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Abstract. Let k be an algebraically closed field of characteristic p > 0. We compute
three different representations of the Ekedahl–Oort type (i.e. the isomorphism type of the p-
kernel group scheme J [p]) for Artin Schreier curves (i.e. k-curves defined by yp−y = f(x) for
f(x) ∈ k(x)) when f(x) ∈ k[x]. We start by computing the Hasse-Witt triple (Q,Φ,Ψ); we
proceed to find the corresponding polarized Dieudonne Module (M,F, V, b); and we conclude
by providing an algorithm for computing the final type when f(x) = xm for nonnegative
integer m, which is canonical in the sense that it doesn’t depend on a chosen basis. An
implementation of the algorithms is available in Python.
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1. Introduction

Throughout the project, we will assume that the base field k = k, char(k) = p ̸= 0, and
let σ : k → k, a 7→ ap be the Frobenius automorphism.

1.1. The Ekedahl–Oort Type. Let C/k be a smooth projective curve. Associated to C is
its Jacobian variety J(C). Since the Jacobian of a smooth curve C/k is a group scheme, it
is natural to investigate the following question:

Question 1.1. Which group schemes arise as the p-torsion (J(C)[p]) for a curve?

By Dieudonne theory, J [p] is equivalent to a triple (M,F, V ) where

(1) M is a finite dimensional k-vector space.
(2) F :M →M is σ-linear (i.e. F (ax) = σ(a)F (x))
(3) V :M →M is σ−1-linear (i.e. F (ax) = σ−1(a)F (x))
(4) kerF = ImV , ImF = kerV
(5) b: alternating bilinear form induced by the polarization map J [p]→ J [p]∨,

The quadruple (M,F, V, b) is called a polarized Dieudonne module. The isomorphism class of
polarized Dieudonne modules is defined as the Ekedahl–Oort type of a curve. In particular,
the polarized Dieudonne module can be encoded and recovered with a numerical invariant
called the final type, whose advantage is that it is canonical in the sense that it doesn’t
involve a choice for basis, and its construction will be discussed in Section 4. Now question
1.1 becomes:

Question 1.2. Which Ekedahl-Oort types arise from Jacobian of curves?

The Ekedahk-Oort type can be equivalently characterized by the Hasse-Witt triple (Q,Φ,Ψ)
[Moo22, Theorem 2.8] where

(1) Q is a finite dimensional k-vector space.
(2) Φ : Q→ Q is σ-linear
(3) Ψ : kerΦ→ ImΦ⊥ = {λ ∈ Q∨|λ(q) = 0, q ∈ Im(Φ)} is σ-linear bijection.

When C/k is a smooth proper curve, Q = H1(C,OC) and Φ is the frobenius on H1(C,OC)
[Oda69, Section 5].

There is currently no known algorithm to compute the Ekedahl-Oort type for general
curves. Known cases include: Complete intersection curve with p ∤ degC ([Moo22]), Hyper-
elliptic curves in odd characteristic ([DH17]), and Cyclic covers of P 1 whose Galois group
has order prime to p ([LMS23]). In this project, we will compute the Ekedahl-Oort type of
a class of Artin-Schreier curves, which are defined in Definition 1.1.

Definition 1.1. (Artin-Schreier curves) An Artin-Schreier curve C/k is defined equivalently
as

(1) A Z/pZ Galois cover of P1;
(2) The normalization of P1 inside an extension of function fields k(x) ↪→ K, which is

Galois with Gal(K/k(x)) = Z/pZ;
(3) A smooth projective curve whose function field is of the form K ∼= k(x)[y]/(yp − y −

f(x) for some f(x) ∈ k(x).

We will focus on the case when f(x) ∈ k[x] in this project.
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1.2. Key Results. Our main goal is to compute all three representations of Ekedahl-Oort
type of Artin Schreier curves. In Section 2, we compute the Hasse-Witt Triple for general
f(x) ∈ k[x]. Here we illustrate the main result of Section 2 in the special case when f(x) =
xm, where m is a nonnegative integer. The general case for f(x) ∈ k[x] is more notationally
involved and omitted here.

Theorem. (Hasse-Witt Triple) Let C/k is an Artin-Schreier curve defined by yp−y = f(x),
and f(x) = xm for nonnegative integer m. Define

Q = k⟨xiyj | 0 ≤ j ≤ p− 1,−jm
p

< i < 0⟩;

Let xiyj and xi
′
yj

′
be valid elements in the basis of Q given above. Define Φ on a basis and

extend linearly: Let the coefficient of xi
′
yj

′
in Φ(xiyj) be{(

j
j′

)
if mj −mj′ + ip = i′

0 otherwise;

Let xiyj and yrxbdx be valid elements in this basis of Q and Q∨ = H0(C,Ω1
C) (with a basis

given in 2.3) respectively. Then kerΦ is only generated by elements given in the basis of Q
above. Define Ψ on a basis and extend linearly: If xiyj ∈ kerΦ, the coefficient of yrxbdx in
Ψ(xiyj) is

−m
(

j

r + 1

)
(r + 1)δ1 +

(
j

r

)
(mj −mr + ip)δ2,

where

δ1 :=

{
1 if mj −m(r + 1) + ip ≥ 0 and mj −m(r + 1) + ip+m− 1 = b

0 otherwise

δ2 :=

{
1 if mj −mr + ip− 1 = b ≥ 0

0 otherwise.

Then (Q,Φ,Ψ) is a Hasse-Witt Triple associated with the curve C.

In Section 3, we compute the polarized Dieudonne module (M,F, V, b), where M follows
immediately from our results in Section 2, b is computed for general f ∈ k[x], and F, V
are computed only for f ∈ xm. The main results are omitted here for the sake of brevity.
Finally, Section 4 provides an algorithm for computing the final type in the special case
when f(x) = xm. The Appendix gives a description for the main functions in the python
implementation of our results in the special case when f(x) = xm.

1.3. Notation. C/k is an Artin-Schreier curve defined by yp − y = f(x), and f ∈ k[x] with
m := deg f . By [Far09, Prop 2.1.1], we can assume that f is monic with p ∤ m. Write

f(x) = xm + am−1x
m−1 + ...+ a0.

2. Hasse-Witt Triples

By [Moo22], the Hasse-Witt triple associated to C is (Q,Φ,Ψ), where Q = H1(C,OC) is
the first cohomology of C, Φ is the Frobenius endomorphism on H1(C,OC), and Ψ is a map
Ψ : ker(Φ)→ Im(Φ)⊥, which we will describe in detail in 2.3.1.
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2.1. Hasse-Witt Triple: Q. We begin with a technical lemma which will be useful for
computing Q ∼= H1(C,OC):

Lemma 2.1. Given f(x) ∈ k[x] with m = deg f , set K := k(x)[y]/(yp − y − f(x)).
(1) The integral closure of OP1(P1\∞) = k[x] in K is R1 := k[x, y]/(yp − y − f(x)).
(2) The integral closure of OP1(P1\0) = k[ 1

x
] in K is R2 := k⟨xiyj | −ip− jm ≥ 0⟩.

(3) The integral closure of OP1(P1\{0,∞}) = k[x, 1
x
] in K is R3 := k[x, 1

x
, y]/(yp − y −

f(x)).

Proof. (1) We first claim that R1 is integrally closed. Indeed, the Jacobian matrix of
Speck[x, y]/(yp − y − f(x)) is

Jac =
(
−f ′(x) −1

)
,

which has corank 1, and this is equal to the pure dimension of SpecR1 = Speck[x, y]/(yp−
y− f(x)) at any closed point. By the Jacobian criterion, SpecR1 is smooth, hence R1

is normal. Since there are no intermediate fields between k(x) and K, the fraction
field of k[x, y]/(yp − y − f(x)) is K, and therefore it is integrally closed in K.
We then show it is the integral closure of k[x] in K. If t is in the integral closure of
k[x] in K, then t is integral over k[x], so it is integral over R1 and therefore it must be
in R1. On the other hand, R is contained in the integral closure of k[x] in K, since x
and y are both integral over k[x], and they generate R as a k-algebra.

(2) The integral closure of R := k[ 1
x
] in K is equal to

∩R⊆O⊆KO = ∩places of KO = ∩closed points q of COq,

where O is the set of all valuation rings in K that contain R, and Oq = {g ∈ K |
vq(g) ≥ 0}. Therefore, it suffices to find the set of elements g ∈ K that have vq(g) ≥ 0
at all closed points q ∈ C.
Suppose the cover π : C → P1 sends q̃ to q. By the valuation formula,

vq̃(g) = e(q̃ | q)vq(g),
where e(q̃, q) is the ramification index.
• If q = ∞̃, π is totally ramified at q̃; by [Sti09, Prop.3.7.8], e(q̃ | q) = p. Since
v∞(x) = −1, v∞̃(x) = −p. Also, v∞̃(f(x)) = v∞̃(yp−y), which gives v∞̃(y) = −m
(where m = deg f).
• If q ̸= ∞̃ is a closed point of C, π is unramified at q̃. Again by [Sti09, Prop.3.7.8],
thus e(q̃ | q) = 1 and vq̃(g) = vq(g). But then vq(x) ≥ 0 and vq(y) ≥ 0, so
vq̃(x

iyj) = vq(x
iyj) ≥ 0 all the time.

Therefore,

∩closed points q of COq = O∞̃ = k⟨xiyj | −ip− jm ≥ 0⟩
(3) We first claim that R3 = k[x, 1

x
, y]/(yp − y − f(x)) is integrally closed: Observe that

R3 = k[x, 1
x
, y]/(yp − y − f(x)) ∼= k[x, y, z]/(yp − y − f(x), xz − 1). Therefore the

Jacobian of SpecR3 is given by

Jac =

(
−f ′(x) −1 0

1 0 1

)
,

which has corank 2, equivalent to the pure dimension of Speck[x, y, z]/(yp − y −
f(x), xz − 1). By an argument similar to (1) (i.e. replacing k[x] with k[x, 1

x
] every-

where), k[x, 1
x
, y]/(yp − y − f(x)) is the integral closure of k[x, 1

x
] in K as well.
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□

Now we proceed to find a basis for Q, which is equal to H1(C,OC) as is discussed in 1.1.

Theorem 2.2.

H1(C,OC) = k⟨xiyj | 0 ≤ j ≤ p− 1,−jm
p

< i < 0⟩.

Proof. Let π : C → P1 be the cover map in Definition 1.1. Consider the natural affine cover
of the projective line, {P1

k\0,P1
k\∞}: We can obtain an affine open cover of C by pulling

back via π, i.e. by setting U0 := π−1(P1
k\0) and U∞ := π−1(P1

k\∞). The Cech complex is
given by:

0→ OC(U0)×OC(U∞)
δ1→ OC(U0 ∩ U∞)→ 0

Since C is the normalization of P1 in k, OC(π
−1(U)) is the integral closure of OP1(U) in

K := k(x)[y]/(yp − y − f(x)). By Lemma 2.1,

OC(U0) = k[x, y]/(yp − y − f(x))
OC(U∞) = k⟨xiyj | −ip− jm ≥ 0⟩

OC(U0 ∩ U∞) = k[x,
1

x
, y]/(yp − y − f(x))

= k⟨xiyj | i ∈ Z, 0 ≤ j ≤ p− 1⟩
The only generators that are not in the image of δ1 are

{xiyj | 0 ≤ j ≤ p− 1,−jm
p

< i < 0},

which is a basis for H1(C,OC). □

2.2. Hasse-Witt Triple: Φ. As the second step to compute the Hasse-Witt Triple, we give
the formula for Φ. Recall from 1.1 that Φ is the induced map of the frobenius on H1(C,OC).

Theorem 2.3. Suppose xiyj and xi
′
yj

′
are valid basis elements as in Theorem 2.2. For

f(x) ∈ k[x], the coefficient of xi
′
yj

′
in Φ(xiyj) is

(
j
j′

) ∑
t0,...tm

(j−j′)!
tm!tm−1!...t0!

a
tm−1

m−1 ...a
t0
0 where (t0, ..., tm) goes over all m+1 tuples in Zm+1

≥0 that satisfy (⋆)

0 if no such (t0, ..., tm) satisfying (⋆) exists

where

(⋆) :

{
tm + ...+ t0 = j − j′

mtm + ...+ t1 = i′ − ip
Proof. By the equivalence relation,

(xiyj)p = xip(y + f(x))j

= xip
j∑

n=0

(
j

n

)
yn(f(x))j−n.

It suffices to find the coefficient of xi
′−ip in

(
j
j′

)
(f(x))j−j′ , which is given by the multinomial

coefficient given in the theorem statement. □

Remark 2.4. A simpler formula for Φ in the special case when f(x) = xm will be given in
2.4.
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2.3. Hasse-Witt Triple: Ψ. Recall that

Ψ : kerΦ→ ImΦ⊥ = {λ ∈ Q∨|λ(q) = 0, q ∈ Im(Φ)}.
We will begin this section with an explicit description of Ψ with our open cover, and then
proceed to its formula.

2.3.1. A description of Ψ. We provide the following description of Ψ given in [LMS23, Section
4.0.1]: Let α ∈ kerΦ ⊆ H1(C,OC). Since αp = 0 ∈ H1(C,OC), there exists some α0 ∈
OC(U0) and α∞ ∈ OC(U∞) such that

αp = α0 |U0∩U∞ −α∞ |U0∩U∞ .

Taking differentials on both sides, dα0 = dα∞ on U0 ∩ U∞, so they glue to some ωα ∈ Q∨ ∼=
H0(C,Ω1

C). We have Ψ(α) = ωα.

Remark 2.5. This description relies heavily on the fact of having only two opens in the
cover.

2.3.2. Computing Ψ. Since kerΦ is not necessarily generated only by the basis elements of Q
we’ve computed in Theorem 2.2, we need to find a way to work around that. For v ∈ kerΦ,
write v =

∑
ai,jx

iyj. Then

Φ(v) =
∑

api,jΦ(x
iyj).

By 2.3.1, it suffices to find the terms in Φ(v) with nonnegative powers for x and taking its
differential. Since the differential operator is linear, it suffices to compute dΦ(xiyj) for each
xiyj and extract the terms that satisfy the condition. We can thus define ψ : Q→ Q∨ such
that

Ψ(v) =
∑

api,jψ(x
iyj),

In Theorem 2.7, we will characterize ψ on a basis as a linear combination of a basis of
H0(C,Ω1

C) given by

{yrxbdx : 0 ≤ r ≤ p− 2, 0 ≤ b ≤ m− 2, rm+ bp ≤ pm−m− p− 1}
in [Far09, Prop. 2.2.4].

Remark 2.6. ψ and Ψ are distinct maps. In particular, the definition of ψ on this basis of
Q doesn’t guarantee that Ψ is necessarily defined for any of these basis elements.

Theorem 2.7. Suppose xiyj and yrxbdx are valid basis elements of Q and H0(C,Ω1
C) re-

spectively. For f(x) ∈ k[x], the coefficient of yrxbdx in ψ(xiyj) is

(
j
r

)
(j − r)

∑
0≤s≤m−1

as+1

∑
ts0,...t

s
m

(j−r−1)!
tsm!tsm−1!...t

s
0!
a
tsm−1

m−1 ...a
ts0
0 +(

j
r

)
ip

∑
l0,...lm

(j−r)!
lm!lm−1!...l0!

a
lm−1

m−1 ...a
l0
0 − (r + 1)

∑
t≥0

Bt(b− t+ 1)ab−t+1

where (s, ts0, ..., t
s
m) satisfies (⋆), (l0, ..., lm) satisfies (⋆)

0 if no such tuple satisfying (⋆), (⋆) exists

where

Bt =


(

j
r+1

) ∑
t0,...tm

(j−r−1)!
tm!tm−1!...t0!

a
tm−1

m−1 ...a
t0
0 with (t0, ...tm) that satisfy (⋆)

0 if t < 0 or t > mj −mn+ ip
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(⋆) :

{
tm + ...+ t0 = j − r − 1

mtm + ...+ t1 = t− ip

(⋆) :

{∑m
i=0 t

s
i = j − r − 1

s+mtsm + ...+ ts1 = b− ip

(⋆) :

{∑m
i=0 li = j − r

mlm + ...+ l1 = b− ip+ 1

Proof. Recall that

(xiyj)p = xip(y + f(x))j

= xip
j∑

n=0

(
j

n

)
yn(f(x))j−n.

If yrxbdx is a valid basis element, the only place it could occur is when n = r, r + 1. So it
suffices to find the coefficient of xb in(

j

r

)
(j − r)(f(x))j−r−1f ′(x) +

(
j

r

)
(f(x))j−ripxip−1 − (r + 1)

∑
t≥0

Btf
′(x)xt,

whereBt is the coefficient of xt in
(

j
r+1

)
(f(x))j−r−1xip. This is given by the sum of multinomial

coefficients in the theorem statement. □

Remark 2.8. A simpler formula for Ψ in the special case when f(x) = xm will be given in
2.4.

2.4. Special Case: f(x) = xm. When the Artin-Schreier curve is defined by a general
polynomial f(x) ∈ k[x], the formulae for Φ and Ψ are rather complicated. We will conclude
this section with simplified formulae and their properties for the special case when f(x) = xm

for positive integer m. In particular, we can explicitly find the kernel of Φ, or the domain of
Ψ, in this case.

Proposition 2.9 gives a simple description of Φ in the special case.

Proposition 2.9. Suppose xiyj and xi
′
yj

′
are valid basis elements as in Theorem 2.2. If

f(x) = xm for nonnegative integer m, the coefficient of xi
′
yj

′
in Φ(xiyj) is{(

j
j′

)
if mj −mj′ + ip = i′

0 otherwise

Proof. Note that

(xiyj)p = xip(y + xm)j =

j∑
n=0

(
j

n

)
ynxmj−mn+ip,

It suffices to find the coefficient of xi
′
yj

′
. But the j′’s power of y can only occur when n = j′.

Therefore if mj −mj′ + ip = i′, the coefficient is
(
j
j′

)
; it is 0 otherwise. □

Lemma 2.10 and 2.11 will establish two properties of Φ:

Lemma 2.10. Suppose xiyj, xi1yj1, xi2yj2 are valid basis elements as in Theorem 2.2. If the
coefficients for xi1yj1, xi2yj2 are both nonzero in Φ(xiyj), then i1 = i2, j1 = j2.
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Proof. In this case,

mj −mj1 + ip = i1

mj −mj2 + ip = i2

We have m(j1 − j2) = i2 − i1 < max (mj2
p
, mj1

p
), thus

j1 − j2 < max (
j2
p
,
j1
p
) ≤ p− 1

p
≤ 1,

so j1 = j2, i1 = i2. □

Lemma 2.11. Suppose xiyj, xi
′
yj

′
, xi1yj1 are valid basis elements as in Theorem 2.2. If the

coefficient for xi1yj1 is nonzero in both Φ(xiyj) and Φ(xi
′
yj

′
), then i = i′, j = j′.

Proof. We have

mj2 −mj′ + i2p = i′

mj1 −mj′ + i1p = i′

So we have m(j2 − j1) = (i1 − i2)p. As p ∤ m, p | j2 − j1 ≤ p − 1, which means j1 = j2,
i1 = i2. □

In particular, we can deduce an explicit description of kerΦ from Proposition 2.9 and
Lemma 2.11.

Corollary 2.12. When f(x) = xm for positive integer m,

kerΦ = ⟨xiyj|mj −mj′ + ip ≥ 0 or ≤ −j
′m

p
for all 0 ≤ j′ ≤ j⟩

Corollary 2.12 allows us to describe Ψ on the basis of Q given in Theorem 2.2. In this
case, ψ as defined in 2.3 agrees with Ψ on the basis given in Corollary 2.12. We conclude
this subsection with the formula for Ψ in the special case:

Proposition 2.13. Suppose xiyj and yrxbdx are valid basis elements of Q and H0(C,Ω1
C)

respectively, and xiyj ∈ kerΦ as in Corollary 2.12. If f(x) = xm for nonnegative integer m,
the coefficient of yrxbdx in Ψ(xiyj) is

−m
(

j

r + 1

)
(r + 1)δ1 +

(
j

r

)
(mj −mr + ip)δ2,

where

δ1 :=

{
1 if mj −m(r + 1) + ip ≥ 0 and mj −m(r + 1) + ip+m− 1 = b

0 otherwise

δ2 :=

{
1 if mj −mr + ip− 1 = b ≥ 0

0 otherwise.

Proof. By 2.3.1, it suffices to find the terms in (xiyj)p with nonnegative powers for x and
find the coefficient of yrxbdx in its differential. For each fixed n,

dynxmj−mn+ip = nxmj−mn+ipyn−1dy + (mj −mn+ ip)xmj−mn+ip−1yndx

= −mnxmj−mn+ip+m−1yn−1dx+ (mj −mn+ ip)xmj−mn+ip−1yndx
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If the power of y is r, n could only be r+1 or r. If n = r, we need to check ifmj−mr+ip−1 = b
to match the powers of x. Note that if the equality holds, mj − mr + ip = b ≥ 0, so
yrxmj−mr+ip has nonnegative powers for x automatically. If n = r + 1, we need to check if
mj −m(r+1)+ ip+m− 1 = b; in addition, to ensure that yrxmj−m(r+1)+ip has nonnegative
powers for x, we need to check if mj−m(r+1)+ ip ≥ 0. Define indicator functions δ1, δ2 as
in the statement of Proposition 2.13 for these conditions.
Finally, note that the coefficient of xmj−mn+ipyn in (xiyj)p is given by

(
j
n

)
. Combining them

with the coefficients in the differentials and the δ’s, we obtain

−m
(

j

r + 1

)
(r + 1)δ1 +

(
j

r

)
(mj −mr + ip)δ2.

□

Ψ has properties similar to Φ’s, as in Lemma 2.10 and 2.11.

Lemma 2.14. Suppose xiyj, yr1xb1dx, yr2xb2dx are valid basis elements for Q or Q∨ respec-
tively. If the coefficients for yr1xb1dx, yr2xb2dx are both nonzero in Ψ(xiyj), then r1 = r2,
b1 = b2.

Proof. With the same notation in 2.13, note that if δ1 = 1, δ2 = 1. Thus if the coefficient is
nonzero for yrxbdx, δ2 = 1. Therefore

mj −mr1 + ip− 1 = b1

mj −mr2 + ip− 1 = b2

So m(r2 − r1) = b1 − b2 ≤ m− 2, which means r1 = r2, b1 = b2. □

Lemma 2.15. Suppose xi1yj1, xi2yj2, yrxbdx are valid basis elements for Q or Q∨ respec-
tively. If the coefficient for yrxbdx is nonzero in both Ψ(xi1yj1) and Ψ(xi2yj2), then i1 = i2,
j1 = j2.

Proof. By a similar argument in the proof of Lemma 2.14, δ2 = 1 and

mj1 −mr + i1p− 1 = b

mj2 −mr + i2p− 1 = b.

So m(j2 − j1) = (i1 − i2)p. As p ∤ m, p | j2 − j1 ≤ p− 1, which means j1 = j2, i1 = i2. □

2.4.1. Worked Example for p = 5, d = 4. We will conclude this section an worked example
when p = 5 and f(x) = x4. Then

(1) Q = ⟨y2
x
, y

3

x
, y

3

x2 ,
y4

x
, y

4

x2 ,
y4

x3 ⟩;
(2) Φ:

• y3

x
7→ 3 · y2

x
, y4

x
7→ 4 · y3

x
• otherwise 0

(3) Ψ:

• kerΦ = ⟨y2
x
, y

3

x2 ,
y4

x3 ,
y4

x2 ⟩, Q∨ = ⟨dx, xdx, x2dx, ydx, yxdx, y2dx⟩
• y2

x
7→ 3x2dx

• y3

x2 7→ 2xdx

• y4

x3 7→ dx

• y2

x
7→ 3xydx
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3. Polarized Dieudonne Module

In this section, we will compute the polarized Dieudonne Module (M,F, V, b) from its
Hasse-Witt triple (Q,Φ,Ψ). By [Moo22, Section 2.5], we have

M = Q⊕Q∨ = H1(C,OC)⊕H0(C,Ω1
C),

so it suffices to compute F, V, b.
3.1 will contain results for both general f(x) ∈ k[x] and f(x) = xm, while 3.2 and 3.3

compute F and V respectively only for f(x) = xm.

3.1. Polarized Dieudonne Module: b. The bilinear form b induced by the polarization
is explicitly

b :M ×M → k, ((q, λ), (q′, λ′)) 7→ (q, λ′)− (q′, λ).

where (−,−) : H1(C,OC)×H0(C,Ω1
C)→ k is the pairing induced by Serre duality, explicitly

given by

((qp)p∈C , ω) 7→
∑
p∈C

Resp(qpω),

where Res is defined as in [Har77, Theorem 7.14.1]. Therefore, it suffices to compute (−,−).
We begin with a technical lemma, which is helpful in computing (−,−).

Lemma 3.1. Let K(X) denote the function field of X. For 0 ≤ k ≤ 2p− 3,

TrK(C)/K(P1) y
k =

∑
0≤t≤p−1

(
lkt

t− dkt

)
(f(x))l

k
t −t+dkt ,

where lkt = ⌊k+t
p
⌋, dkt = (k + t) mod p for 0 ≤ t ≤ p− 1.

Proof. To find the trace, we need to find the coefficient of yt in yk+t for 0 ≤ t ≤ p− 1. Write
k + t = lkt p+ dkt where lkt = ⌊k+t

p
⌋, dkt = (k + t) mod p.

Note that lkt ≤ 2, dkt ≤ p − 1, and lkt + dkt ≤ p − 1. In particular, the degree of y in

(y + f(x))l
k
t −t+dkt yd

k
t is less than or equal to p − 1, so it suffices to extract the coefficient of

yt, which is
( lkt
t−dkt

)
(f(x))l

k
t −t+dkt . Summing up from t = 0, ..., p− 1, we have the trace being∑

0≤t≤p−1

(
lkt

t− dkt

)
(f(x))l

k
t −t+dkt .

□

Theorem 3.2. Let q := xayj, λ = yrxbdx where they are basis elements of H1(C,OC) and
H0(C,Ω1

C) respectively. Set i := a+ b, k := j + r. The bilinear pairing (−,−) is given by

−
∑

0≤t≤p−1

(
lkt

t− dkt

) ∑
bt0,...b

t
m

(lkt − t+ dkt )!

btm!b
t
m−1!...b

t
0!
a
btm−1

m−1 ...a
bt0
0

where lkt = ⌊k+t
p
⌋; dkt = (k + t) mod p for 0 ≤ t ≤ p− 1; and (bt0, ..., b

t
m) goes over all m+ 1

tuples in Zm+1
≥0 that satisfy (⋆);

(⋆) :

{
btm + ...+ bt0 = lkt − t+ dkt
mbtm + ...+ bt1 = −1− i
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Proof. Note that
H1(C,OC) = (⊕p∈C,p closedK(C)/OC,p)/K(C);

so in the formula given in 3.1, [q] 7→

{
q at ∞
0 elsewhere

, and it suffices to compute Res∞̃(qλ) =

Res∞̃(xa+byr+jdx). Set i := a+ b, k := j + r. By properties of residues and Lemma 3.1,

Res∞̃(xiykdx) = Res∞(xi TrK(C)/K(P1) y
kdx)

= Res∞(xi
∑

0≤t≤p−1

(
lkt

t− dkt

)
(f(x))l

k
t −t+dkt dx),

where ∞̃ ∈ C and π(∞̃) = ∞ ∈ P1, and lkt and dkt are defined in the statement of Lemma
3.1. Expand the residue linearly and by [Tai14, Theorem 2.5.2], only the terms with x’s
power being −1 are potentially nonzero. So it suffices to extract the coefficient of x−1 in

xi
∑

0≤t≤p−1

( lkt
t−dkt

)
(f(x))l

k
t −t+dkt , which is given by

N :=
∑

0≤t≤p−1

(
lkt

t− dkt

) ∑
bt0,...b

t
m

(lkt − t+ dkt )!

btm!b
t
m−1!...b

t
0!
a
btm−1

m−1 ...a
bt0
0 ,

with lkt , d
k
t , (b

t
0, ..., b

t
m) defined as in the theorem statement.

Finally, by [Tai14, Theorem 2.5.2], Res∞( 1
x
dx) = ord∞(x). By linearity of residues,

(q, λ) = Res∞(
N

x
dx) = Nord∞(x) = −N.

□

We have a simpler expression for the pairing when f(x) = xm for nonnegative integer m.

Proposition 3.3. Let q := xiyj, λ = yrxbdx where they are basis elements of H1(C,OC) and

H0(C,Ω1
C) respectively. Set k := j+ r, A :=

k+ 1+i
m

p−1
. When f(x) = xm for nonnegative integer

m, the bilinear pairing (−,−) is given by

(q, λ) 7→ −n
(

A

Ap− k

)
where

n =

{
min ((A+ 1)p, k + p)− Ap if A ∈ {0, 1, ..., ⌊k+p−1

p
⌋}

0 otherwise

Proof. With the same notation and argument in the proof of Theorem 3.2, we need to find

the coefficient of x−1 in xi
∑

0≤t≤p−1

( lkt
t−dkt

)
(xm)l

k
t −t+dkt . Note that x’s power could only be

m(lkt (1 − p) + k) for all possible values of lkt , and the corresponding coefficient is a multiple

of
( lkt
lkt p−k

)
. Set A :=

k+ 1+i
m

p−1
, so that if lkt = A, lkt (1 − p) + k = −1; and n to be the number

of t’s such that ⌊k+t
p
⌋ = A. Then the coefficient of x−1 is given by n

(
A

Ap−k

)
. With a similar

argument in the proof of Theorem 3.2, (q, λ) = −n
(

A
Ap−k

)
. □

Remark 3.4. The proofs of Theorem 3.2 and Proposition 3.3 are almost identical except
that we can find the coefficient of x−1 more explicitly in the special case when f(x) = xm.
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We can derive an even simpler expression for Proposition 3.3:

Proposition 3.5. With the assumptions and notations in Proposition 3.3,

(q, λ) =

{
1 if i = −1 and k = p− 1

0 otherwise

Proof. For the pairing to be nontrivial, it is necessary that
(

A
Ap−k

)
is nonzero. In particular,

0 ≤ Ap− k ≤ A.

• If A = 2: 2p− 2 ≤ k ≤ 2p. But k ≤ 2p− 3. Contradiction.
• If A = 0: 0 ≤ k ≤ 0. But a direct computations says that the pairing is trivial when
k = 0. Contradiction.
• If A = 1: p− 1 ≤ p. A direct computation gives 0 when k = p; when k = p− 1, then
i = −1. In this case, n = p− 1 and Ap− k = 1, so (q, λ) = 1.

□

3.2. Polarized Dieudonne Module: F . An explicit description of F is given in [Moo22,
Section 2.6]: Let R1 = kerΦ ⊂ Q and choose some R0 ⊂ Q be its complement, F is given by

F :M = R0 ⊕R1 ⊕Q∨ →M = Q⊕Q∨, (r0, r1, λ) 7→ (Φ(r0),Ψ(r1))

We will assume f(x) = xm. It suffices to give a description of R0, since we have already
computed Φ and Ψ in 2.4. But then by Corollary 2.12,

kerΦ = ⟨xiyj|dj − dj′ + i ≥ 0 or ≤ −j
′d

p
for all 0 ≤ j′ ≤ j⟩.

Thus we can define R0 as

R0 := ⟨xiyj| −
j′d

p
< dj − dj′ + ip < 0 for some 0 ≤ j′ ≤ j⟩.

3.3. Polarized Dieudonne Module: V . By [Moo22, Section 2.6], V is given by

V :M = Q⊕Q∨ →M = Q⊕R∨
0 ⊕R∨

1 ,

(q, λ) 7→ (0,Φ∨(λ mod Im(Φ)⊥),−Ψ∨(q mod Im(Φ))),

in which Φ∨ and Ψ∨ are defined by the following property:

(Φ(x), y) = (x,Φ∨(y))p for all x ∈ Q, y ∈ Q∨

(Ψ(x), y) = (x,Ψ∨(y))p for all x ∈ Q, y ∈ Q
It suffices to compute Φ∨ and Ψ∨ on a basis, which we will do in 3.3.1 and 3.3.2. We will

assume f(x) = xm.

3.3.1. Φ∨. We compute Φ∨ on a basis of Q∨. The image of yrxbdx is given by the following
procedure:

(1) Find the unique xiyj that pairs nontrivially with yrxbdx (i.e. i = −1−b, j = p−1−r).
(2) Look for the unique (i2, j2) such that Φ(xi2yj2) ∈ span(xiyj).

(3)

{
yrxbdx 7→

(
j2
j

)
yp−1−j2x−1−i2dx if such (i2, j2) exists

0 otherwise

We will justify this algorithm along with the algorithm for Ψ∨ with an example by the end
of 3.3.2.
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3.3.2. Ψ∨. We compute Ψ∨ on a basis of Q. The image of xiyj is given by the following
procedure:

• Find the unique xiyj that pairs nontrivially with yrxbdx (i.e. b = −1−i, r = p−1−j).
• Look for the unique (i2, j2) such that Ψ(xi2yj2) ∈ span(yrxbdx).

•

{
yrxbdx 7→ Ayp−1−j2x−1−i2dx if such (i2, j2) exists

0 otherwise
where A is given in Proposition

2.13 (with i2, j2 replacing i, j in that formula).

It suffices to illustrate the correctness of the algorithms in 3.3.1 and 3.3.2 with an example.
The general case works similarly.

Example 3.6. Let p = 5 and f(x) = x4. Suppose we want to compute Ψ∨( y
3

x2 ). By the
defining property, for any q ∈ Q,

(q,Ψ∨(
y3

x2
))5 = (

y3

x2
,Ψ(q)).

Note that xydx is the unique basis element that pairs nontrivially with y3

x2 .

• If Ψ(q) ∈ span(xydx), then the right hand side is nonzero (as ( y
3

x2 , xydx) = 1). In

particular, Ψ( y
4

x2 ) = 3xydx, so

(
y4

x2
,Ψ∨(

y3

x2
))5 = (

y3

x2
,Ψ(

y4

x2
)) = 3.

(We can always go back to at most one basis element like this, by Lemma 2.14 and

2.15. ) y4

x2 only pairs nontrivially with 3xdx. Therefore, the coefficient of xdx in

Ψ∨( y
3

x2 ) is 3.

• Otherwise, by Lemma 2.14, Ψ(q) ∈ span(xydx)⊥. Then the right hand side is always

0, and the unique yrxbdx that pairs with each basis element other than y4

x2 always has

coefficient zero in the image of Ψ∨( y
3

x2 ). This means that

Ψ∨(
y3

x2
) = 3xdx.

Remark 3.7. (1) Suppose we want to find Ψ∨(v), and we don’t have such a q such
that Ψ(q) is in the span of the unique element that pairs with v nontrivially, then
Ψ∨(v) = 0 by the second case in Example 3.6.

(2) If we replace Ψ with Φ everywhere and the corresponding lemmas from Lemma 2.14
and 2.15 to Lemma 2.10 and 2.11, every argument in Example 3.6 still holds for Φ∨,
which justifies the procedure given in Section 3.3.1.

A python implementation of 3.3.1 and 3.3.2 is given in EOType AScurves.py and explained
in the Appendix.

3.3.3. Worked Example for Φ∨,Ψ∨: p = 5, d = 4. We return to the example when p = 5 and
f(x) = x4 in Section 2.4.1 and Example 3.6. Then Φ∨ and Ψ∨ are given by:

(1) Φ∨:
• dx, xdx, x2dx, xydx 7→ 0
• y2dx 7→ 3ydx
• ydx 7→ −dx
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(2) Ψ∨:

• y3

x
, y

2

x
7→ 0

• y3

x2 7→ 3xdx

• y4

x2 7→ 2xydx

• y4

x3 7→ 3y2dx

• y4

x
7→ x2dx

4. Final Type

We will compute the final type representation for the Ekedahl-Oort type from a polarized
Dieudonne Module (M,F, V, b) in this section. The advantage of the final type is that it
uniquely determines a polarized Dieudonne module and it is canonical in the sense that it
doesn’t depend on a chosen basis. We will describe how it is constructed from a polarized
Dieudonne Module in 4.1, and provide two algorithms that will combine to compute the final
type for the special case when f(x) = xm.

4.1. The Construction of the Final Type. Given a polarized Dieudonne module (M,F, V, b),
we aim to compute its final type, which is given in the following description: Set N :=
V −1(0) = F (M), and we have 0 ⊆ N ⊆ M . We can go left to N by taking F (N) and go
right by taking V −1(N) in terms of inclusion. For each vector space we obtain in process,
we will take F and V −1 in the same fashion and we can obtain such a sequence called the
canonical flag, once it stabilizes:

0 = N1 ⊆ ... ⊆ Nt =M.(4.1)

We then fill in the missing dimensions with vector spaces in between; the final type remain
well defined when they are chosen arbitrarily, as long as they respect inclusion. Relabel
N1, ...Nt in 4.1, we would have the full flag given by

0 = N ′
1 ⊆ ... ⊆ N ′

2g =M.(4.2)

Set Vi = dimF (N ′
i). The Final type is given by

[V1, ...Vg].(4.3)

4.2. Computing Final Type from Polarized Dieudonne Modules.

4.2.1. The Canonical Flag. We start by computing the Canonical Flag in 4.1. The algo-
rithm follows from the description in 4.1 and is given in Algorithm 1; the code is given in
EOType AScurves.py. Be aware that the lists in Algorithm 1 are indexed from 1 instead of
0.

4.2.2. The Final Type. We will then compute the final type in 4.3. The algorithm is given
in Algorithm 2 and the code is given in EOType AScurves.py. Be aware that the lists in
Algorithm 2 are indexed from 1 instead of 0.

Remark 4.4. We conclude the section with some remarks on Algorithm 2:

(1) F sends every basis element from Q uniquely to another element in Q ⊕ Q∨, and
ignores everything from Q∨. Therefore, line 12, 18 sets V [i] to be dimF (A).
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Algorithm 1 The Canonical Flag

Input: p,m
Output: N , the canonical flag given by a list indexed by dimension
1: N ← [None,None, ..., None] ▷ W is a list of length 2×genus initialized by None
2: Func FlagHelper(W ) ▷ W is a vector space
3: if dimW = 0 then
4: End Recursion
5: else if N [dimW ] is not None then
6: End Recursion
7: end if
8: N [dimW ]← W
9: FlagHelper(F (W ))

10: FlagHelper(V −1(W ))
11: end Func
12: W ← V −1(0)
13: FlagHelper(W )

Algorithm 2 The Final Type

Input: p,m
Output: [V [1], V [2], ..., V [g]]
1: CFlag ← Canonical Flag computed by Algorithm 2

2: g ← (p−1)(m−1)
2

, the genus of the curve
3: V ← [0, 0, ...0] ▷ empty list with length being 2g
4: i← 1
5: while i ≤ 2g do
6: A← CFlag[i]
7: t← The next nonempty dimension in C, and −1 if it doesn’t exist
8: if t = −1 then
9: break

10: else if |basis(A) ∩ basis(Q∨)| < |basis(CFlag[t]) ∩ basis(Q∨)| then
11: while i < t do
12: V [i]← |basis(A) ∩ basis(Q)|
13: i← i+ 1
14: end while
15: else
16: counter ← 0
17: while i < t do
18: V [i] = |basis(A) ∩ basis(Q)|+ counter
19: i← i+ 1
20: counter ← counter + 1
21: end while
22: end if
23: end while
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(2) Suppose Na, Na+1 in the canonical flag have dimNa+1 − dimNa ≥ 2. If there exist
u ∈ Q ∩ (Na+1\Na), v ∈ Q∨ ∩ (Na+1\Na), then the final type would depend on the
order of adjoining u or v. Therefore, Na+1\Na ⊂ Q∨ or Na+1\Na ⊂ Q. In the first
case, dimF remains the same every time we adjoin an element from Q; in the second
case, dimF increases by 1 every time we adjoin an element from Q∨. These conditions
are expressed in line 10 and 15 respectively in Algorithm 2.

5. Directions for Future Work

We will conclude the report with a two directions for future work on the subject matter.

(1) We wish to obtain an easy formula for the final type, at least for f(x) = xm for non-
negative integer m. With the help of the python program described in the Appendix,
we conjecture the following:

Conjecture 5.1. When f(x) = xm ∈ k[x] and m | p − 1, the final type starts with
p−1
m

zeros.

We wonder if there are more patterns like this in the final type and if we can prove
them as a formula in general.

(2) Compute the Hasse Witt Triple and Polarized Dieudonne Module for general f ∈ k(x).
[EP10, Section 4] has computed the first cohomology for general f ∈ k(x) and a
formula for Φ follows easily from their work. However, the challenge lies in obtaining
an explicit description of Ψ – the affine cover for computing the first cohomology in
that case requires more affine opens, and the description we have in Section 2.3.1 does
not apply.
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Appendix: Python Implementation

A. Overview. We have implemented our method with Python 3.9.6 to compute the Ekedahl-
Oort type of Artin-Schreier curves when they are defined by yp− y = f(x) where f(x) = xm

for non-negative integer m. The source code can be accessed on https://nancium.notion.

site/Research-fe3fc9d318ad44f09ead6305305bee85?pvs=4 in ”Source Code” under the
drop down list ”Ekedahl-Oort Types of Artin-Schreier Curves”. The file name is EOType AScurves.py.

To run the code, please make sure that the python installation is 3.8 or later. The reader
can run EOType AScurves.py in any environment that supports python (i.e. IDLE) and
send commands through the shell. We have defined some Hasse-Witt Triples and Polarized
Dieudonne Modules in the source code (after if name == " main ":) section, so the
reader can easily experiment with those objects.

B. The class HasseWittTriple.

B.1. Initialization. A HasseWittTriple object is initialized with two parameters: p and m,
where p = char(k) and m = deg f . It will raise a value error if p | m. For the rest of this
section, suppose we have initialized an HasseWittTriple object HWT with p and m:

B.2. HWT.H1 basis(). Return a basis of Q in Theorem 2.2 as a set of tuples. Each tuple is
in the form of (i, j), and this means xiyj is a basis element of Q. An exception is raised with
an error message when p ∤ m.

B.3. HWT.Phi(display = False). Return Φ on a basis as a dictionary. The key-value pairs
are the form of (i, j) : (a, (i′, j′)) where a is nonzero, which means Φ(xiyj) = axi

′
yj

′
. If

display = True, it will print the key-value pairs line by line.

B.4. HWT.ker Phi(). Return the kernel of Φ as a set of tuples in the form of (i, j), which
means xiyj is a basis element of the kernel of Φ.

B.5. HWT.valid diff basis(). Return a basis of Q∨ = H0(C,Ω1
C) given in 2.3.1 as a set

of tuples. Each tuple is in the form of (r, b), which means yrxbdx is a basis element in this
basis of Q∨.

B.6. HWT.Psi(display = False). Return the image of Ψ on a basis as a dictionary. The
key-value pairs are the form of (i, j) : (a, (r, b)) where a is nonzero, which means Ψ(xiyj) =
ayrxbdx. If display = True, it will print the key-value pairs line by line.

C. The class DieudonneModule.

C.1. Initialization. A DieudonneModule object is initialized with two parameters: p and m,
where p = char(k) and m = deg f . Upon initialization, it will initialize a HasseWittTriple

object from p,m and automatically find the basis for Q and Q∨. For the rest of this section,
suppose we have initialized an DieudonneModule object DM with p and m:

C.2. DM.pairing(q i, q j, lbd r,lbd b). Given an input representing q = xq iyq j and
λ = ylbd rxlbd bdx, return (q, λ).

C.3. DM.b bilinear(q1, lbd1, q2, lbd2). Given an input of tuples representing q =
xq[0]yq[1] and lbd = ylbd[0]xlbd[1]dx, return b((q1, lbd1), (q2, lbd2)).

C.4. DM.Phi dual(). Return the image of Φ∨ on a basis as a dictionary. The key-value pairs
are the form of (r, b) : (a, (r′, b′)) where a is nonzero, which means Φ∨(yrxbdx) = ayr

′
xb

′
dx.

https://nancium.notion.site/Research-fe3fc9d318ad44f09ead6305305bee85?pvs=4
https://nancium.notion.site/Research-fe3fc9d318ad44f09ead6305305bee85?pvs=4
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C.5. DM.Psi dual(). Return the image of Ψ∨ on a basis as a dictionary. The key-value pairs
are the form of (i, j) : (a, (r, b)) where a is nonzero, which means Ψ∨(xiyj) = ayrxbdx.

D. The class Final Type.

D.1. Initialization. A FinalType object is initialized with two parameters: p and m, where
p = char(k) and m = deg f . Upon initialization, it will initialize a DieudonneModule object
from p,m and computes the kernel of V . For the rest of this section, suppose we have
initialized an FinalType object FT with p and m:

D.2. FT.kerV(). Return the kernel of V on a basis, given by a list containing two sets in
the form of {(i1, j1), (i2, j2), ...} (denoting xiyj) and {(r1, b1), (r2, b2), ...} (denoting yrxbdx).

D.3. FT.F(lst). Given a vector space on a basis as a list containing two sets in the form
of {(i1, j1), (i2, j2), ...} (denoting xiyj) and {(r1, b1), (r2, b2), ...} (denoting yrxbdx), return the
image of F on a basis, given by a list in the same format.

D.4. FT.V preim(lst). Given a vector space on a basis as a list containing two sets in
the form of {(i1, j1), (i2, j2), ...} (denoting xiyj) and {(r1, b1), (r2, b2), ...} (denoting yrxbdx),
return the preimage of V on a basis, given by a list in the same format.

D.5. FT.FT Tree(display = False). Return nothing, save the computed canonical tree in
a list, where the i− th element in the list saves the corresponding i+1-dimensional space on
a basis suppose it exists, and is None if it doesn’t. If display = True, print each dimension
and a basis of the corresponding vector space line by line.

D.6. FT.Final type(). Return the final type given by a list [N1, N2, ..., Ng], where g is the
genus of the curve. It will run FT.FT Tree() automatically, so there is no need to call
FT.FT Tree() before calling this function.
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