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Abstract. We address the regularity of a Monge-Ampère metric g on the

surface of a simplex constructed in the recent work [5] by realizing it as a
special Käher metric. Supposing that the holomorphic cubic form attached

to g does not have an essential singularity and that we can make a choice

of isothermal coordinates with sufficient regularity around the origin, we are
afforded an exhaustive family of models as proved by Haydys in [4]. These

models enable us to conclude in all but a single special case that the potential

φ of g fails to be C1,1 at the origin. As an accompaniment to this result, we
provide numerical simulations of φ, which give insight into the specific model

which g should obey.
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1. Introduction

The problem of constructing a Monge-Ampère metric on an singular affine mani-
fold has motivations in the field of mirror symmetry, specifically the SYZ conjecture.
This problem was addressed in [5] for the case of the surface of an n-dimensional
simplex, where it was demonstrated that the potential φ of the metric g also solves
the classical Monge-Ampère equation in Euclidean space through any flat chart.

We restrict ourselves to the case of n = 3. In this case, we construct a pla-
nar problem in which the singular set consists of a single point. The aforemen-
tioned pullback property allows us to consider the planar Monge-Ampère met-
ric g = φxx dx2 + 2φxy dxdy + φyy dy2 in local affine coordinates (x, y). Then
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changing to a specific isothermal coordinate z = u + iv gives g = e−ρ|dz|2, ρ =
log(2φxx + 4φxy + 2φyy), as a metric on a domain Ω ⊆ C with the topology of the
punctured disc. We attach a so-called special Kähler structure to the metric g. If ρ
can be demonstrated to be sufficiently regular, and the holomorphic cubic form of
g does not have an essential singularity, then we may apply [4, Theorem 1.1] and
conclude the following.

Theorem 1.1. Suppose the conformal factor ρ is C2 on a punctured disk around
the origin and the holomorphic cubic form Ξ has order n > −∞ at the origin. Then

e−ρ = −|z|n+1 log|z|eO(1)

or
e−ρ = |z|β(C + o(1)), β < n+ 1, β ̸= 0.

Moreover, |D2φ| is unbounded near the origin.

In sections 2 and 3, we provide background for Theorem 1.1 and detail our
choice of coordinates and special Kähler structure on the domain Ω. In section 4,
we provide numerical simulations of the metric to conjecture the correct model.

Finally, in the appendix we give an extended discussion of Theorem 1.1. Specif-
ically, we describe heuristic arguments for the assumptions on ρ and Ξ, as well as
for ruling out the possibility of β = 0 in Theorem 1.1.

2. Singular Monge-Ampère metrics in dimension two

2.1. Geometric setting. In this paper we consider the singularities of the solution
to an optimal transport problem between the boundary of a tetrahedron and the
boundary of its dual, considered as 2-dimensional submanifolds of R3 and (R3)∗,
respectively.

More specifically, we consider the following points in R3:

m0 = (1, 1, 1) m1 = (−3, 1, 1)

m2 = (1,−3, 1) m3 = (1, 1,−3)

Following the notation of [5], let ∆ be the convex hull of these points, and ∆∨ ⊆
(R3)∗ be the dual tetrahedron defined by

∆∨ = {n ∈ (R3)∗ : sup
m∈∆

⟨m,n⟩ = max
0≤i≤3

⟨mi, n⟩ ≤ 1}

One may easily check that ∆∨ is the convex hull of the following points:

n0 = (−1,−1,−1) n1 = (1, 0, 0)

n2 = (0, 1, 0) n3 = (0, 0, 1)

We additionally define A = ∂∆, B = ∂∆∨.
Let τi denote the face of A opposite mi; more precisely this is the convex hull of

the points {mj : j ̸= i}. Define σi similarly on B.
Also define Si ⊆ A to be the following set:

Si = {m ∈ A : ⟨m,ni⟩ = min
j

⟨m,nj⟩}

We define Ti similarly on B. The region Ti may be described in terms of the
barycenters of the faces which meet at mi and the midpoints of the edges which
meet at mi, as shown in Figure 1.
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Figure 1. A visual depiction of the region T0 on B

We now equip A and B with the structure of a singular affine manifold via the
following charts from [5]. For distinct i, j, k, l ∈ {1, 2, 3, 4}, define coordinate charts
p−1
i,j of A, and coordinates q−1

i,j of B by

p−1
i,j (m) := (⟨m,nj − nk⟩, ⟨m,nj − nl⟩)

q−1
i,j (n) := −1

4
(⟨n,mj −mk⟩, ⟨n,mj −ml⟩)

Denote by L∞(A) and L∞(B) the spaces of bounded real valued functions on
A and B, respectively. Given φ ∈ L∞(A), ψ ∈ L∞(B), we may define their c-
transforms as follows:

L∞(B) ∋ φc := sup
m∈A

⟨m,n⟩ − φ(m)

L∞(A) ∋ ψc := sup
n∈B

⟨m,n⟩ − ψ(n)

We have that φc, ψc are bounded due to the fact that A and B (and thus the
functionals ⟨·, n⟩ and ⟨m, ·⟩) are bounded. A function φ ∈ L∞(A) is called c-convex
if φcc = φ, and similarly for functions ψ ∈ L∞(B).

Given a c-convex function ψ ∈ L∞(B), we define its c-subgradient as the multi-
valued map ∂cψ : B → A given by

(∂cψ)(n) := {m ∈ A : ψ(n) + ψc(m) = ⟨m,n⟩}

Now we may put finite measures µ, ν on A and B, respectively, and consider the
transport problem between them. It is of interest to the authors of [5] as to the
regularity of c-convex functions ψ ∈ L∞(B) such that (∂cψc)∗µ = ν, specifically in
the case when µ and ν are Lebesgue measure on their respective tetrahedra. As
Lebesgue measure is symmetric with respect to the symmetries of the tetrahedron,
we conclude by their Theorem 5.2 that the function ψ is symmetric as well.

2.2. Connection to planar optimal transport. In this section we formulate an
appropriate planar problem based on the tetrahedral case, with the singularity in
the interior of the source domain. In particular, we will attempt to formulate a
planar problem analogous to the problem pictured in Figure 2.

Adopting the notation nij =
ni+nj

2 , nijk =
ni+nj+nk

3 , we may describe these
regions specifically as A∩conv(n0, n013, n1, n123) and B∩conv(m123,m2,m023,m0);
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Figure 2. Regions of the tetrahedron from which a planar trans-
port problem will be derived

it may be verified by [5, Lemma 4.1] that any bounded symmetric c-convex function
must map this region on A into the corresponding region on B.

Given a function ψ on B we may define functions ψi,j := (ψ −mj) ◦ qi,j which
can be thought of as the image of ψ under the charts. The following lemma of [5]
determines the c-subgradient images correctly relate the subgradient images of ψ
and ψij .

Lemma 2.1. [5, Lemma 4.4] Suppose that ψ is a bounded and symmetric real-
valued c-convex function on B. If i ̸= j, then p−1

j,i gives a bijection of (∂cψ)(n) onto

∂ψi,j(q
−1
i,j (n)) for any n ∈ T ◦

i . The same result holds for any n ∈ τ◦j .

Consider the region formed from the intersecion of B with the convex hull of the
points n0, n012, n01, n013, which lies entirely within the region T0. By Lemma 2.1,
using the projection q−1

0,1, we have that the corresponding planar transport occurs

between the convex hull of the points (0, 0), ( 13 , 0), (0,
1
3 ), (

1
2 ,

1
2 ), and the triangular

region with vertices (1, 0), (0, 1), ( 12 ,
1
2 ).

Now we wish to extend our transport problem by appending the triangular region
on the tetrahedron bounded by n012, n1, n12 through the chart q−1

01 . One can calcu-
late that this yields the triangular region in the plane with vertices (0, 13 ), (

1
2 ,

1
2 ), (1, 1).

Denote this region by P .
We wish to find the image of P under the subgradient of ψ01. Lemma 2.1 does

not account for this case; however, we may deduce the correct region by relating ψ01

to another function obtained by projecting ψ to the plane. Below we will consider
ψ02, applying Lemma 2.1 for the case n ∈ τ2.

Recall by the definition of ψij that we have

ψ01 = (ψ − n1) ◦ q01 ψ02 = (ψ − n2) ◦ q02
We now note

ψ01 ◦ q−1
01 (n) + ⟨m1, n⟩ = ψ02 ◦ q−1

02 (n) + ⟨m2, n⟩

ψ01 ◦ q−1
01 (n) = ψ02 ◦ q−1

02 (n) + ⟨m2 −m1, n⟩
And assigning n′ := q−1

01 (n) yields

ψ01(n
′) = ψ02 ◦ q−1

02 ◦ q01(n′) + ⟨m2 −m1, q01(n
′)⟩
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∇φ−→

Figure 3. The domain Ω and its image under the transport map ∇φ

One may check that on the triangle P , q−1
02 ◦ q01 is a linear transformation, given

by

q−1
02 ◦ q01 =

[
−1 0
−1 1

]
One may additionally check that

⟨m1 −m2, q01(n
′)⟩ =

[
1 0

]
n′

Now by using the chain rule we may find that

∂ψ01 =

[
−1 −1
0 1

]
∂ψ02 +

[
1
0

]
And the resulting image of P is the triangle with vertices ( 12 ,

1
2 ), (1, 0), and ( 43 , 0).

We also need a parallel result for the region bounded by n013, n1, n13 under ψ03

with n ∈ τ3. This follows similarly, yielding the triangle with vertices ( 12 ,
1
2 ), (0, 1),

and (0, 43 ). The transport regions are depicted visually in Figure 2.2. We include a
dashed line in the source domain to indicate that this line is not contained in the
chart centered at n0.

3. Models of conformal special Kähler metrics in the plane

The results obtained in [4] and [1] suggest that we might obtain asymptotic
behavior at the singular set by viewing our metric as a special Kähler metric and
working in isothermal coordinates for g. In this section we review some necessary
definitions and equip our domain with a special Kähler structure. Then we describe
the result which is of primary interest for our application.

3.1. Special Kähler structure.

Definition 3.1. A Kähler manifold (M, g, I, ω) is called special Kähler, if it is
equipped with a symplectic, torsion-free, flat connection ∇ such that

(3.2) (∇XI)Y = (∇Y I)X

for all tangent vectors X and Y .

Our domain Ω can be equipped with the structure of a special Kähler manifold,
which is the content of the following proposition.

Proposition 3.3. The coordinates

u = x− y + φx + φy, v = y − x+ φx + φy

are isothermal for the metric g. That is, g = e−ρ(du2 + dv2), for ρ = log(2φxx +
4φxy + 2φyy).
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Additionally, the complex structure, symplectic form, and connection

I = − ∂
∂u ⊗ dv + ∂

∂v ⊗ du, ω = g(I·, ·), ∇ = d

give Ω the structure of a special Kähler manifold with holomorphic coordinate z =
u+ iv.

Proof. The proof is a computation. First,

du2 + dv2 = ((1 + φxx + φxy)dx+ (−1 + φxy + φyy)dy)
2

+ ((−1 + φxx + φxy)dx+ (1 + φxy + φyy)dy)
2

= (2 + 2φ2
xx + 4φxxφxy + 2φ2

xy)dx
2

+ (−4 + 4φxxφxy + 4φxxφyy + 4φ2
xy + 4φxyφyy)dxdy

+ (2 + 2φ2
xy + 4φxyφyy + 2φ2

yy)dy
2

= (2φxx + 4φxy + 2φyy)(φxx dx
2 + φxy dxdy + φyy dy

2)

where in the last step we made use of φxxφyy − φ2
xy = 1. Hence,

g =
1

2φxx + 4φxy + 2φyy
(du2 + dv2).

The definition of ω guarantees that (Ω, g, I, ω) forms a Kähler manifold. There-
fore it will suffice to check that ∇ is a symplectic, torsion-free, flat connection
satisfying (3.2). First, that ∇ is torsion-free and flat is immediate from the defini-
tion. To check that ∇ is symplectic, we calculate ω in (x, y) coordinates:

ω = g(I·, ·)

=
1

2φxx + 4φxy + 2φyy
(−dvdu+ dudv)

=
du ∧ dv

φxx + 2φxy + φyy

=
(ux dx+ uy dy) ∧ (vx dx+ vy dy)

φxx + 2φxy + φyy

=
(uxvy − uyvx)dx ∧ dy
φxx + 2φxy + φyy

= 2 dx ∧ dy.

It follows then that ω is parallel with respect to ∇. Finally, to check (3.2), we
express it in (x, y) coordinates. To do so, suppose

I = I1 ∂
∂x ⊗ dx+ I2 ∂

∂x ⊗ dy + I3 ∂
∂y ⊗ dx+ I4 ∂

∂y ⊗ dy.

Then

∇I = I1x
∂
∂x ⊗ dx⊗ dx+ I1y

∂
∂x ⊗ dy ⊗ dx

+ I2x
∂
∂x ⊗ dx⊗ dy + I2y

∂
∂x ⊗ dy ⊗ dy

+ I3x
∂
∂y ⊗ dx⊗ dx+ I3y

∂
∂y ⊗ dy ⊗ dx

+ I4x
∂
∂y ⊗ dx⊗ dy + I4y

∂
∂y ⊗ dy ⊗ dy,

so the condition in (3.2) becomes

I1y = I2x, I
3
y = I4x.
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Then to verify this we express I in (x, y) coordinates:

I = − ∂
∂u ⊗ dv + ∂

∂v ⊗ du

= − 1

uxvy − uyvx
(vy

∂
∂x − vx

∂
∂y )⊗ (vx dx+ vy dy)

+
1

uxvy − uyvx
(−uy ∂

∂x + ux
∂
∂y )⊗ (ux dx+ uy dy)

=
1

uxvy − uyvx
[(−vxvy − uxuy)(

∂
∂x ⊗ dx) + (−v2y − u2y)(

∂
∂x ⊗ dy)

+ (v2x + u2x)(
∂
∂y ⊗ dx) + (vxvy + uxuy)(

∂
∂y ⊗ dy)]

= −φxy
∂
∂x ⊗ dx+−φyy

∂
∂x ⊗ dy + φxx

∂
∂y ⊗ dx+ φxy

∂
∂y ⊗ dy,

where we have again used the fact that φxxφyy − φ2
xy = 1. Since ∂

∂y (−φxy) =
∂
∂x (−φyy) and

∂
∂yφxx = ∂

∂xφxy, we find (3.2) is satisfied. Thus, ∇ induces a special

Kähler structure on Ω. ■

We are now ready to describe how this additional structure on the domain Ω
yields asymptotics for our metric g.

3.2. Asymptotics for the conformal factor. Special Kähler metrics on the
punctured disk B∗

1 ⊆ C of the form g = e−ρ|dz|2 were studied in [4] and [1] by
demonstrating that every such metric has an associated metric g̃ = e2ρ|dz|2 of
non-positive Gaussian curvature. In [4], the author shows the curvature of g̃ is

K̃ = −16|Ξ0|2, where Ξ = Ξ0 dz
3 is the holomorphic cubic form of the special

Kähler metric g.
Assuming Ξ does not have an essential singularity yields a bound

−C1|z|l ≤ K̃ ≤ −C2|z|l,

where C1, C2 are positive constants and l ∈ R. Then, by invoking a result of [7]
for the problem of prescribed non-positive Gaussian curvature, the author obtains
explicit models for the conformal factor ρ at the origin, culminating in the following
result.

Theorem 3.4. [4, Theorem 1.1]
Let g = e−ρ|dz|2 be a special Kähler metric on B∗

1 . Assume that Ξ is holomorphic
on the punctured disc and the order of Ξ at the origin is n > −∞. Then

(3.5) e−ρ = −|z|n+1 log |z|eO(1) or e−ρ = |z|β(C + o(1))

as z → 0, where C > 0 and β < n+ 1.
Moreover, for any n ∈ Z and β ∈ R such that β < n+1 there is a special Kähler

metric satisfying (3.5).

In later sections we shall refer to the models of the form −|z|n+1 log|z|eO(1) as
logarithmic and those of the form |z|β(C + o(1)) as conic. Additionally, we shall
refer to logarithmic models of exponent n + 1 > 0 and conic models of exponent
β > 0 as vanishing, while referring to logarithmic models of exponent n + 1 ≤ 0
and conic models of exponent β < 0 as diverging.

We now describe how this result applies to our metric g. Recall that g = e−ρ|dz|2,
where ρ = log(2φxx + 4φxy + 2φyy). Supposing that ρ is C2 on a disc around the



8 NEIL PATRAM AND BEN SCOTT

origin and Ξ0 is nonessential, we find

1

2φxx + 4φxy + 2φyy
=

{
−|z|n+1 log|z|eO(1)

|z|β(C + o(1))

and therefore

φxx + 2φxy + φyy =

{
− eO(1)

|z|n+1 log|z|
|z|−β(C + o(1)).

What we will see is that only a single model is compatible with the boundedness
of D2φ up to the origin, that being the conic singularity with exponent β = 0.
In the appendix we describe a heuristic for disregarding this case based on the
impossibility of complete special Kähler metric on the sphere.

3.3. Consequences for regularity of the transport map. We are now ready
to prove Theorem 1.1.

Proof. First, if we have a vanishing model for e−ρ, then φxx +2φxy +φyy diverges
at the origin, which implies that at least one of φxx, φxy, or φyy diverges there as
well.

Second, if we have a diverging model for e−ρ, then φxx + 2φxy + φyy vanishes
at the origin. Suppose toward a contradiction that |D2φ| ≤ M and we have a
diverging model for e−ρ, i.e.

φxx + 2φxy + φyy = o(1).

Then

φ2
xy =

φ2
xx + 2φxxφyy + φ2

yy

4
+ o(1)(φxx + φyy) + o(1).

Since |φxx + φyy| ≤ 2M, this is to say

φ2
xy =

φ2
xx + 2φxxφyy + φ2

yy

4
+ o(1).

Therefore we find

φxxφyy − φ2
xy = − 1

4φ
2
xx + 1

2φxxφyy − 1
4φ

2
yy + o(1)

= − 1
4 (φxx − φyy)

2 + o(1),

which violates the Monge-Ampère equation φxxφyy−φ2
xy = 1 in some neighborhood

of the origin.
We conclude that |D2φ| is unbounded in every case but conic with β = 0. ■

4. Numerical Investigations

To get an idea of the model for our metric, we numerically simulate the optimal
transport problem, and then compute the related quantities.

To effectively approximate our transport map, we discretize the Monge problem
associated to the planar optimal transport problem. Because our measures on both
domains are Lebesgue measure, we instead solve the assignment problem using the
SciPy implementation of the Jonker-Volgenant algorithm. This was done by first
fixing a grid of points on our source domain. Then we fix the same number points
on the target domain randomly. Running the assignment algorithm generates a
pairing of points in the source to points in the target.
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Figure 4. A graph of eρ

in u, v coordinates.
Figure 5. Graph of eρ

in polar u, v coords.

The process just described constitutes one trial. Keeping the source grid fixed
and repeating these trials for many random grids yields a list of values for the trans-
port map at each grid point. By averaging these values we improve the regularity
of the components; in particular we obtain a transport map whose components are
better suited for taking numerical derivatives than if we had fixed a grid in the
target domain.

We then graph eρ in u, v coordinates, which we notice is roughly radial, as
depicted in Figure A. This motivates writing eρ in polar coordinates around the
singular point, i.e. by setting r =

√
u2 + v2, θ = arctan( vu ). Ignoring the parameter

θ, we may plot our data in a scatterplot of eρ against r, and begin to compare
this to the radial estimates provided by [1]. We notice that the only logarithmic
model which approximates our data well is the case n = −1. Conical models which
approximate the data are roughly those satisfying 0 < β < 0.2.

Appendix A. Discussion of regularity for ρ and Ξ

It is not clear that our choice of coordinates yields a conformal factor that is
C2 in a neighborhood of the origin, nor is it clear that the holomorphic cubic form
associated to g does not have an essential singularity at the origin. Here we will
discuss some outlooks on the resolution of these two problems.

Our metric g is grossly discontinuous in (x, y) coordinates across the ray {(t, t) |
t > 0}. This is a result of the non-convexity of the target domain, which results
in the transport map sending opposite sides of the ray to points which are far
apart. Our choice of u and v begin to remediate this concern. Namely, the factor
ρ is symmetric about the line y = x, and is continuous barring divergence or
oscillation (neither of which are witnessed in numerical simulations). We continue
to investigate if ρ is differentiable in u, v coordinates.

If Ξ0 has an essential singularity at the origin, then the image of any disc around
the origin is dense in C. Knowing that K̃ = −16|Ξ0|2, we can obtain an explicit
formula for this modulus as follows.
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The Gaussian curvature of a metric g = E dx2 + F (dxdy + dydx) + G dy2 is
given by the formula

K =

∣∣∣∣∣∣
− 1

2Eyy + Fxy − 1
2Gxx

1
2Ex Fx − 1

2Ey

Fy − 1
2Gx E F

1
2Gy F G

∣∣∣∣∣∣−
∣∣∣∣∣∣

0 1
2Ey

1
2Gx

1
2Ey E F
1
2Gx F G

∣∣∣∣∣∣
(EG− F 2)2

.

For the metric g = e−ρ(du2+dv2) = φxx dx
2+φxy(dxdy+dydx)+φyy dy

2, this is

K =

∣∣∣∣∣∣
0 1

2φxxx
1
2φxxy

1
2φxyy φxx φxy
1
2φyyy φxy φyy

∣∣∣∣∣∣−
∣∣∣∣∣∣

0 1
2φxxy

1
2φxyy

1
2φxxy φxx φxy
1
2φxyy φxy φyy

∣∣∣∣∣∣
K = −φxx

4
(φxxyφyyy + φ2

xyy)−
φyy

4
(φxyyφxxx + φ2

xxy)

+
φxy

4
(φxxxφyyy + 3φxxyφxyy)

Then, by differentiating the Monge-Ampère equation with respect to x and y,
we find

φxxxφyy + φxxφxyy − 2φxyφxxy = 0, φxxφyyy + φxxyφyy − 2φxyφxyy = 0.

Which implies

K =
φxy

4
(φxxxφyyy − φxxyφxyy).

Then by

K =
eρ

2
∆ρ, K̃ = −e−2ρ∆ρ,
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we find

|Ξ0|2 = − 1

16
K̃ =

1

8
e−3ρK =

φxy(φxxxφyyy − φxxyφxyy)

256(φxx + 2φxy + φyy)3
.

If we can bound this quantity away from any value, then we can conclude Ξ0 does
not have an essential singularity at the origin.

Appendix B. The case β = 0

As proved by Lu in [6], the only complete special Kähler structures are flat.
This gives a strong indication that the case of β = 0 mentioned previously should
be impossible. Indeed, supposing that e−ρ has a conic model at the origin with
β = 0, we would find that the metric g is continuous in (u, v) coordinates. Then the
(u, v) coordinate change is continuous: u and v are symmetric about x = y, and we
have uniform continuity of φx and φy from standard regularity results in optimal
transport. Since this coordinate change is continuous, we find that g is indeed a
metric on all of Ω.

Since φ is symmetric on the surface of the simplex, we find that g is continuous
over every singularity. In particular, we find that we are able to extend our special
Kähler structure to the entire surface of the simplex, which has the topology of the
2-sphere. However, a complete special Kähler metric is flat, which implies that we
have constructed a flat metric on the entire 2-sphere, a contradiction. Thus, the
case of β = 0 is seen to be impossible.
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