EKEDAHL-OORT TYPES OF ARTIN-SCHREIER CURVES

NIANCHEN LIU (MENTOR: DR. PATRICK DANIELS)

ABSTRACT. Let k be an algebraically closed field of characteristic p > 0. We compute three different representations of the Ekedahl–Oort type (i.e. the isomorphism type of the pkernel group scheme J[p]) for Artin Schreier curves (i.e. k-curves defined by $y^p - y = f(x)$ for $f(x) \in k(x)$) when $f(x) \in k[x]$. We start by computing the Hasse-Witt triple (Q, Φ, Ψ) ; we proceed to find the corresponding polarized Dieudonne Module (M, F, V, b); and we conclude by providing an algorithm for computing the final type when $f(x) = x^m$ for nonnegative integer m, which is canonical in the sense that it doesn't depend on a chosen basis. An implementation of the algorithms is available in Python.

Contents

1. Introduction	2
1.1. The Ekedahl–Oort Type	2
1.2. Key Results	3
1.3. Notation	3
2. Hasse-Witt Triples	3
2.1. Hasse-Witt Triple: Q	4
2.2. Hasse-Witt Triple: Φ	5
2.3. Hasse-Witt Triple: Ψ	6
2.4. Special Case: $f(x) = x^m$	7
3. Polarized Dieudonne Module	10
3.1. Polarized Dieudonne Module: <i>b</i>	10
3.2. Polarized Dieudonne Module: F	12
3.3. Polarized Dieudonne Module: V	12
4. Final Type	14
4.1. The Construction of the Final Type	14
4.2. Computing Final Type from Polarized Dieudonne Modules	14
5. Directions for Future Work	16
Appendix: Python Implementation	17
A. Overview	17
B. The class HasseWittTriple	17
C. The class DieudonneModule	17
D. The class Final Type	18
Acknowledgments	18
References	18

1. INTRODUCTION

Throughout the project, we will assume that the base field $k = \overline{k}$, char $(k) = p \neq 0$, and let $\sigma : k \to k, a \mapsto a^p$ be the Frobenius automorphism.

1.1. The Ekedahl–Oort Type. Let C/k be a smooth projective curve. Associated to C is its Jacobian variety J(C). Since the Jacobian of a smooth curve C/k is a group scheme, it is natural to investigate the following question:

Question 1.1. Which group schemes arise as the *p*-torsion (J(C)[p]) for a curve?

By Dieudonne theory, J[p] is equivalent to a triple (M, F, V) where

(1) M is a finite dimensional k-vector space.

(2) $F: M \to M$ is σ -linear (i.e. $F(ax) = \sigma(a)F(x)$)

(3) $V: M \to M$ is σ^{-1} -linear (i.e. $F(ax) = \sigma^{-1}(a)F(x)$)

(4) $\ker F = \operatorname{Im}V, \operatorname{Im}F = \ker V$

(5) b: alternating bilinear form induced by the polarization map $J[p] \to J[p]^{\vee}$,

The quadruple (M, F, V, b) is called a *polarized Dieudonne module*. The isomorphism class of polarized Dieudonne modules is defined as the *Ekedahl–Oort type* of a curve. In particular, the polarized Dieudonne module can be encoded and recovered with a numerical invariant called the *final type*, whose advantage is that it is canonical in the sense that it doesn't involve a choice for basis, and its construction will be discussed in Section 4. Now question 1.1 becomes:

Question 1.2. Which Ekedahl-Oort types arise from Jacobian of curves?

The Ekedahk-Oort type can be equivalently characterized by the Hasse-Witt triple (Q, Φ, Ψ) [Moo22, Theorem 2.8] where

- (1) Q is a finite dimensional k-vector space.
- (2) $\Phi: Q \to Q$ is σ -linear

(3) $\Psi : \ker \Phi \to \operatorname{Im} \Phi^{\perp} = \{\lambda \in Q^{\vee} | \lambda(q) = 0, q \in \operatorname{Im}(\Phi)\}$ is σ -linear bijection.

When C/k is a smooth proper curve, $Q = H^1(C, \mathcal{O}_C)$ and Φ is the frobenius on $H^1(C, \mathcal{O}_C)$ [Oda69, Section 5].

There is currently no known algorithm to compute the Ekedahl-Oort type for general curves. Known cases include: Complete intersection curve with $p \nmid \deg C$ ([Moo22]), Hyperelliptic curves in odd characteristic ([DH17]), and Cyclic covers of P^1 whose Galois group has order prime to p ([LMS23]). In this project, we will compute the Ekedahl-Oort type of a class of Artin-Schreier curves, which are defined in Definition 1.1.

Definition 1.1. (Artin-Schreier curves) An Artin-Schreier curve C/k is defined equivalently as

- (1) A $\mathbb{Z}/p\mathbb{Z}$ Galois cover of \mathbb{P}^1 ;
- (2) The normalization of \mathbb{P}^1 inside an extension of function fields $k(x) \hookrightarrow K$, which is Galois with $Gal(K/k(x)) = \mathbb{Z}/p\mathbb{Z}$;
- (3) A smooth projective curve whose function field is of the form $K \cong k(x)[y]/(y^p y f(x))$ for some $f(x) \in k(x)$.

We will focus on the case when $f(x) \in k[x]$ in this project.

1.2. Key Results. Our main goal is to compute all three representations of Ekedahl-Oort type of Artin Schreier curves. In Section 2, we compute the Hasse-Witt Triple for general $f(x) \in k[x]$. Here we illustrate the main result of Section 2 in the special case when $f(x) = x^m$, where m is a nonnegative integer. The general case for $f(x) \in k[x]$ is more notationally involved and omitted here.

Theorem. (Hasse-Witt Triple) Let C/k is an Artin-Schreier curve defined by $y^p - y = f(x)$, and $f(x) = x^m$ for nonnegative integer m. Define

$$Q = k \langle x^i y^j \mid 0 \le j \le p - 1, -\frac{jm}{p} < i < 0 \rangle;$$

Let $x^i y^j$ and $x^{i'} y^{j'}$ be valid elements in the basis of Q given above. Define Φ on a basis and extend linearly: Let the coefficient of $x^{i'} y^{j'}$ in $\Phi(x^i y^j)$ be

$$\begin{cases} \binom{j}{j'} & \text{if } mj - mj' + ip = i' \\ 0 & \text{otherwise;} \end{cases}$$

Let $x^i y^j$ and $y^r x^b dx$ be valid elements in this basis of Q and $Q^{\vee} = H^0(C, \Omega_C^1)$ (with a basis given in 2.3) respectively. Then ker Φ is only generated by elements given in the basis of Qabove. Define Ψ on a basis and extend linearly: If $x^i y^j \in \ker \Phi$, the coefficient of $y^r x^b dx$ in $\Psi(x^i y^j)$ is

$$-m\binom{j}{r+1}(r+1)\delta_1 + \binom{j}{r}(mj-mr+ip)\delta_2,$$

where

$$\delta_1 \coloneqq \begin{cases} 1 & \text{if } mj - m(r+1) + ip \ge 0 \text{ and } mj - m(r+1) + ip + m - 1 = b \\ 0 & \text{otherwise} \end{cases}$$

$$\delta_2 := \begin{cases} 1 & \text{if } mj - mr + ip - 1 = b \ge 0\\ 0 & \text{otherwise.} \end{cases}$$

Then (Q, Φ, Ψ) is a Hasse-Witt Triple associated with the curve C.

In Section 3, we compute the polarized Dieudonne module (M, F, V, b), where M follows immediately from our results in Section 2, b is computed for general $f \in k[x]$, and F, Vare computed only for $f \in x^m$. The main results are omitted here for the sake of brevity. Finally, Section 4 provides an algorithm for computing the final type in the special case when $f(x) = x^m$. The Appendix gives a description for the main functions in the python implementation of our results in the special case when $f(x) = x^m$.

1.3. Notation. C/k is an Artin-Schreier curve defined by $y^p - y = f(x)$, and $f \in k[x]$ with $m := \deg f$. By [Far09, Prop 2.1.1], we can assume that f is monic with $p \nmid m$. Write

$$f(x) = x^m + a_{m-1}x^{m-1} + \dots + a_0.$$

2. Hasse-Witt Triples

By [Moo22], the Hasse-Witt triple associated to C is (Q, Φ, Ψ) , where $Q = H^1(C, O_C)$ is the first cohomology of C, Φ is the Frobenius endomorphism on $H^1(C, O_C)$, and Ψ is a map $\Psi : \ker(\Phi) \to \operatorname{Im}(\Phi)^{\perp}$, which we will describe in detail in 2.3.1. 2.1. Hasse-Witt Triple: Q. We begin with a technical lemma which will be useful for computing $Q \cong H^1(C, O_C)$:

Lemma 2.1. Given $f(x) \in k[x]$ with $m = \deg f$, set $K \coloneqq k(x)[y]/(y^p - y - f(x))$.

- (1) The integral closure of $\mathcal{O}_{\mathbb{P}^1}(\mathbb{P}^1 \setminus \infty) = k[x]$ in K is $R_1 := k[x, y]/(y^p y f(x))$.
- (2) The integral closure of $\mathcal{O}_{\mathbb{P}^1}(\mathbb{P}^1\backslash 0) = k[\frac{1}{r}]$ in K is $R_2 := k\langle x^i y^j \mid -ip jm \geq 0 \rangle$.
- (3) The integral closure of $\mathcal{O}_{\mathbb{P}^1}(\mathbb{P}^1 \setminus \{0, \infty\}) = k[x, \frac{1}{x}]$ in K is $R_3 \coloneqq k[x, \frac{1}{x}, y]/(y^p y f(x))$.
- *Proof.* (1) We first claim that R_1 is integrally closed. Indeed, the Jacobian matrix of $\operatorname{Speck}[x, y]/(y^p y f(x))$ is

$$Jac = \begin{pmatrix} -f'(x) & -1 \end{pmatrix},$$

which has corank 1, and this is equal to the pure dimension of $\operatorname{Spec} R_1 = \operatorname{Spec} k[x, y]/(y^p - y - f(x))$ at any closed point. By the Jacobian criterion, $\operatorname{Spec} R_1$ is smooth, hence R_1 is normal. Since there are no intermediate fields between k(x) and K, the fraction field of $k[x, y]/(y^p - y - f(x))$ is K, and therefore it is integrally closed in K.

We then show it is the integral closure of k[x] in K. If t is in the integral closure of k[x] in K, then t is integral over k[x], so it is integral over R_1 and therefore it must be in R_1 . On the other hand, R is contained in the integral closure of k[x] in K, since x and y are both integral over k[x], and they generate R as a k-algebra.

(2) The integral closure of $R \coloneqq k[\frac{1}{x}]$ in K is equal to

$$\bigcap_{R \subseteq O \subseteq K} O = \bigcap_{\text{places of } K} O = \bigcap_{\text{closed points } q \text{ of } C} O_q,$$

where O is the set of all valuation rings in K that contain R, and $O_q = \{g \in K \mid v_q(g) \ge 0\}$. Therefore, it suffices to find the set of elements $g \in K$ that have $v_q(g) \ge 0$ at all closed points $q \in C$.

Suppose the cover $\pi: C \to \mathbb{P}^1$ sends \tilde{q} to q. By the valuation formula,

$$v_{\tilde{q}}(g) = e(\tilde{q} \mid q)v_q(g),$$

where $e(\tilde{q}, q)$ is the ramification index.

- If $q = \tilde{\infty}, \pi$ is totally ramified at \tilde{q} ; by [Sti09, Prop.3.7.8], $e(\tilde{q} \mid q) = p$. Since $v_{\infty}(x) = -1, v_{\tilde{\infty}}(x) = -p$. Also, $v_{\tilde{\infty}}(f(x)) = v_{\tilde{\infty}}(y^p y)$, which gives $v_{\tilde{\infty}}(y) = -m$ (where $m = \deg f$).
- If $q \neq \tilde{\infty}$ is a closed point of C, π is unramified at \tilde{q} . Again by [Sti09, Prop.3.7.8], thus $e(\tilde{q} \mid q) = 1$ and $v_{\tilde{q}}(g) = v_q(g)$. But then $v_q(x) \geq 0$ and $v_q(y) \geq 0$, so $v_{\tilde{q}}(x^i y^j) = v_q(x^i y^j) \geq 0$ all the time.

Therefore,

$$\bigcap_{\text{closed points } q \text{ of } C} O_q = O_{\tilde{\infty}} = k \langle x^i y^j \mid -ip - jm \ge 0 \rangle$$

(3) We first claim that $R_3 = k[x, \frac{1}{x}, y]/(y^p - y - f(x))$ is integrally closed: Observe that $R_3 = k[x, \frac{1}{x}, y]/(y^p - y - f(x)) \cong k[x, y, z]/(y^p - y - f(x), xz - 1)$. Therefore the Jacobian of Spec R_3 is given by

$$Jac = \begin{pmatrix} -f'(x) & -1 & 0\\ 1 & 0 & 1 \end{pmatrix},$$

which has corank 2, equivalent to the pure dimension of $\operatorname{Speck}[x, y, z]/(y^p - y - f(x), xz - 1)$. By an argument similar to (1) (i.e. replacing k[x] with $k[x, \frac{1}{x}]$ everywhere), $k[x, \frac{1}{x}, y]/(y^p - y - f(x))$ is the integral closure of $k[x, \frac{1}{x}]$ in K as well.

5

Now we proceed to find a basis for Q, which is equal to $H^1(C, \mathcal{O}_C)$ as is discussed in 1.1. **Theorem 2.2.**

$$H^1(C, \mathcal{O}_C) = k \langle x^i y^j \mid 0 \le j \le p - 1, -\frac{jm}{p} < i < 0 \rangle.$$

Proof. Let $\pi : C \to \mathbb{P}^1$ be the cover map in Definition 1.1. Consider the natural affine cover of the projective line, $\{\mathbb{P}^1_k \setminus 0, \mathbb{P}^1_k \setminus \infty\}$: We can obtain an affine open cover of C by pulling back via π , i.e. by setting $U_0 \coloneqq \pi^{-1}(\mathbb{P}^1_k \setminus 0)$ and $U_\infty \coloneqq \pi^{-1}(\mathbb{P}^1_k \setminus \infty)$. The Cech complex is given by:

$$0 \to \mathcal{O}_C(U_0) \times \mathcal{O}_C(U_\infty) \xrightarrow{\delta^1} \mathcal{O}_C(U_0 \cap U_\infty) \to 0$$

Since C is the normalization of \mathbb{P}^1 in k, $\mathcal{O}_C(\pi^{-1}(U))$ is the integral closure of $\mathcal{O}_{\mathbb{P}^1}(U)$ in $K \coloneqq k(x)[y]/(y^p - y - f(x))$. By Lemma 2.1,

$$\mathcal{O}_C(U_0) = k[x, y]/(y^p - y - f(x))$$
$$\mathcal{O}_C(U_\infty) = k\langle x^i y^j \mid -ip - jm \ge 0\rangle$$
$$\mathcal{O}_C(U_0 \cap U_\infty) = k[x, \frac{1}{x}, y]/(y^p - y - f(x))$$
$$= k\langle x^i y^j \mid i \in \mathbb{Z}, 0 \le j \le p - 1\rangle$$

The only generators that are not in the image of δ^1 are

$$\{x^i y^j \mid 0 \le j \le p - 1, -\frac{jm}{p} < i < 0\},\$$

which is a basis for $H^1(C, \mathcal{O}_C)$.

2.2. Hasse-Witt Triple: Φ . As the second step to compute the Hasse-Witt Triple, we give the formula for Φ . Recall from 1.1 that Φ is the induced map of the frobenius on $H^1(C, \mathcal{O}_C)$.

Theorem 2.3. Suppose $x^i y^j$ and $x^{i'} y^{j'}$ are valid basis elements as in Theorem 2.2. For $f(x) \in k[x]$, the coefficient of $x^{i'} y^{j'}$ in $\Phi(x^i y^j)$ is

$$\begin{cases} \binom{j}{j'} \sum_{t_0,...t_m} \frac{(j-j')!}{t_m!t_{m-1}!...t_0!} a_{m-1}^{t_{m-1}} ... a_0^{t_0} & where \ (t_0,...,t_m) \ goes \ over \ all \ m+1 \ tuples \ in \ \mathbb{Z}_{\geq 0}^{m+1} \ that \ satisfy \ (\star) \\ 0 & if \ no \ such \ (t_0,...,t_m) \ satisfying \ (\star) \ exists \end{cases}$$

where

$$(\star): \begin{cases} t_m + \dots + t_0 = j - j' \\ m t_m + \dots + t_1 = i' - ip \end{cases}$$

Proof. By the equivalence relation,

$$(x^i y^j)^p = x^{ip} (y + f(x))^j$$
$$= x^{ip} \sum_{n=0}^j \binom{j}{n} y^n (f(x))^{j-n}$$

It suffices to find the coefficient of $x^{i'-ip}$ in $\binom{j}{j'}(f(x))^{j-j'}$, which is given by the multinomial coefficient given in the theorem statement.

Remark 2.4. A simpler formula for Φ in the special case when $f(x) = x^m$ will be given in 2.4.

2.3. Hasse-Witt Triple: Ψ . Recall that

$$\Psi: \ker \Phi \to \operatorname{Im} \Phi^{\perp} = \{\lambda \in Q^{\vee} | \lambda(q) = 0, q \in \operatorname{Im}(\Phi)\}.$$

We will begin this section with an explicit description of Ψ with our open cover, and then proceed to its formula.

2.3.1. A description of Ψ . We provide the following description of Ψ given in [LMS23, Section 4.0.1]: Let $\alpha \in \ker \Phi \subseteq H^1(C, O_C)$. Since $\alpha^p = 0 \in H^1(C, \mathcal{O}_C)$, there exists some $\alpha_0 \in \mathcal{O}_C(U_0)$ and $\alpha_\infty \in \mathcal{O}_C(U_\infty)$ such that

$$\alpha^p = \alpha_0 \mid_{U_0 \cap U_\infty} - \alpha_\infty \mid_{U_0 \cap U_\infty} .$$

Taking differentials on both sides, $d\alpha_0 = d\alpha_\infty$ on $U_0 \cap U_\infty$, so they glue to some $\omega_\alpha \in Q^{\vee} \cong H^0(C, \Omega^1_C)$. We have $\Psi(\alpha) = \omega_\alpha$.

Remark 2.5. This description relies heavily on the fact of having only two opens in the cover.

2.3.2. Computing Ψ . Since ker Φ is not necessarily generated only by the basis elements of Q we've computed in Theorem 2.2, we need to find a way to work around that. For $v \in \ker \Phi$, write $v = \sum a_{i,j} x^i y^j$. Then

$$\Phi(v) = \sum a_{i,j}^p \Phi(x^i y^j).$$

By 2.3.1, it suffices to find the terms in $\Phi(v)$ with nonnegative powers for x and taking its differential. Since the differential operator is linear, it suffices to compute $d\Phi(x^iy^j)$ for each x^iy^j and extract the terms that satisfy the condition. We can thus define $\psi: Q \to Q^{\vee}$ such that

$$\Psi(v) = \sum a_{i,j}^p \psi(x^i y^j),$$

In Theorem 2.7, we will characterize ψ on a basis as a linear combination of a basis of $H^0(C, \Omega^1_C)$ given by

$$\{y^{r}x^{b}dx: 0 \le r \le p-2, 0 \le b \le m-2, rm+bp \le pm-m-p-1\}$$

in [Far09, Prop. 2.2.4].

Remark 2.6. ψ and Ψ are distinct maps. In particular, the definition of ψ on this basis of Q doesn't guarantee that Ψ is necessarily defined for any of these basis elements.

Theorem 2.7. Suppose $x^i y^j$ and $y^r x^b dx$ are valid basis elements of Q and $H^0(C, \Omega_C^1)$ respectively. For $f(x) \in k[x]$, the coefficient of $y^r x^b dx$ in $\psi(x^i y^j)$ is

$$\begin{cases} \binom{j}{r}(j-r) \sum_{0 \le s \le m-1} a_{s+1} \sum_{\substack{t_0^s, \dots, t_m^s \\ t_m^s \mid t_{m-1}^s \mid \dots, t_0^{s_1} \mid u_{m-1}^s \mid \dots, t_0^{s_1} \mid u_{m-1}^{t_m^s} \mid u_{m-1}^{t_m^s} \dots, u_0^{t_0^s} + \\ \binom{j}{r} ip \sum_{l_0, \dots, l_m} \frac{(j-r)!}{l_m! l_{m-1}! \dots, l_0!} a_{m-1}^{l_{m-1}} \dots a_0^{l_0} - (r+1) \sum_{t \ge 0} B_t (b-t+1) a_{b-t+1} \\ where \ (s, t_0^s, \dots, t_m^s) \ satisfies \ (\star), \ (l_0, \dots, l_m) \ satisfies \ (\star) \end{cases}$$

0 if no such tuple satisfying $(\star), (\star)$ exists

where

$$B_{t} = \begin{cases} \binom{j}{r+1} \sum_{t_{0},\dots,t_{m}} \frac{(j-r-1)!}{t_{m}!t_{m-1}!\dots:t_{0}!} a_{m-1}^{t_{m-1}}\dots a_{0}^{t_{0}} \text{ with } (t_{0},\dots,t_{m}) \text{ that satisfy } (\star) \\ 0 \text{ if } t < 0 \text{ or } t > mj - mn + ip \end{cases}$$

$$(\star) : \begin{cases} t_m + \dots + t_0 = j - r - 1\\ mt_m + \dots + t_1 = t - ip \end{cases}$$
$$(\star) : \begin{cases} \sum_{i=0}^m t_i^s = j - r - 1\\ s + mt_m^s + \dots + t_1^s = b - ip \end{cases}$$
$$(\star) : \begin{cases} \sum_{i=0}^m l_i = j - r\\ ml_m + \dots + l_1 = b - ip + 1 \end{cases}$$

Proof. Recall that

$$(x^{i}y^{j})^{p} = x^{ip}(y+f(x))^{j}$$
$$= x^{ip}\sum_{n=0}^{j} {j \choose n} y^{n} (f(x))^{j-n}$$

If $y^r x^b dx$ is a valid basis element, the only place it could occur is when n = r, r + 1. So it suffices to find the coefficient of x^b in

$$\binom{j}{r}(j-r)(f(x))^{j-r-1}f'(x) + \binom{j}{r}(f(x))^{j-r}ipx^{ip-1} - (r+1)\sum_{t\geq 0} B_t f'(x)x^t,$$

where B_t is the coefficient of x^t in $\binom{j}{r+1}(f(x))^{j-r-1}x^{ip}$. This is given by the sum of multinomial coefficients in the theorem statement.

Remark 2.8. A simpler formula for Ψ in the special case when $f(x) = x^m$ will be given in 2.4.

2.4. Special Case: $f(x) = x^m$. When the Artin-Schreier curve is defined by a general polynomial $f(x) \in k[x]$, the formulae for Φ and Ψ are rather complicated. We will conclude this section with simplified formulae and their properties for the special case when $f(x) = x^m$ for positive integer m. In particular, we can explicitly find the kernel of Φ , or the domain of Ψ , in this case.

Proposition 2.9 gives a simple description of Φ in the special case.

Proposition 2.9. Suppose $x^i y^j$ and $x^{i'} y^{j'}$ are valid basis elements as in Theorem 2.2. If $f(x) = x^m$ for nonnegative integer m, the coefficient of $x^{i'} y^{j'}$ in $\Phi(x^i y^j)$ is

$$\begin{cases} \binom{j}{j'} & if \ mj - mj' + ip = i' \\ 0 & otherwise \end{cases}$$

Proof. Note that

$$(x^{i}y^{j})^{p} = x^{ip}(y+x^{m})^{j} = \sum_{n=0}^{j} {j \choose n} y^{n} x^{mj-mn+ip},$$

It suffices to find the coefficient of $x^{i'}y^{j'}$. But the j''s power of y can only occur when n = j'. Therefore if mj - mj' + ip = i', the coefficient is $\binom{j}{j'}$; it is 0 otherwise.

Lemma 2.10 and 2.11 will establish two properties of Φ :

Lemma 2.10. Suppose $x^i y^j$, $x^{i_1} y^{j_1}$, $x^{i_2} y^{j_2}$ are valid basis elements as in Theorem 2.2. If the coefficients for $x^{i_1} y^{j_1}$, $x^{i_2} y^{j_2}$ are both nonzero in $\Phi(x^i y^j)$, then $i_1 = i_2$, $j_1 = j_2$.

Proof. In this case,

$$mj - mj_1 + ip = i_1$$
$$mj - mj_2 + ip = i_2$$

We have $m(j_1 - j_2) = i_2 - i_1 < \max(\frac{mj_2}{p}, \frac{mj_1}{p})$, thus

$$j_1 - j_2 < \max\left(\frac{j_2}{p}, \frac{j_1}{p}\right) \le \frac{p-1}{p} \le 1,$$

so $j_1 = j_2$, $i_1 = i_2$.

Lemma 2.11. Suppose $x^i y^j$, $x^{i'} y^{j'}$, $x^{i_1} y^{j_1}$ are valid basis elements as in Theorem 2.2. If the coefficient for $x^{i_1} y^{j_1}$ is nonzero in both $\Phi(x^i y^j)$ and $\Phi(x^{i'} y^{j'})$, then i = i', j = j'.

Proof. We have

$$mj_2 - mj' + i_2p = i'$$
$$mj_1 - mj' + i_1p = i'$$

So we have $m(j_2 - j_1) = (i_1 - i_2)p$. As $p \nmid m, p \mid j_2 - j_1 \leq p - 1$, which means $j_1 = j_2$, $i_1 = i_2$.

In particular, we can deduce an explicit description of ker Φ from Proposition 2.9 and Lemma 2.11.

Corollary 2.12. When $f(x) = x^m$ for positive integer m,

$$\ker \Phi = \langle x^i y^j | mj - mj' + ip \ge 0 \text{ or } \le -\frac{j'm}{p} \text{ for all } 0 \le j' \le j \rangle$$

Corollary 2.12 allows us to describe Ψ on the basis of Q given in Theorem 2.2. In this case, ψ as defined in 2.3 agrees with Ψ on the basis given in Corollary 2.12. We conclude this subsection with the formula for Ψ in the special case:

Proposition 2.13. Suppose $x^i y^j$ and $y^r x^b dx$ are valid basis elements of Q and $H^0(C, \Omega_C^1)$ respectively, and $x^i y^j \in \ker \Phi$ as in Corollary 2.12. If $f(x) = x^m$ for nonnegative integer m, the coefficient of $y^r x^b dx$ in $\Psi(x^i y^j)$ is

$$-m\binom{j}{r+1}(r+1)\delta_1 + \binom{j}{r}(mj-mr+ip)\delta_2$$

where

$$\delta_1 \coloneqq \begin{cases} 1 & if \ mj - m(r+1) + ip \ge 0 \ and \ mj - m(r+1) + ip + m - 1 = b \\ 0 & otherwise \end{cases}$$

$$\delta_2 \coloneqq \begin{cases} 1 & if \, mj - mr + ip - 1 = b \ge 0\\ 0 & otherwise. \end{cases}$$

Proof. By 2.3.1, it suffices to find the terms in $(x^i y^j)^p$ with nonnegative powers for x and find the coefficient of $y^r x^b dx$ in its differential. For each fixed n,

$$dy^{n}x^{mj-mn+ip} = nx^{mj-mn+ip}y^{n-1}dy + (mj-mn+ip)x^{mj-mn+ip-1}y^{n}dx$$
$$= -mnx^{mj-mn+ip+m-1}y^{n-1}dx + (mj-mn+ip)x^{mj-mn+ip-1}y^{n}dx$$

9

If the power of y is r, n could only be r+1 or r. If n = r, we need to check if mj-mr+ip-1 = bto match the powers of x. Note that if the equality holds, $mj - mr + ip = b \ge 0$, so $y^r x^{mj-mr+ip}$ has nonnegative powers for x automatically. If n = r + 1, we need to check if mj - m(r+1) + ip + m - 1 = b; in addition, to ensure that $y^r x^{mj - m(r+1) + ip}$ has nonnegative powers for x, we need to check if $mj - m(r+1) + ip \ge 0$. Define indicator functions δ_1, δ_2 as in the statement of Proposition 2.13 for these conditions.

Finally, note that the coefficient of $x^{mj-mn+ip}y^n$ in $(x^iy^j)^p$ is given by $\binom{j}{n}$. Combining them with the coefficients in the differentials and the δ 's, we obtain

$$-m\binom{j}{r+1}(r+1)\delta_1 + \binom{j}{r}(mj-mr+ip)\delta_2.$$

 Ψ has properties similar to Φ 's, as in Lemma 2.10 and 2.11.

Lemma 2.14. Suppose $x^i y^j$, $y^{r_1} x^{b_1} dx$, $y^{r_2} x^{b_2} dx$ are valid basis elements for Q or Q^{\vee} respectively. If the coefficients for $y^{r_1}x^{b_1}dx$, $y^{r_2}x^{b_2}dx$ are both nonzero in $\Psi(x^iy^j)$, then $r_1 = r_2$, $b_1 = b_2.$

Proof. With the same notation in 2.13, note that if $\delta_1 = 1$, $\delta_2 = 1$. Thus if the coefficient is nonzero for $y^r x^b dx$, $\delta_2 = 1$. Therefore

$$mj - mr_1 + ip - 1 = b_1$$
$$mj - mr_2 + ip - 1 = b_2$$

So $m(r_2 - r_1) = b_1 - b_2 \le m - 2$, which means $r_1 = r_2$, $b_1 = b_2$.

Lemma 2.15. Suppose $x^{i_1}y^{j_1}$, $x^{i_2}y^{j_2}$, y^rx^bdx are valid basis elements for Q or Q^{\vee} respectively. If the coefficient for $y^r x^b dx$ is nonzero in both $\Psi(x^{i_1}y^{j_1})$ and $\Psi(x^{i_2}y^{j_2})$, then $i_1 = i_2$, $j_1 = j_2$.

Proof. By a similar argument in the proof of Lemma 2.14, $\delta_2 = 1$ and

$$mj_1 - mr + i_1p - 1 = b$$

 $mj_2 - mr + i_2p - 1 = b.$

So $m(j_2 - j_1) = (i_1 - i_2)p$. As $p \nmid m, p \mid j_2 - j_1 \leq p - 1$, which means $j_1 = j_2, i_1 = i_2$.

2.4.1. Worked Example for p = 5, d = 4. We will conclude this section an worked example when p = 5 and $f(x) = x^4$. Then

(1)
$$Q = \langle \frac{y^2}{x}, \frac{y^3}{x}, \frac{y^3}{x^2}, \frac{y^4}{x}, \frac{y^4}{x^2}, \frac{y^4}{x^3} \rangle;$$

(2) $\Phi:$
• $\frac{y^3}{x} \mapsto 3 \cdot \frac{y^2}{x}, \frac{y^4}{x} \mapsto 4 \cdot \frac{y^3}{x}$
• otherwise 0

(3) Ψ :

- ker $\Phi = \langle \frac{y^2}{x}, \frac{y^3}{x^2}, \frac{y^4}{x^3}, \frac{y^4}{x^2} \rangle, Q^{\vee} = \langle \mathrm{d}x, x\mathrm{d}x, x^2\mathrm{d}x, y\mathrm{d}x, yx\mathrm{d}x, y^2\mathrm{d}x \rangle$

- $\frac{y^2}{x} \mapsto 3x^2 dx$ $\frac{y^2}{x^2} \mapsto 2x dx$ $\frac{y^4}{x^3} \mapsto dx$ $\frac{y^2}{x} \mapsto 3xy dx$

3. POLARIZED DIEUDONNE MODULE

In this section, we will compute the polarized Dieudonne Module (M, F, V, b) from its Hasse-Witt triple (Q, Φ, Ψ) . By [Moo22, Section 2.5], we have

$$M = Q \oplus Q^{\vee} = H^1(C, \mathcal{O}_C) \oplus H^0(C, \Omega_C^1),$$

so it suffices to compute F, V, b.

3.1 will contain results for both general $f(x) \in k[x]$ and $f(x) = x^m$, while 3.2 and 3.3 compute F and V respectively only for $f(x) = x^m$.

3.1. Polarized Dieudonne Module: b. The bilinear form b induced by the polarization is explicitly

$$b: M \times M \to k, ((q, \lambda), (q', \lambda')) \mapsto (q, \lambda') - (q', \lambda)$$

where $(-, -) : H^1(C, O_C) \times H^0(C, \Omega_C^1) \to k$ is the pairing induced by Serre duality, explicitly given by

$$((q_p)_{p\in C}, \omega) \mapsto \sum_{p\in C} Res_p(q_p\omega),$$

where Res is defined as in [Har77, Theorem 7.14.1]. Therefore, it suffices to compute (-, -). We begin with a technical lemma, which is helpful in computing (-, -).

Lemma 3.1. Let K(X) denote the function field of X. For $0 \le k \le 2p - 3$,

$$\operatorname{Tr}_{K(C)/K(\mathbb{P}^1)} y^k = \sum_{0 \le t \le p-1} \binom{l_t^k}{t - d_t^k} (f(x))^{l_t^k - t + d_t^k}$$

where $l_t^k = \lfloor \frac{k+t}{p} \rfloor$, $d_t^k = (k+t) \mod p$ for $0 \le t \le p-1$.

Proof. To find the trace, we need to find the coefficient of y^t in y^{k+t} for $0 \le t \le p-1$. Write $k+t = l_t^k p + d_t^k$ where $l_t^k = \lfloor \frac{k+t}{p} \rfloor$, $d_t^k = (k+t) \mod p$.

Note that $l_t^k \leq 2$, $d_t^k \leq p-1$, and $l_t^k + d_t^k \leq p-1$. In particular, the degree of y in $(y+f(x))^{l_t^k-t+d_t^k}y^{d_t^k}$ is less than or equal to p-1, so it suffices to extract the coefficient of y^t , which is $\binom{l_t^k}{t-d_t^k}(f(x))^{l_t^k-t+d_t^k}$. Summing up from t=0,...,p-1, we have the trace being

$$\sum_{0 \le t \le p-1} \binom{l_t^k}{t - d_t^k} (f(x))^{l_t^k - t + d_t^k}.$$

Theorem 3.2. Let $q \coloneqq x^a y^j$, $\lambda = y^r x^b dx$ where they are basis elements of $H^1(C, O_C)$ and $H^0(C, \Omega_C^1)$ respectively. Set $i \coloneqq a + b$, $k \coloneqq j + r$. The bilinear pairing (-, -) is given by

$$-\sum_{0 \le t \le p-1} \binom{l_t^k}{t-d_t^k} \sum_{b_0^t, \dots, b_m^t} \frac{(l_t^k - t + d_t^k)!}{b_m^t ! b_{m-1}^t ! \dots b_0^t !} a_{m-1}^{b_{m-1}^t} \dots a_0^{b_0^t}$$

where $l_t^k = \lfloor \frac{k+t}{p} \rfloor$; $d_t^k = (k+t) \mod p$ for $0 \le t \le p-1$; and $(b_0^t, ..., b_m^t)$ goes over all m+1 tuples in $\mathbb{Z}_{\ge 0}^{m+1}$ that satisfy (\star) ;

$$(\star): \begin{cases} b_m^t + \dots + b_0^t = l_t^k - t + d_t^k \\ m b_m^t + \dots + b_1^t = -1 - i \end{cases}$$

Proof. Note that

$$H^{1}(C, \mathcal{O}_{C}) = (\bigoplus_{p \in C, p \text{ closed}} K(C) / \mathcal{O}_{C, p}) / K(C)$$

so in the formula given in 3.1, $[q] \mapsto \begin{cases} q & \text{at } \infty \\ 0 & \text{elsewhere} \end{cases}$, and it suffices to compute $Res_{\tilde{\infty}}(q\lambda) = 0$

 $Res_{\tilde{\infty}}(x^{a+b}y^{r+j}\mathrm{d}x)$. Set $i \coloneqq a+b, k \coloneqq j+r$. By properties of residues and Lemma 3.1,

$$\operatorname{Res}_{\tilde{\infty}(x^{i}y^{k}\mathrm{d}x)} = \operatorname{Res}_{\infty}(x^{i}\operatorname{Tr}_{K(C)/K(\mathbb{P}^{1})}y^{k}\mathrm{d}x)$$
$$= \operatorname{Res}_{\infty}(x^{i}\sum_{0\leq t\leq p-1}\binom{l_{t}^{k}}{t-d_{t}^{k}}(f(x))^{l_{t}^{k}-t+d_{t}^{k}}\mathrm{d}x),$$

where $\tilde{\infty} \in C$ and $\pi(\tilde{\infty}) = \infty \in \mathbb{P}^1$, and l_t^k and d_t^k are defined in the statement of Lemma 3.1. Expand the residue linearly and by [Tai14, Theorem 2.5.2], only the terms with x's power being -1 are potentially nonzero. So it suffices to extract the coefficient of x^{-1} in $x^i \sum_{0 \leq t \leq p-1} {l_t^k \choose t-d_t^k} (f(x))^{l_t^k - t + d_t^k}$, which is given by

$$N \coloneqq \sum_{0 \le t \le p-1} \binom{l_t^k}{t - d_t^k} \sum_{b_0^t, \dots, b_m^t} \frac{(l_t^k - t + d_t^k)!}{b_m^t ! b_{m-1}^t ! \dots b_0^t !} a_{m-1}^{b_{m-1}^t} \dots a_0^{b_0^t},$$

with $l_t^k, d_t^k, (b_0^t, ..., b_m^t)$ defined as in the theorem statement. Finally, by [Tai14, Theorem 2.5.2], $Res_{\infty}(\frac{1}{x}dx) = ord_{\infty}(x)$. By linearity of residues,

$$(q, \lambda) = \operatorname{Res}_{\infty}(\frac{N}{x} dx) = \operatorname{Nord}_{\infty}(x) = -N.$$

We have a simpler expression for the pairing when $f(x) = x^m$ for nonnegative integer m. **Proposition 3.3.** Let $q \coloneqq x^i y^j$, $\lambda = y^r x^b dx$ where they are basis elements of $H^1(C, O_C)$ and $H^0(C, \Omega_C^1)$ respectively. Set $k \coloneqq j + r$, $A \coloneqq \frac{k + \frac{1+i}{m}}{p-1}$. When $f(x) = x^m$ for nonnegative integer m, the bilinear pairing (-, -) is given by

$$(q,\lambda) \mapsto -n \begin{pmatrix} A \\ Ap-k \end{pmatrix}$$

where

$$n = \begin{cases} \min\left((A+1)p, k+p\right) - Ap & if A \in \{0, 1, \dots, \lfloor \frac{k+p-1}{p} \rfloor \}\\ 0 & otherwise \end{cases}$$

Proof. With the same notation and argument in the proof of Theorem 3.2, we need to find the coefficient of x^{-1} in $x^i \sum_{0 \le t \le p-1} {\binom{l_t^k}{t-d_t^k}} (x^m)^{l_t^k-t+d_t^k}$. Note that x's power could only be $m(l_t^k(1-p)+k)$ for all possible values of l_t^k , and the corresponding coefficient is a multiple of $\binom{l_t^k}{l_t^k p-k}$. Set $A \coloneqq \frac{k+\frac{1+i}{m}}{p-1}$, so that if $l_t^k = A$, $l_t^k(1-p) + k = -1$; and n to be the number of t's such that $\lfloor \frac{k+t}{p} \rfloor = A$. Then the coefficient of x^{-1} is given by $n\binom{A}{Ap-k}$. With a similar argument in the proof of Theorem 3.2, $(q, \lambda) = -n\binom{A}{Ap-k}$.

Remark 3.4. The proofs of Theorem 3.2 and Proposition 3.3 are almost identical except that we can find the coefficient of x^{-1} more explicitly in the special case when $f(x) = x^m$.

We can derive an even simpler expression for Proposition 3.3:

Proposition 3.5. With the assumptions and notations in Proposition 3.3,

$$(q,\lambda) = \begin{cases} 1 & \text{if } i = -1 \text{ and } k = p-1 \\ 0 & \text{otherwise} \end{cases}$$

Proof. For the pairing to be nontrivial, it is necessary that $\binom{A}{Ap-k}$ is nonzero. In particular, $0 \le Ap - k \le A$.

- If A = 2: $2p 2 \le k \le 2p$. But $k \le 2p 3$. Contradiction.
- If A = 0: $0 \le k \le 0$. But a direct computations says that the pairing is trivial when k = 0. Contradiction.
- If A = 1: $p 1 \le p$. A direct computation gives 0 when k = p; when k = p 1, then i = -1. In this case, n = p 1 and Ap k = 1, so $(q, \lambda) = 1$.

3.2. Polarized Dieudonne Module: F. An explicit description of F is given in [Moo22, Section 2.6]: Let $R_1 = \ker \Phi \subset Q$ and choose some $R_0 \subset Q$ be its complement, F is given by

$$F: M = R_0 \oplus R_1 \oplus Q^{\vee} \to M = Q \oplus Q^{\vee}, (r_0, r_1, \lambda) \mapsto (\Phi(r_0), \Psi(r_1))$$

We will assume $f(x) = x^m$. It suffices to give a description of R_0 , since we have already computed Φ and Ψ in 2.4. But then by Corollary 2.12,

$$\ker \Phi = \langle x^i y^j | dj - dj' + i \ge 0 \text{ or } \le -\frac{j'd}{p} \text{ for all } 0 \le j' \le j \rangle.$$

Thus we can define R_0 as

$$R_0 \coloneqq \langle x^i y^j | -\frac{j'd}{p} < dj - dj' + ip < 0 \text{ for some } 0 \le j' \le j \rangle.$$

3.3. Polarized Dieudonne Module: V. By [Moo22, Section 2.6], V is given by

$$\begin{split} V: M &= Q \oplus Q^{\vee} \to M = Q \oplus R_0^{\vee} \oplus R_1^{\vee}, \\ (q, \lambda) &\mapsto (0, \Phi^{\vee}(\lambda \text{ mod } \operatorname{Im}(\Phi)^{\perp}), -\Psi^{\vee}(q \text{ mod } \operatorname{Im}(\Phi))), \end{split}$$

in which Φ^{\vee} and Ψ^{\vee} are defined by the following property:

$$(\Phi(x), y) = (x, \Phi^{\vee}(y))^p \text{ for all } x \in Q, y \in Q^{\vee}$$
$$(\Psi(x), y) = (x, \Psi^{\vee}(y))^p \text{ for all } x \in Q, y \in Q$$

It suffices to compute Φ^{\vee} and Ψ^{\vee} on a basis, which we will do in 3.3.1 and 3.3.2. We will assume $f(x) = x^m$.

3.3.1. Φ^{\vee} . We compute Φ^{\vee} on a basis of Q^{\vee} . The image of $y^r x^b dx$ is given by the following procedure:

- (1) Find the unique $x^i y^j$ that pairs nontrivially with $y^r x^b dx$ (i.e. i = -1-b, j = p-1-r).
- (2) Look for the unique (i_2, j_2) such that $\Phi(x^{i_2}y^{j_2}) \in span(x^iy^j)$.
- (3) $\begin{cases} y^r x^b dx \mapsto {j_2 \choose j} y^{p-1-j_2} x^{-1-i_2} dx & \text{if such } (i_2, j_2) \text{ exists} \\ 0 & \text{otherwise} \end{cases}$

We will justify this algorithm along with the algorithm for Ψ^{\vee} with an example by the end of 3.3.2.

3.3.2. Ψ^{\vee} . We compute Ψ^{\vee} on a basis of Q. The image of $x^i y^j$ is given by the following procedure:

- Find the unique $x^i y^j$ that pairs nontrivially with $y^r x^b dx$ (i.e. b = -1 i, r = p 1 j).
- Look for the unique (i_2, j_2) such that $\Psi(x^{i_2}y^{j_2}) \in span(y^r x^b dx)$.
- $\begin{cases} y^r x^b dx \mapsto A y^{p-1-j_2} x^{-1-i_2} dx & \text{if such } (i_2, j_2) \text{ exists} \\ 0 & \text{otherwise} \end{cases}$ where A is given in Proposition
 - 2.13 (with i_2, j_2 replacing i, j in that formula).

It suffices to illustrate the correctness of the algorithms in 3.3.1 and 3.3.2 with an example. The general case works similarly.

Example 3.6. Let p = 5 and $f(x) = x^4$. Suppose we want to compute $\Psi^{\vee}(\frac{y^3}{x^2})$. By the defining property, for any $q \in Q$,

$$(q,\Psi^{\vee}(\frac{y^3}{x^2}))^5=(\frac{y^3}{x^2},\Psi(q))$$

Note that xydx is the unique basis element that pairs nontrivially with $\frac{y^3}{r^2}$.

• If $\Psi(q) \in span(xydx)$, then the right hand side is nonzero (as $(\frac{y^3}{x^2}, xydx) = 1$). In particular, $\Psi(\frac{y^4}{x^2}) = 3xydx$, so

$$(\frac{y^4}{x^2}, \Psi^{\vee}(\frac{y^3}{x^2}))^5 = (\frac{y^3}{x^2}, \Psi(\frac{y^4}{x^2})) = 3.$$

(We can always go back to at most one basis element like this, by Lemma 2.14 and 2.15.) $\frac{y^4}{x^2}$ only pairs nontrivially with 3xdx. Therefore, the coefficient of xdx in $\Psi^{\vee}(\frac{y^3}{x^2})$ is 3.

• Otherwise, by Lemma 2.14, $\Psi(q) \in span(xydx)^{\perp}$. Then the right hand side is always 0, and the unique $y^r x^b dx$ that pairs with each basis element other than $\frac{y^4}{x^2}$ always has coefficient zero in the image of $\Psi^{\vee}(\frac{y^3}{x^2})$. This means that

$$\Psi^{\vee}(\frac{y^3}{x^2}) = 3x \mathrm{d}x.$$

- **Remark 3.7.** (1) Suppose we want to find $\Psi^{\vee}(v)$, and we don't have such a q such that $\Psi(q)$ is in the span of the unique element that pairs with v nontrivially, then $\Psi^{\vee}(v) = 0$ by the second case in Example 3.6.
 - (2) If we replace Ψ with Φ everywhere and the corresponding lemmas from Lemma 2.14 and 2.15 to Lemma 2.10 and 2.11, every argument in Example 3.6 still holds for Φ^{\vee} , which justifies the procedure given in Section 3.3.1.

A python implementation of 3.3.1 and 3.3.2 is given in EOType_AScurves.py and explained in the Appendix.

3.3.3. Worked Example for $\Phi^{\vee}, \Psi^{\vee}: p = 5, d = 4$. We return to the example when p = 5 and $f(x) = x^4$ in Section 2.4.1 and Example 3.6. Then Φ^{\vee} and Ψ^{\vee} are given by:

- (1) Φ^{\vee} :
 - $dx, xdx, x^2dx, xydx \mapsto 0$
 - $y^2 dx \mapsto 3y dx$
 - $ydx \mapsto -dx$

(2)
$$\Psi^{\vee}$$
:
• $\frac{y^3}{x}, \frac{y^2}{x} \mapsto 0$
• $\frac{y^3}{x^2} \mapsto 3x dx$
• $\frac{y^4}{x^2} \mapsto 2xy dx$
• $\frac{y^4}{x^3} \mapsto 3y^2 dx$
• $\frac{y^4}{x} \mapsto x^2 dx$

4. FINAL TYPE

We will compute the final type representation for the Ekedahl-Oort type from a polarized Dieudonne Module (M, F, V, b) in this section. The advantage of the final type is that it uniquely determines a polarized Dieudonne module and it is canonical in the sense that it doesn't depend on a chosen basis. We will describe how it is constructed from a polarized Dieudonne Module in 4.1, and provide two algorithms that will combine to compute the final type for the special case when $f(x) = x^m$.

4.1. The Construction of the Final Type. Given a polarized Dieudonne module (M, F, V, b), we aim to compute its final type, which is given in the following description: Set $N := V^{-1}(0) = F(M)$, and we have $0 \subseteq N \subseteq M$. We can go left to N by taking F(N) and go right by taking $V^{-1}(N)$ in terms of inclusion. For each vector space we obtain in process, we will take F and V^{-1} in the same fashion and we can obtain such a sequence called the canonical flag, once it stabilizes:

$$(4.1) 0 = N_1 \subseteq \dots \subseteq N_t = M$$

We then fill in the missing dimensions with vector spaces in between; the final type remain well defined when they are chosen arbitrarily, as long as they respect inclusion. Relabel $N_1, ..., N_t$ in 4.1, we would have the full flag given by

$$(4.2) 0 = N'_1 \subseteq \dots \subseteq N'_{2q} = M.$$

Set $V_i = \dim F(N'_i)$. The Final type is given by

(4.3)
$$[V_1, ... V_g].$$

4.2. Computing Final Type from Polarized Dieudonne Modules.

4.2.1. *The Canonical Flag.* We start by computing the Canonical Flag in 4.1. The algorithm follows from the description in 4.1 and is given in Algorithm 1; the code is given in EOType_AScurves.py. Be aware that the lists in Algorithm 1 are indexed from 1 instead of 0.

4.2.2. The Final Type. We will then compute the final type in 4.3. The algorithm is given in Algorithm 2 and the code is given in EOType_AScurves.py. Be aware that the lists in Algorithm 2 are indexed from 1 instead of 0.

Remark 4.4. We conclude the section with some remarks on Algorithm 2:

(1) F sends every basis element from Q uniquely to another element in $Q \oplus Q^{\vee}$, and ignores everything from Q^{\vee} . Therefore, line 12, 18 sets V[i] to be dim F(A).

Algorithm 1 The Canonical Flag

Input: p, m

Output: N, the canonical flag given by a list indexed by dimension

1: $N \leftarrow [None, None, ..., None]$ $\triangleright W$ is a list of length 2×genus initialized by None 2: Func FLAGHELPER(W) $\triangleright W$ is a vector space

```
2. Func PLAGHELFER(VV)
```

- 3: if $\dim W = 0$ then 4: End Recursion
- 5: else if $N[\dim W]$ is not None then
- 6: End Recursion
- 7: end if $N[dim W] \leftarrow W$
- 8: $N[\dim W] \leftarrow W$
- 9: FLAGHELPER(F(W))
- 10: $FLAGHELPER(V^{-1}(W))$

```
11: end Func
```

```
12: W \leftarrow V^{-1}(0)
```

```
13: FLAGHELPER(W)
```

Algorithm 2 The Final Type

Input: p, m**Output:** [V[1], V[2], ..., V[g]]1: $CFlag \leftarrow Canonical Flag computed by Algorithm 2$ 2: $g \leftarrow \frac{(p-1)(m-1)}{2}$, the genus of the curve 3: $V \leftarrow [0, 0, ...0]$ \triangleright empty list with length being 2q 4: $i \leftarrow 1$ 5: while $i \leq 2g$ do $A \leftarrow CFlag[i]$ 6: $t \leftarrow$ The next nonempty dimension in C, and -1 if it doesn't exist 7: if t = -1 then 8: break 9: else if $|basis(A) \cap basis(Q^{\vee})| < |basis(CFlag[t]) \cap basis(Q^{\vee})|$ then 10: while i < t do 11: $V[i] \leftarrow |basis(A) \cap basis(Q)|$ 12: $i \leftarrow i + 1$ 13:end while 14: 15:else counter $\leftarrow 0$ 16:while i < t do 17: $V[i] = |basis(A) \cap basis(Q)| +$ counter 18:19: $i \leftarrow i + 1$ counter \leftarrow counter + 1 20: end while 21: end if 22:23: end while

(2) Suppose N_a , N_{a+1} in the canonical flag have dim $N_{a+1} - \dim N_a \ge 2$. If there exist $u \in Q \cap (N_{a+1} \setminus N_a)$, $v \in Q^{\vee} \cap (N_{a+1} \setminus N_a)$, then the final type would depend on the order of adjoining u or v. Therefore, $N_{a+1} \setminus N_a \subset Q^{\vee}$ or $N_{a+1} \setminus N_a \subset Q$. In the first case, dim F remains the same every time we adjoin an element from Q; in the second case, dim F increases by 1 every time we adjoin an element from Q^{\vee} . These conditions are expressed in line 10 and 15 respectively in Algorithm 2.

5. Directions for Future Work

We will conclude the report with a two directions for future work on the subject matter.

(1) We wish to obtain an easy formula for the final type, at least for $f(x) = x^m$ for nonnegative integer m. With the help of the python program described in the Appendix, we conjecture the following:

Conjecture 5.1. When $f(x) = x^m \in k[x]$ and $m \mid p-1$, the final type starts with $\frac{p-1}{m}$ zeros.

We wonder if there are more patterns like this in the final type and if we can prove them as a formula in general.

(2) Compute the Hasse Witt Triple and Polarized Dieudonne Module for general $f \in k(x)$. [EP10, Section 4] has computed the first cohomology for general $f \in k(x)$ and a formula for Φ follows easily from their work. However, the challenge lies in obtaining an explicit description of Ψ – the affine cover for computing the first cohomology in that case requires more affine opens, and the description we have in Section 2.3.1 does not apply.

APPENDIX: PYTHON IMPLEMENTATION

A. **Overview.** We have implemented our method with Python 3.9.6 to compute the Ekedahl-Oort type of Artin-Schreier curves when they are defined by $y^p - y = f(x)$ where $f(x) = x^m$ for non-negative integer m. The source code can be accessed on https://nancium.notion. site/Research-fe3fc9d318ad44f09ead6305305bee85?pvs=4 in "Source Code" under the drop down list "Ekedahl-Oort Types of Artin-Schreier Curves". The file name is EOType_AScurves.py.

To run the code, please make sure that the python installation is 3.8 or later. The reader can run EOType_AScurves.py in any environment that supports python (i.e. IDLE) and send commands through the shell. We have defined some Hasse-Witt Triples and Polarized Dieudonne Modules in the source code (after if __name__ == "__main__":) section, so the reader can easily experiment with those objects.

B. The class HasseWittTriple.

B.1. Initialization. A HasseWittTriple object is initialized with two parameters: p and m, where p = char(k) and $m = \deg f$. It will raise a value error if $p \mid m$. For the rest of this section, suppose we have initialized an HasseWittTriple object HWT with p and m:

B.2. *HWT.H1_basis()*. Return a basis of Q in Theorem 2.2 as a set of tuples. Each tuple is in the form of (i, j), and this means $x^i y^j$ is a basis element of Q. An exception is raised with an error message when $p \nmid m$.

B.3. *HWT.Phi(display = False)*. Return Φ on a basis as a dictionary. The key-value pairs are the form of (i, j) : (a, (i', j')) where a is nonzero, which means $\Phi(x^i y^j) = a x^{i'} y^{j'}$. If **display = True**, it will print the key-value pairs line by line.

B.4. *HWT.ker_Phi()*. Return the kernel of Φ as a set of tuples in the form of (i, j), which means $x^i y^j$ is a basis element of the kernel of Φ .

B.5. *HWT.valid_diff_basis()*. Return a basis of $Q^{\vee} = H^0(C, \Omega_C^1)$ given in 2.3.1 as a set of tuples. Each tuple is in the form of (r, b), which means $y^r x^b dx$ is a basis element in this basis of Q^{\vee} .

B.6. *HWT.Psi(display = False)*. Return the image of Ψ on a basis as a dictionary. The key-value pairs are the form of (i, j) : (a, (r, b)) where a is nonzero, which means $\Psi(x^i y^j) = ay^r x^b dx$. If display = True, it will print the key-value pairs line by line.

C. The class DieudonneModule.

C.1. Initialization. A DieudonneModule object is initialized with two parameters: p and m, where p = char(k) and $m = \deg f$. Upon initialization, it will initialize a HasseWittTriple object from p, m and automatically find the basis for Q and Q^{\vee} . For the rest of this section, suppose we have initialized an DieudonneModule object DM with p and m:

C.2. DM. pairing (q_i, q_j, lbd_r, lbd_b) . Given an input representing $q = x^{q_i}y^{q_j}$ and $\lambda = y^{lbd_r}x^{lbd_b}dx$, return (q, λ) .

C.3. DM.b_bilinear(q1, lbd1, q2, lbd2). Given an input of tuples representing $q = x^{q[0]}y^{q[1]}$ and $lbd = y^{lbd[0]}x^{lbd[1]}dx$, return b((q1, lbd1), (q2, lbd2)).

C.4. DM. Phi_dual(). Return the image of Φ^{\vee} on a basis as a dictionary. The key-value pairs are the form of (r, b) : (a, (r', b')) where a is nonzero, which means $\Phi^{\vee}(y^r x^b dx) = ay^{r'} x^{b'} dx$.

C.5. *DM.Psi_dual()*. Return the image of Ψ^{\vee} on a basis as a dictionary. The key-value pairs are the form of (i, j) : (a, (r, b)) where a is nonzero, which means $\Psi^{\vee}(x^i y^j) = ay^r x^b dx$.

D. The class Final Type.

D.1. Initialization. A FinalType object is initialized with two parameters: p and m, where p = char(k) and $m = \deg f$. Upon initialization, it will initialize a DieudonneModule object from p, m and computes the kernel of V. For the rest of this section, suppose we have initialized an FinalType object FT with p and m:

D.2. *FT.kerV()*. Return the kernel of V on a basis, given by a list containing two sets in the form of $\{(i_1, j_1), (i_2, j_2), ...\}$ (denoting $x^i y^j$) and $\{(r_1, b_1), (r_2, b_2), ...\}$ (denoting $y^r x^b dx$).

D.3. *FT.F(lst)*. Given a vector space on a basis as a list containing two sets in the form of $\{(i_1, j_1), (i_2, j_2), ...\}$ (denoting $x^i y^j$) and $\{(r_1, b_1), (r_2, b_2), ...\}$ (denoting $y^r x^b dx$), return the image of F on a basis, given by a list in the same format.

D.4. *FT.V_preim(lst)*. Given a vector space on a basis as a list containing two sets in the form of $\{(i_1, j_1), (i_2, j_2), ...\}$ (denoting $x^i y^j$) and $\{(r_1, b_1), (r_2, b_2), ...\}$ (denoting $y^r x^b dx$), return the preimage of V on a basis, given by a list in the same format.

D.5. $FT.FT_Tree(display = False)$. Return nothing, save the computed canonical tree in a list, where the i - th element in the list saves the corresponding i + 1-dimensional space on a basis suppose it exists, and is *None* if it doesn't. If display = True, print each dimension and a basis of the corresponding vector space line by line.

D.6. *FT.Final_type()*. Return the final type given by a list $[N_1, N_2, ..., N_g]$, where g is the genus of the curve. It will run FT.FT_Tree() automatically, so there is no need to call FT.FT_Tree() before calling this function.

Acknowledgments

My sincerest thanks go to Dr. Patrick Daniels for mentoring this project; his encouragement and support helped our project proceed smoothly, and moreover piqued my interest in arithmetic geometry. I'm also grateful to Professor Michael Zieve for briefly mentioning Silverman's AEC when I was taking MATH 494 (WN 2022), when I first learned about the field of arithmetic geometry, and this eventually led to me working with Dr. Daniels on such a project.

References

- [Oda69] Tadao Oda. "The first de Rham cohomology group and Dieudonné modules". eng.
 In: Annales scientifiques de l'École Normale Supérieure 2.1 (1969), pp. 63–135.
 ISSN: 0012-9593. URL: https://eudml.org/doc/81844 (visited on 06/19/2023).
- [Har77] Robin Hartshorne. Algebraic Geometry. Vol. 52. Graduate Texts in Mathematics. New York, NY: Springer New York, 1977. ISBN: 9781441928078 9781475738490.
 DOI: 10.1007/978-1-4757-3849-0. URL: http://link.springer.com/10.1007/978-1-4757-3849-0 (visited on 07/12/2023).
- [Far09] Shawn Farnell. "Artin-Schreier curves". eng. Text. Colorado State University, Dec. 2009. URL: https://mountainscholar.org/handle/10217/44957 (visited on 05/02/2023).

REFERENCES

- [Sti09] Henning Stichtenoth. Algebraic Function Fields and Codes. en. Vol. 254. Graduate Texts in Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. ISBN: 9783540768777 9783540768784. DOI: 10.1007/978-3-540-76878-4. URL: https: //link.springer.com/10.1007/978-3-540-76878-4 (visited on 07/12/2023).
- [EP10] Arsen Elkin and Rachel Pries. Ekedahl-Oort strata of hyperelliptic curves in characteristic 2. arXiv:1007.1226 [math]. July 2010. URL: http://arxiv.org/abs/ 1007.1226 (visited on 06/03/2023).
- [Tai14] Joseph Tait. "Group actions on differentials of curves and cohomology bases of hyperelliptic curves". In: Nov. 2014. URL: https://www.semanticscholar.org/ paper/Group-actions-on-differentials-of-curves-and-bases-Tait/ 692c3232003debe88e63349439013babc1db464a (visited on 06/03/2023).
- [DH17] Sanath Devalapurkar and John Halliday. "The Dieudonné modules and Ekedahl-Oort types of Jacobians of hyperelliptic curves in odd characteristic". In: (2017).
 DOI: 10.48550/ARXIV.1712.04921. URL: https://arxiv.org/abs/1712.04921
 (visited on 05/02/2023).
- [Moo22] Ben Moonen. "Computing discrete invariants of varieties in positive characteristic.
 I. Ekedahl-Oort types of curves". In: (2022). DOI: 10.48550/ARXIV.2202.08050.
 URL: https://arxiv.org/abs/2202.08050 (visited on 05/02/2023).
- [LMS23] Yuxin Lin, Elena Mantovan, and Deepesh Singhal. "Abelian covers of P¹ of pordinary Ekedahl-Oort type". In: (2023). DOI: 10.48550/ARXIV.2303.13350. URL: https://arxiv.org/abs/2303.13350 (visited on 05/02/2023).