

5 Model Modification

In section 4, our general process is given by Ẑt = (t,Wt, Bt) where t is the time process,
W is the underlying d-dimensinal brownian motion and B is the one dimensional brownian
motion from the pricing formula.

According Theorem 3.1, we introduced the general diffusion process Xt into our study.
Note that the process Xt is also driven by underlying d-dimensinal brownian motion Wt.
That provides an inspiration to us to apply high-level process into calibration instead of
calibrating directly on the underlying brownian motions.

The only thing that needs to be modified here is the G matrix. Our future work would
be incorporating OU process and Heston model into our project.
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A Appendix A

The full proof for Theorem 4.1.

• step 1. We take K1
tk,tk+1

= E
[ ∫ tk+1

tk
σ2
sds
]
. With Remark 2.2 where we apply signature

formula in term σ and Theorem 3.4

K1
tk,tk+1

= E
[ ∫ tk+1

tk

σ2
sds
]

= E
[ ∫ tk+1

tk

∑
|I|,|J |≤n

ℓIℓJ⟨eI � eJ , Ŵs⟩ds
]

= E
[ ∫ tk+1

0

∑
|I|,|J |≤n

ℓIℓJ⟨eI � eJ , Ŵs⟩ds
]

− E
[ ∫ tk

0

∑
|I|,|J |≤n

ℓIℓJ⟨eI � eJ , Ŵs⟩ds
]

= E
[ ∑
|I|,|J |≤n

ℓIℓJ⟨eI � eJ ⊗ e0, Ŵtk+1
⟩
]

− E
[ ∑
|I|,|J |≤n

ℓIℓJ⟨eI � eJ ⊗ e0, Ŵtk⟩
]

=
∑

|I|,|J |≤n

ℓIℓJE
[
⟨eI � eJ ⊗ e0, Ŵtk+1

⟩
]

−
∑

|I|,|J |≤n

ℓIℓJE
[
⟨eI � eJ ⊗ e0, Ŵtk⟩

]
=

∑
|I|,|J |≤n

ℓIℓJP
I�J⊗0
tk+1

(Ŵ0) −
∑

|I|,|J |≤n

ℓIℓJP
I�J⊗0
tk

(Ŵ0)

=
∑

|I|,|J |≤n

ℓIℓJ

(
PI�J⊗0

tk+1
(Ŵ0) − PI�J⊗0

tk
(Ŵ0)

)

• step 2. K2
tk,tk+1

= E
[
(
∫ tk+1

tk
σ2
sds)

2
]
. With Theorem 3.4 and Remark 3

K2
tk,tk+1

= E
[
(

∫ tk+1

tk

σ2
sds)

2
]

= E
[
(

∫ tk+1

0

σ2
sds −

∫ tk

0

σ2
sds)

2
∣∣∣F0

]
= E

[
(

∫ tk+1

0

σ2
sds)

2 + (

∫ tk

0

σ2
sds)

2 − 2(

∫ tk+1

0

σ2
sds

∫ tk

0

σ2
sds)

∣∣∣F0

]
=

∑
|I|,|J |,|M |,|N |≤n

ℓIℓJℓMℓN

(
P

(I�J⊗0)�(M�N⊗0)
tk+1

(Ŵ0) + P
(I�J⊗0)�(M�N⊗0)
tk

(Ŵ0)

− 2Φ(I�J⊗0,tk+1),(M�N⊗0,tk)(Ŵ0)

)

• step 3. Before we dive into the actual computation of the cross term, we introduce the
special case when we take the extra correlated Brownian process B into the picture.
If we take W as our multidimensional brownian process and the underlying primary
process under the signature model of σ =

∑
|I|≤n ℓI⟨eI , Ŵ⟩, here we need to define
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the process Z = (W,B) and the time-extended version Ẑ = (t,W,B) as well as its

signature Ẑ.

Assumption A.1. C. Cuchiero, G. Gazzani, S. Svaluto-Ferro(2022) [1] For all i ∈
1, 2, ..., d, we have

d[W i, Zd+1]t =
∑
|J |≤m

aJi(d+1)⟨eJ , Ẑt⟩dt

for some m ∈ N where Ẑ = (t,W,B).

Now we compute the special case correlated with B.

∫ T

0

σsdZ
d+1
s =

∫ T

0

σs ◦ dZd+1
s − 1

2
[σ, Zd+1]T

=

∫ T

0

∑
|I|≤n

ℓI⟨eI , Ẑs⟩ ◦ dZd+1
s − 1

2
[
∑
|I|≤n

ℓI⟨eI , Ẑ⟩, Zd+1]T

=
∑
|I|≤n

ℓI⟨eI ⊗ ed+1, ẐT ⟩ −
1

2

∫ T

0

∑
|I|≤n

ℓI⟨eI′ , Ẑs⟩d[Zi|I| , Zd+1]s

=
∑
|I|≤n

ℓI( ⟨eI ⊗ ed+1, ẐT ⟩ −
1

2

∫ T

0

⟨eI′ , Ẑs⟩d[Zi|I| , Zd+1]s ) (1)

=
∑
|I|≤n

ℓI( ⟨eI ⊗ ed+1, ẐT ⟩ −
1

2

∑
|J |≤m

aJi|I|(d+1) ⟨eI′ � eJ ⊗ e0, ẐT ⟩ ) (2)

=
∑
|I|≤n

ℓI( ⟨eI ⊗ ed+1 −
1

2

∑
|J |≤m

aJi|I|d+1 eI′ � eJ ⊗ e0, ẐT ⟩ )

=
∑
|I|≤n

ℓI ⟨ẽd+1
I , ẐT ⟩

where ẽd+1
I = eI ⊗ ed+1 − 1

2

∑
|J |≤m aJi|I|d+1 eI′ � eJ ⊗ e0.

(Note that the highest order of ẽd+1
I is n+m)

From (1) to (2) with assumption A.1 :∫ T

0

⟨eI′ , Ẑs⟩d[Zi|I| , Zd+1]s =

∫ T

0

⟨eI′ , Ẑs⟩
∑
|J |≤m

aJi|I|d+1⟨eJ , Ẑs⟩ds

=

∫ T

0

∑
|J |≤m

aJi|I|d+1⟨eI′ , Ẑs⟩⟨eJ , Ẑs⟩ds

=
∑
|J |≤m

aJi|I|d+1⟨eI′ � eJ ⊗ e0, ẐT ⟩
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Remark. When we are not incorporate any process form (like OU, Heston) into our
model and we are calibrating directly on the underlying brownian motions, the term
could be written as

ẽd+1
I = eI ⊗ ed+1 −

1

2
σi|I|ρi|I|d+1 eI′ ⊗ e0

Now we compute the explicit formula of the cross term.

E[
∫ tk+1

tk

σ2
sds

∫ tk+1

tk

σsdZ
d+1
s ]

= E
[ ∫ tk+1

tk

σ2
sds

∫ tk+1

tk

σsdZ
d+1
s

∣∣F0

]
= E

[
(

∫ tk+1

0

σ2
sds−

∫ tk

0

σ2
sds)(

∫ tk+1

0

σsdZ
d+1s−

∫ tk

0

σsdZ
d+1s)

∣∣F0

]
= E

[ ∫ tk+1

0

σ2
sds

∫ tk+1

0

σsdZ
d+1s+

∫ tk

0

σ2
sds

∫ tk

0

σsdZ
d+1s

−
∫ tk+1

0

σ2
sds

∫ tk

0

σsdZ
d+1s−

∫ tk+1

0

σsdZ
d+1s

∫ tk

0

σ2
sds
∣∣F0

]
=

∑
|I|,|J |,|M |≤n

ℓIℓJℓM

(
P

(I�J⊗0)�M̃d+1

tk+1
(Ẑ0) + P

(I�J⊗0)�M̃d+1

tk
(Ẑ0)

− Φ(I�J⊗0,tk+1),(M̃
d+1,tk)(Ẑ0) − Φ(M̃d+1,tk+1),(I�J⊗0,tk)(Ẑ0)

)
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