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1. Introduction

Let k be a finite field. This article is about representation theory of the group GL2(k)×
GL2(k) × GL2(k). Representation theory as a subject studies groups G via their linear
actions on vector spaces; we refer to [Pia83] for the relevant background on the representation
theory discussed in this article. For finite-dimensional complex representations of a finite
group G, such representations can always be decomposed into irreducible ones, so the goal of
representation theory is to understand these irreducible representations as well as possible.

For example, [Pia83] fully classifies the irreducible representations of the group GL2(k),
and these ideas can approximately be extended to classify representations of GLn(k) for
n ≥ 1. However, as the group becomes more complicated, explicit enumeration becomes un-
reasonable. Instead, one can hope to attach invariants to these representations and then hope
to understand desirable properties of these invariants and perhaps show that the invariants
are enough to classify the irreducible representations.

For this paper, we interest ourselves in the “γ-factor” attached to a representation. To
explain the motivation, we note that the groups of interest to us, such as GLn(k) or
GLn(k) × GLm(k), have number-theoretic significance. Notably, understanding represen-
tations of these groups when k is replaced by a local field is the main content of the local
Langlands correspondences, and it is in this context that we first find the γ-factor as a largely
analytic normalizing factor attached to some representations.

In number theory, one frequently expects finite fields to have the most controlled structure,
so with such strong conjectures on the local field situation, we might hope to gain some
traction by finding finite-field analogues for these results. And indeed, in recent years, there
has been work both to establish what the analogues are [Nie14; SZ23; YZ20] as well as to
relate the two situations together [Ye19; YZ20].

This paper is a continuation of the work described in the previous paragraph. In short,
our goal is to tell the relevant story for the group GL2(k) × GL2(k) × GL2(k). Notably, a
nontrivial part of our exposition closely follows the corresponding work over local fields as
worked out by [Ike89; PR87].

1.1. Layout. We briefly explain the sections of this paper. In section 2, we review the
relevant background on Whittaker models and Bessel functions needed in this article; we
refer to, for example, [Pia83] for any other background on representation theory needed. In
section 3, we review the theory for the group GLn(k)×GLn(k) with the goal of providing a
direct proof of the γ-factor at n = 2, which is achieved in Theorem 20. In section 4, the main
content of the article begins, where we define and prove the basic properties of the γ-factor for
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GL2(k)×GL2(k)×GL2(k). This discussion is then continued in section 5 where we compare
the built theory with the story for local fields. Lastly, section 6 defines and computes these
same γ-factors on the “Galois” side of the Langlands program; notably, the rest of the article
lives on the “automorphic” side. The appendices contain some miscellaneous computations
to supplement the content of section 4.

1.2. Acknowledgements. The authors would like to thank their advisors Elad Zelingher
and Jialiang Zou for their eternal patience and invaluable guidance over the course of this
research project. Without them, much of the content of this article could not exist. The
authors would also like to thank the REU at the University of Michigan, during which time
this research was conducted.

1.3. Notation. In this article, all representations are complex and finite-dimensional. Let
q be a prime-power, and let k be the finite field with q elements. We fix now once and for
all an additive character ψ of k.

For now, fix a positive integer n, and we will name some subgroups and elements of
GLn := GLn(k) of interest. For any partition (n1, n2, . . . , nr) of n into positive integers, we
define the diagonal subgroup

Dn1,n2,...,nr :=



d1

d2
. . .

dr

 : di ∈ GLni(k) for each i

 ,

and the unipotent subgroup

Un1,n2,...,nr :=



In1 ∗ · · · ∗

In2 · · · ∗
. . .

...
Inr

 : Ini ∈ GLni(k) for each i

 ,

each sitting inside the parabolic subgroups Pn1,n2,...,nr := Un1,n2,...,nr ⋊ Dn1,n2,...,nr . (Here, ∗
signifies an arbitrary submatrix.) Most notably, we set Dn := D1,1,...,1 and Un := U1,1,...,1,
and we let Pn := Pn−1,1 be the mirabolic subgroup. Observe that Pn is the stabilizer of
en := (0, 0, . . . , 0, 1).

Continuing, we define the Weyl elements Wn to be the permutation matrices in GLn.
Particularly important are the elements

wn1,...,nr :=


Inr

. .
.

In2

In1

 .
Most notable is the long Weyl element wn := w1,1,...,1.
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Note that ψ extends naturally to a character ψn on Un defined by

ψn




1 u1 ∗ · · · ∗

1 u2 · · · ∗
. . .

. . .
...

1 un−1

1



 := ψ(u1 + u2 + · · ·+ un−1).

Later on, we will want to denote the symmetric n× n matrices by Symn and the invertible
symmetric n× n matrices by Sym×

n .

2. Whittaker Models

In this section, we review properties of Whittaker models.

2.1. Existence of Whittaker Models. Here is our definition.

Definition 1 (Whittaker type). A representation π of GLn is of Whittaker type if and only
if ResUn π has exactly one eigenvector (up to scalar) with eigenvalue ψn.

Remark 2. One can show that the definition above is independent of the chosen character
ψ.

For example, it is known that any cuspidal irreducible representation is of Whittaker type.
By definition, a representation π of Whittaker type has dimHomUn(ψn, π) = 1, which by
reciprocity is equivalent to

dimHomGLn

(
π, IndGLn

Un
ψn
)
= 1.

Thus, we see that any representation π of Whittaker type has unique image W(π, ψ) in
IndGLn

Un
ψn, which is called a Whittaker model. Throughout, we may choose to write a specific

Whittaker model by Wv ∈ IndGLn
Un

ψn for each v ∈ Vπ. Note that this image {Wv : v ∈ Vπ}
of π is only unique up to scalar.

While we are here, we provide a relatively explicit Whittaker model for a representation
π of GLn of Whittaker type.

Lemma 3. Fix an irreducible representation π of GLn of Whittaker type. Further, let ⟨·, ·⟩
be a G-form on Vπ, and let vψ ∈ Vπ be an eigenvector with eigenvalue ψn with ⟨vψ, vψ⟩ (which
exists and is unique by scaling). Now, for each v ∈ Vπ we define

Wv(g) := ⟨gv, vψ⟩.
Then W(π, ψ) := {Wv : v ∈ Vπ} is a Whittaker model for π.

Proof. We run the checks directly. The map W• : π → IndGLn
Un

ψn is well-defined because

Wv(ug) =
〈
ugv, vψ⟩ = ⟨gv, u−1vψ

〉
= ⟨gv, ψn(u)vψ⟩ = ψn(u)⟨gv, vψ⟩.

Continuing, the map is of course linear in v, and it is G-equivariant because

Wπ(h)v(g) = ⟨ghv, vψ⟩ = Wv(gh).

Lastly, the map is injective because v ̸= 0 implies that {gv : g ∈ GLn} spans Vπ because π
is irreducible. Thus, ⟨gv, vψ⟩ ≠ 0 for some g ∈ GLn. □
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2.2. Bessel Functions. Fix an irreducible representation π of GLn of Whittaker type. Here
is our definition.

Definition 4 (Bessel function). Fix a Whittaker model W(π, ψ) for π. Then the Bessel
function Jπ,ψ is the unique eigenvector inW(π, ψ) with eigenvalue ψn and with Jπ,ψ(In) = 1.

Certainly if Jπ,ψ exists, then it is unique because the eigenvectors with eigenvalue ψn are
unique up to scalar. To see that Jπ,ψ exists, we have the following lemma.

Lemma 5. Fix an irreducible representation π of GLn of Whittaker type. Then the Bessel
function exists.

Proof. Use the notation of Lemma 3 to set

Jπ,ψ(g) := Wvψ(g) = ⟨gvψ, vψ⟩.
Because vψ is an eigenvector with eigenvalue ψn, the same is true for Jπ,ψ, and further, we
see Jπ,ψ(In) = ⟨vψ, vψ⟩ = 1, as required. □

We will want the following property of Bessel functions, whose proof we omit. Roughly
speaking, the following result is useful when combined with the Bruhat decomposition GLn =
UnDnWnUn.

Proposition 6 ([Gel70, Proposition 4.9]). Fix an irreducible representation π of GLn of
Whittaker type. For d ∈ Dn and w ∈ Wn, if Jπ,ψ(dw) ̸= 0, then

dw =


λnrInr

. .
.

λn2In2

λn1In1


for some partition (n1, . . . , nr) of n and elements λn1 , . . . , λnr ∈ k.

2.3. A Symmetry on Whittaker Models. Whittaker models of irreducible represen-
tations have a special symmetry which will be important later. Given g ∈ GLn, we set
gι := g−⊺. Then note (·)ι : GLn → GLn is an automorphism of GLn. This symmetry on GLn
can be upgraded to a symmetry on representations by taking a representation π of GLn to
πι defined by πι(g) := π(gι). This πι is useful because of the following lemma.

Lemma 7. Let π be an irreducible representation of GLn of Whittaker type. Then πι ∼= π∨.

Proof. It suffices to show that π∨ and πι have the same character. Well, for any g ∈ GLn,
we note g is conjugate to g⊺, so

trπι(g) = tr π
((
g−1
)⊺)

= trπ
(
g−1
)
= trπ∨(g),

so we are done. □

Namely, πι provides a way to talk about π∨ without dual spaces. Observe, however, that
(·)∨ is a contravariant functor while (·)ι is covariant, so we should not think about these as
the same functor.

Continuing, we may upgrade our symmetry on representations to a symmetry on Whit-
taker models.
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Lemma 8. Let π be a representation of GLn of Whittaker type, and let W• : π → IndGLn
Un

ψn
be a Whittaker model. Then the map ·̃ : W(π, ψ)→W (πι, ψ−1) defined by

W̃v(g) := Wv(wng
ι)

provides a Whittaker model W (π, ψ−1) of πι.

Proof. It suffices to show that W̃• : π
ι → IndGLn

Un
ψn is a well-defined injective map of GLn-

representations.

• Well-defined: for v ∈ Vπ, we show that W̃v ∈ IndGLn
Un

ψ−1
n . The main computation

here is that

wn


1 u1 ∗ · · · ∗

1 u2 · · · ∗
. . .

. . .
...

1 un−1

1


ι

w−1
n =


1 −u1 ∗ · · · ∗

1 −u2 · · · ∗
. . .

. . .
...

1 −un−1

1

 .
Thus, for any u ∈ Un, we see that wnu

ιw−1
n ∈ Un, and ψn(wnuιw−1

n )−1 = ψn(u). As
such, we see

W̃v(ug) = Wv (wnu
ιgι) = ψn

(
wnu

ιw−1
n

)
Wv(wng

ι) = ψ−1
n (u)W̃v(g).

• Homomorphism: of course the map v 7→ W̃v is linear in v. This is G-equivariant
because

W̃πι(h)v(g) = Wπ(hι)v(wng
ι) = Wv(wn(gh)

ι) = W̃v(gh).

• Injective: note that if v ∈ Vπ has W̃v = 0, then Wv(wng
ι) = 0 for any g ∈ GLn, so

Wv = 0, so v = 0 because W(π, ψ) is already a Whittaker model. □

To properly view the map W 7→ W̃ as a symmetry, we note that we have the following
lemma.

Lemma 9. For any g ∈ GLn, the following diagram commutes.

IndGLn
Un

ψn IndGLn
Un

ψ−1
n

IndGLn
Un

ψn IndGLn
Un

ψ−1
n

·̃

gι

·̃

g

Proof. This is a direct computation. Fix some g ∈ GLn. For any W ∈ IndGLn
Un

ψn, we want

to show that g̃W = gιW̃ . Well, for any g0 ∈ GLn, we compute

g̃W (g0) = (gW ) (wng
ι
0) = W (wng

ι
0g) = W (wn(g0g

ι)ι) = W̃ (wng0g
ι) .

This equals (gιŴ )(wng0), as desired. □

3. Gamma Factors for GLn×GLn

In this section, we review the construction of the γ-factor attached to two cuspidal irre-
ducible representations σ and τ of GLn. We use the Rankin–Selberg method.
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3.1. A Multiplicity One Result. The backbone of the approach is a multiplicity one
result which we will prove in the present subsection. The correct statement requires test
functions, which we introduce now.

Definition 10. Let S (kn) denote the space of functions kn → C, and we make S (kn) into
a GLn-representation by defining

(gφ)(v) := φ(vg)

for any g ∈ GLn and φ ∈ S (kn) and v ∈ kn. Lastly, we let S0 (k
n) denote the G-

subrepresentation of functions φ : kn → C vanishing at 0.

And here is our result.

Proposition 11. Fix cuspidal representations σ and τ of GLn. Further, let S0 (k
n) denote

the functions kn → C vanishing at 0. Then

dimHomGLn (σ ⊗ τ ⊗ S0 (k
n) ,C) = 1.

Proof. Because σ and τ∨ are cuspidal, we see ResGLn
Pn

σ ∼= ResGLn
Pn

τ∨ ∼= IndPnUn ψn are isomor-
phic irreducible representations, so

dimHomPn(C, σ∨ ⊗ τ∨) = 1.

The main result now follows from Frobenius reciprocity. Indeed, we claim that S0 (k
n) ∼=

IndGLn
Pn

C. In one direction, send φ ∈ S0 (k
n) to the function fφ(g) := φ(e1g); in the other

direction, send f ∈ IndGLn
Pn

C to the function φ(e1g) := f(g). One can check that these maps
are G-equivariant and mutually inverse, which provides our isomorphism. Anyway, the point
is that

dimHomGLn(σ⊗τ⊗S0 (k
n) ,C) = dimHomGLn (S0 (k

n) , σ∨ ⊗ τ∨) = dimHomPn(C, σ∨⊗τ∨),

which is 1. □

A multiplicity one result is not very useful without actually have elements in the needed
vector space, so we go ahead and exhibit an element. Because σ and τ are cuspidal and
hence of Whittaker type, we see that we may embed σ → IndGLn

Un
ψn and τ → IndGLn

Un
ψ−1
n ,

so it suffices to exhibit a map

IndGLn
Un

ψn ⊗ IndGLn
Un

ψ−1
n ⊗ S0 (k

n)→ C.

Here is our definition.

Definition 12 (Z-function). For any W ∈ IndGLn
Un

ψn and W ′ ∈ IndGLn
Un

ψ−1
n and φ ∈ S (kn),

we define

Z(W,W ′, φ;ψ) :=
∑

g∈Un\GLn

W (g)W ′(g)φ(eng),

where en = (0, 0, . . . , 0, 1).

Let’s run our checks.

Lemma 13. As defined above, Z provides a well-defined G-equivariant map IndGLn
Un

ψn ⊗
IndGLn

Un
ψ−1
n ⊗ S (kn)→ C.
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Proof. For now, fix W ∈ IndGLn
Un

ψn and W ′ ∈ IndGLn
Un

ψ−1
n and φ ∈ S (kn). Quickly, we

check that each summand W (g)W ′(g)φ(eng) is independent of the coset Ung. Indeed, for
any u ∈ Un, we see that

W (ug)W ′(ug) = ψn(u)W (g)ψ−1
n (u)W ′(g) = W (g)W ′(g)

by definition of W and W ′, and φ(enug) = φ(eng) because u ∈ Un ⊆ Pn.

Additionally, we see that Z is linear in W and W ′ and φ, so we have defined a linear map

Z : IndGLn
Un

ψn ⊗ IndGLn
Un

ψ−1
n ⊗ S (kn)→ C.

It remains to check that Z is G-equivariant. Well, for any h ∈ GLn, we compute

Z(hW ⊗ hW ′ ⊗ hφ) =
∑

g∈Un\GLn

W (gh)W ′(gh)φ(engh) = Z(W ⊗W ′ ⊗ φ),

where the last equality has reindexed the sum. □

With some effort, we can even show that Z ̸= 0 in our cases of interest.

Lemma 14. Let σ and τ be cuspidal representations of GLn. Let φn : k
n → C denote the

indicator function for en := (0, 0, . . . , 0, 1). Then Z(Jσ,ψ,Jτ,ψ−1 , φn;ψ) = 1. In particular,
Z ̸= 0 as an element of HomGLn(σ ⊗ τ ⊗ S0(k

n),C).

Proof. By definition,

Z(Jσ,ψ,Jτ,ψ−1 , φn;ψ) =
∑

g∈Un\GLn

Jσ,ψ(g)Jτ,ψ−1(g)φn(eng).

The main point is to use Proposition 6. Fix some g ∈ GLn, and suppose that the summand
Jσ,ψ(g)Jτ,ψ−1(g)φn(eng) is nonzero. We claim that g ∈ Un, which will complete the proof.

Indeed, φn(eng) ̸= 0 requires eng = en, so g ∈ Pn. Now, using the Bruhat decomposition,
we may write g = udwu′ where u, u′ ∈ Un and d ∈ Dn and w′ ∈ Wn. Now, Jσ,ψ(g) ̸= 0, so

0 ̸= Jσ,ψ(udwu′) = ψn(uu
′)Jσ,ψ(dw),

so Proposition 6 forces dw to have the form

dw =


λnrInr

. .
.

λn2In2

λn1In1

 .
However, eng = en requires endw = en, so dw ∈ Pn as well, and the only matrix of the above
form which lives in Pn is dw = In, so g = uu′ ∈ Un, as promised. □

3.2. The Functional Equation. Thus far, we have provided an element Z which spans
HomGLn(σ ⊗ τ ⊗ S0(k

n),C). To produce our functional equation, we want to find another
element in that space. For this, we will exhibit a map

σ ⊗ τ ⊗ S (kn)→ σι ⊗ τ ι ⊗ S (kn)

with good duality properties, and then we will pass Z through. In fact, this map will be
found by restricting a map

F : IndGLn
Un

ψn ⊗ IndGLn
Un

ψ−1
n ⊗ S (kn)→ IndGLn

Un
ψ−1
n ⊗ IndGLn

Un
ψn ⊗ S (kn)
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with good duality properties, and then we will restrict it. Well, this last map will be found

component-wise. The map W 7→ W̃ of section 2.3 provides maps IndGLn
Un

ψn → IndGLn
Un

ψ−1
n

and IndGLn
Un

ψ−1
n → IndGLn

Un
ψn. Lastly, we desire a map S(kn)→ S(kn), for which we use the

Fourier transform: for φ ∈ S(kn), set

φ̂(x) :=
∑
y∈kn

φ(y)ψ(⟨x, y⟩),

where ⟨·, ·⟩ is the standard symmetric bilinear form on kn. Each of the component maps we
defined are linear, so they will glue into a linear map

F : IndGLn
Un

ψn ⊗ IndGLn
Un

ψ−1
n ⊗ S (kn)→ IndGLn

Un
ψ−1
n ⊗ IndGLn

Un
ψn ⊗ S (kn)

defined by F(W ⊗W ′ ⊗ φ) := W̃ ⊗ W̃ ′ ⊗ φ̂. The aforementioned “good duality properties”
are recorded in the following lemma.

Lemma 15. For any g ∈ GLn, the following diagram commutes.

IndGLn
Un

ψn ⊗ IndGLn
Un

ψ−1
n ⊗ S (kn) IndGLn

Un
ψ−1
n ⊗ IndGLn

Un
ψn ⊗ S (kn)

IndGLn
Un

ψn ⊗ IndGLn
Un

ψ−1
n ⊗ S (kn) IndGLn

Un
ψ−1
n ⊗ IndGLn

Un
ψn ⊗ S (kn)

g gι

F

F

Proof. We can check this on each component. The diagram commutes on the left two com-
ponents by Lemma 9. Lastly, for any φ ∈ S(kn) and x ∈ kn, we see

ĝφ(x) =
∑
y∈kn

φ(yg)ψ(⟨x, y⟩) =
∑
y∈kn

φ(y)ψ
(
⟨x, yg−1⟩

)
=
∑
y∈kn

φ(y)ψ (⟨xgι, y⟩) = (gιφ̂) (x).

The claim follows. □

We now restrict F and extract our functional equation.

Lemma 16. The function F restricts to a function σ ⊗ τ ⊗ S (kn)→ σι ⊗ τ ι ⊗ S (kn).

Proof. We check this componentwise. We already know that the map W 7→ W̃ restricts to
a map W(σ, ψ)→W (σι, ψ−1) by Lemma 8, and similar holds for τ . □

Theorem 17. Fix cuspidal representations σ and τ of GLn. There is a unique complex
number γ(σ × τ, ψ) such that

Z
(
W̃ , W̃ ′, φ̂;ψ

)
= γ(σ × τ, ψ)Z(W,W ′, φ;ψ)

for any W ∈ W(σ, ψ) and W ′ ∈ W(τ, ψ−1) and φ ∈ S0(k
n).

Proof. Define FZ : σ⊗ τ ⊗S0(k
n)→ C by FZ(W ⊗W ′⊗φ) := Z(W̃ , W̃ ′, φ̂;ψ). The square

in Lemma 15 implies that FZ is GLn-invariant because Z is, so the result follows from
Proposition 11. Technically, we must know that Z ̸= 0 to carry this argument out, which is
established in Lemma 14. □

Corollary 18. Fix cuspidal representations σ and τ of GLn. Then

γ(σ × τ, ψ) =
∑

g∈Un\GLn

Jσ,ψ(g)Jτ,ψ−1(g)ψ
(
⟨eng−1, e1⟩

)
,
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where en := (0, . . . , 0, 1) and e1 := (1, 0, . . . , 0).

Proof. Combining Theorem 17 with the computation of Lemma 14, we see upon plugging
everything in that

γ(σ × τ, ψ) =
∑

g∈Un\GLn

Jσ,ψ(wngι)Jτ,ψ−1(wng
ι)φ̂n(eng).

Note that g 7→ wng
ι is a well-defined involution Un\GLn → Un\GLn (this is included in the

computation of Lemma 8), so we may reindex the sum as

γ(σ × τ, ψ) =
∑

g∈Un\GLn

Jσ,ψ(g)Jτ,ψ−1(g)φ̂n(e1g
ι).

We must now compute the Fourier transform as

φ̂n(e1g
ι) =

∑
y∈kn

φn(y)ψ(⟨e1gι, y⟩) = ψ(⟨e1gι, en⟩) = ψ
(
⟨eng−1, e1⟩

)
.

Plugging this in completes the proof. □

3.3. Computation for n = 2. In this subsection, we compute γ(σ× τ, ψ) as the product of
two Gauss sums when σ and τ are cuspidal representations of GL2. For brevity, let ωσ and
ωτ denote the central characters of σ and τ , respectively. Because σ and τ are cuspidal, the
characters ωσ and ωτ arise from non-decomposable characters on ℓ×, which we will continue
to denote by ωσ and ωτ respectively.

Lemma 19. A set of representatives for U2\GL2 is given by D2 ⊔D2w2U2.

Proof. By the Bruhat decomposition, we may write GL2 = B2 ⊔ B2w2U2, but U2\B2 is
represented by D2 because any element of B2 takes the form[

a b
d

]
=

[
1 b/d

1

] [
a

d

]
.

Thus, we see that D2⊔D2w2U2 succeeds in representing U2\GL2. To see that each element of
D2⊔D2w2U2 belongs to a unique equivalence class, note that there are (q−1)2+(q−1)2q =
(q − 1)2(q + 1) elements in D2 ⊔D2w2U2 and (q2 − 1) (q2 − q) /q = (q − 1)2(q + 1) elements
in U2\GL2. □

Thus, Corollary 18 gives

γ(σ × τ, ψ) =
∑
d∈D2

Jσ,ψ(d)Jτ,ψ−1(d)︸ ︷︷ ︸
SD:=

+
∑
d∈D2
u∈U2

Jσ,ψ(dw2u)Jσ,ψ−1(dwu)ψ
(
⟨e2(dwu)−1, e1⟩

)
︸ ︷︷ ︸

SDwU :=

.
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The sum over D2 can be evaluated to

SD =
∑
a,d∈k×

Jσ,ψ
([
a

d

])
Jτ,ψ−1

([
a

d

])
∗
=
∑
a∈k×
Jσ,ψ

([
a

a

])
Jτ,ψ−1

([
a

a

])
=
∑
a∈k×

ωσ(a)ωτ (a)

=

{
q − 1 if ωσ|k = ω−1

τ |k,
0 else.

Importantly,
∗
= has used Proposition 6. The sum over D2w2U2 is harder to simplify. The

u ∈ U2 does not alter any summand, so we can begin by writing out

SDwU = q
∑
a,d∈k×

Jσ,ψ
([

a
d

])
Jτ,ψ−1

([
a

d

])
ψ(1/a)

= q
∑
a,d∈k×

ωσ(a)ωτ (a)Jσ,ψ
([

1
a−1d

])
Jτ,ψ−1

([
1

a−1d

])
ψ(1/a)

= q
∑
a,d∈k×

ωσ(a)
−1ωτ (a)

−1Jσ,ψ
([

1
−d−1

])
Jτ,ψ−1

([
1

−d−1

])
ψ(a).

Now, [Pia83, p. 63] computes

Jσ,ψ
([

1
−d−1

])
= −ωσ(d)

−1

q

∑
tσ∈ℓ×
N tσ=d

ψ(tr tσ)ωσ(tσ) = −
1

q

∑
tσ∈ℓ×
N tσ=d

ψ(tr tσ)ωσ(tσ)
−1,

where ℓ/k is the quadratic extension, and tr : ℓ → k and N: ℓ → k denote the trace and
norm maps, respectively. A similar formula holds for τ , so we see

SDwU =
1

q

∑
a∈k×

ωσ(a)
−1ωτ (a)

−1ψ(a)
∑

tσ ,tτ∈ℓ×
N tσ=N tτ

ψ(tr tσ − tr tτ )ωσ(tσ)
−1ωτ (tτ )

−1

=
ωτ (−1)

q

∑
a∈k×

ωσ(a)
−1ωτ (a)

−1ψ(a)
∑

tσ ,tτ∈ℓ×
N tσ=N tτ

ψ(tr tσ + tr tτ )ωσ(tσ)
−1ωτ (tτ )

−1.

To continue, we note that there is a group homomorphism ℓ×× ℓ× → {(tσ, tτ ) : N tσ = N tτ}
given by (x, y) 7→ (xy, xyq). Observe that this homomorphism is surjective: for any (tσ, tτ )
with N tσ = N tτ , we have N(tσ/tτ ) = 1, so Hilbert’s theorem 90 promises some z ∈ ℓ×

such that tσ/tτ = y/yq, so x := tσ/y yields (tσ, tτ ) = (xy, xyq). Now, the kernel of this
homomorphism requires xy = xyq = 1, or x = y−1 = y−q, meaning x = y−1 ∈ k×. Thus, the

11



kernel has q − 1 elements, implying

SDwU =
ωτ (−1)
q(q − 1)

∑
a∈k×
x,y∈ℓ×

ψ(tr(xy) + tr(xyq) + a)ωσ(axy)
−1ωτ (axy

q)−1

=
ωτ (−1)
q(q − 1)

∑
a∈k×
x,y∈ℓ×

ψ(tr(x) tr(y) + a)ωσ(axy)
−1ωτ (axy

q)−1

=
ωτ (−1)
q(q − 1)

∑
a∈k×
x,y∈ℓ×

ψ

(
tr(x) tr(y)

a
+ a

)
ωσ(xy)

−1ωτ (xy
q)−1.

At this point, we would like to send a 7→ tr(y)/a, but this is only legal when tr(y) ̸= 0.
Thus, we go ahead and isolate the tr(y) ̸= 0 terms now: over these terms, the summation is

ωτ (−1)
q(q − 1)

∑
a∈k×

ψ(a)
∑
x∈ℓ×

ωσ(x)
−1ωτ (x)

−1
∑
y∈ℓ×

tr(y)=0

ωσ(y)
−1ωτ (y

q)−1.

If ωσ ̸= ω−1
τ , then the second sum vanishes. Otherwise, we can collapse the sum down to

− q2 − 1

q(q − 1)

∑
y∈ℓ×

tr(y)=0

ωσ(y)
−1ωτ (−yq)−1︸ ︷︷ ︸

1

= −q
2 − 1

q
.

Thus,

SDwU =
ωτ (−1)
q(q − 1)

∑
a∈k×
x,y∈ℓ×
tr(y)̸=0

ψ (tr(ax) + tr(y/a))ωσ(xy)
−1ωτ (xy

q)−1 − q2 − 1

q
1ωσ=ω−1

τ

=
ωτ (−1)

q

∑
x,y∈ℓ×
tr(y)̸=0

ψ (tr(x) + tr(y))ωσ(xy)
−1ωτ (xy

q)−1 − q2 − 1

q
1ωσ=ω−1

τ
.

We would now like to re-add the y ∈ ℓ× with tr(y) = 0, where the summation looks like

S0 :=
ωτ (−1)

q

∑
x∈ℓ×

ψ(tr(x))ωσ(x)
−1ωτ (x)

−1
∑
y∈ℓ×

tr(y)=0

ωσ(y)
−1ωτ (y

q)−1.

If ωσ|k ̸= ω−1
τ |k, then the right sum will vanish because we can send y 7→ cy where c ∈ k×

to pick up a factor of ωσ(c)
−1ωτ (c)

−1 ̸= 1; thus, S0 = 0 in this case. If ωσ ∼= ω−1
τ , then the

summation collapses to

S0 = −
1

q

∑
y∈ℓ×

tr(y)=0

ωσ(y)
−1ωτ (−yq)−1︸ ︷︷ ︸

1

= −q − 1

q
= (q − 1)− q2 − 1

q
.

Lastly, suppose ωσ|k = ω−1
τ |k but ωσ ̸= ω−1

τ . This case is harder because we must evaluate
the Gauss sum. For brevity, set χ := ω−1

σ ω−1
τ , which we know is nontrivial but trivial on k×.

12



The right-hand sum is

ωτ (−1)
∑
y∈ℓ×

tr(y)=0

ωσ(y)
−1ωτ (y

q)−1 =
∑
y∈ℓ×

tr(y)=0

χ(y).

There are q − 1 elements y ∈ ℓ× such that tr(y) = 0, and multiplying by an element of k×

preserves this property. Thus, fixing some y0 ∈ ℓ× such that tr(y0) = 0, we see that the
above summation is (q − 1)χ(y0).

It remains to evaluate the Gauss sum. To begin, we use the fact that χ is trivial on k× to
write ∑

x∈ℓ×
ψ(tr(x))χ(x) =

∑
x∈ℓ×/k×

χ(x)
∑
c∈k×

ψ(c tr(x)).

If tr(x) ̸= 0 (of which the above class shows is true for all but x = y0 ∈ ℓ×/k×), then the
inner sum is a sum of ψ on k× and so evaluates to −1. However,

∑
x∈ℓ×/k× χ(x) = 0 because

χ is nontrivial, so we have∑
x∈ℓ×/k×

χ(x)
∑
c∈k×

(c tr(x)) = (q − 1)χ(y0) +
∑

x∈ℓ×/k×
x̸=y0

−χ(x) = qχ(y0).

Bringing everything together, we see that S0 = (q − 1)χ(y0)
2, but y20 = −N y0 ∈ k×, so

actually S0 = (q − 1).

Combining all cases of S0, we see

SDwU =
ωτ (−1)

q

∑
x,y∈ℓ×

ψ(tr(x) + tr(y))ωσ(xy)
−1ω(xyq)−1 − (q − 1)1ωσ |k=ωτ |k .

Adding back in SD, we have proven the following result.

Theorem 20. Let σ and τ be cuspidal representations of GL2 with central characters ωσ
and ωτ , respectively. Then

γ(σ × τ, ψ) = ωτ (−1)
q

∑
x∈ℓ×

ψ(trx)ωσ(x)
−1ωτ (x)

−1
∑
y∈ℓ×

ψ(tr y)ωσ(y)
−1ωτ (y

q)−1.

Remark 21. The above work has also shown the following: let ℓ/k be a quadratic extension
of finite fields, where k has order q. Let ψ be a nontrivial character on k, and let χ be a
nontrivial character on ℓ× with is trivial on k×. Then∑

x∈ℓ×
ψ(trx)χ(x) = χ(x0)q,

where x0 ∈ ℓ× \ k× satisfies x20 ∈ k×.1

4. Gamma Factors for GL2 ×GL2 ×GL2

In this section, we define and prove some basic properties of γ-factors of GL2×GL2×GL2.
Throughout this section, k is a finite field with q elements, where q is odd.

1This appears in Elad’s work on the Bessel function, Proposition A.2
13



4.1. Review of Symplectic Spaces and Notation. We review basic properties of sym-
plectic spaces and define some subgroups. In this subsection, k is a field of characteristic not
equal to 2.

Definition 22 (symplectic). Fix a k-vector space V . A form ⟨·, ·⟩ : V × V → k on V
is symplectic if and only if ⟨·, ·⟩ is bilinear, non-degenerate, and skew-symmetric. Once
equipped with the symplectic form, V is called a symplectic space.

Note that any v ∈ V has ⟨v, v⟩ = −⟨v, v⟩ and hence ⟨v, v⟩ = 0 because char k ̸= 2. Just
to make the point that we can, we define the group GSp(V ) now.

Definition 23 (symplectic group of similitudes). Fix a symplectic k-vector space V . Then
the symplectic group of similitudes GSp(V ) is given by

GSp(V ) := {g ∈ GL(V ) : there is λ(g) ∈ k× with ⟨gv, gv′⟩ = λ(g)⟨v, v′⟩ for v, v′ ∈ V }.
Here, λ(g) is called the multiplier of g.

This definition is perfectly adequate, but it will be helpful to have access to explicit
models of symplectic spaces in the sequel. The following lemma explains how to explicitly
think about symplectic spaces.

Lemma 24. Let V be a symplectic space of finite dimension d. Then d is even, and there
is a basis {x1, . . . , xd/2, y1, . . . , yd/2} of V such that

⟨xi, xj⟩ = ⟨yi, yj⟩ = 0 and ⟨xi, yj⟩ = 1i=j

for any indices i and j.

Proof. For this, we use a modified Gram–Schmidt process. Pick up any basis {v1, . . . , vn} of
V , and begin with x1 := v1. Because ⟨·, ·⟩ is non-degenerate, we can find some basis vector
vi such that ⟨x1, vi⟩ ≠ 0. Note vi ̸= x1, so without loss of generality, we say ⟨x1, v2⟩ ≠ 0, and
by scaling v2, we may assume ⟨x1, v2⟩ = 1, so we set y1 := v2. Now, for each vi with i ≥ 3,
we replace vi with

v′i := vi − ⟨vi, y1⟩x1 + ⟨vi, x1⟩y1.
A direct computation shows that ⟨v′i, x1⟩ = ⟨v′i, y1⟩ = 0 for each v′i, so we can repeat the above
process (namely, set x2 := v3 and extract y2 so that ⟨x2, y2⟩ ≠ 0 and scale) inductively. □

Because the dimension of a finite-dimensional symplectic space is always even, we set the
convention to say that V has dimension 2n for a positive integer n. Lemma 24 allows us to
express each symplectic space in some standard way. In particular, writing vectors v, v′ ∈ V
in terms of our basis as v := a1x1 + · · ·+ anxn+ b1y1 + · · ·+ bnyn and similarly for v′, we see

⟨v, v′⟩ =
[
a⊺ b⊺

]
ŵ2n

[
a′

b′

]
,

where

ŵ2n :=

[
−In

In

]
.

Using the above as an explicit basis for k2n, we can write the condition ⟨gv, gv′⟩ = λ(g)⟨v, v′⟩
for all v, v′ ∈ V as v⊺g⊺ŵ2ngv

′ = λ(g)v⊺ŵ2nv
′ for all v ∈ v′ ∈ V . Equivalently, we are asking

for g⊺ŵ2ng = λ(g)ŵ2n, so we may explicitly define

GSp2n(k) := GSp
(
k2n
)
=
{
g ∈ GLn(k) : ŵngŵ

−1
n = λ(g)gι

}
.
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Our next point of discussion is of isotropic subspaces.

Definition 25 (isotropic). Fix a symplectic k-vector space V . Then a subspace W ⊆ V is
isotropic if and only if ⟨w,w′⟩ = 0 for any w,w′ ∈ W .

Example 26. Given the symplectic space V a basis as in Lemma 24. Then we see that
X := span{x1, x2, x3} is an isotropic subspace.

Lemma 27. Fix a symplectic k-vector space V of finite dimension. Then an isotropic
subspace X ⊆ V is a maximal isotropic subpsace if and only if dimX = 1

2
dimV .

Proof. Given any isotropic subspace X ⊆ V , we can extract any basis of X, extend it to
a basis of V , and then use a modified version of the Gram–Schmidt process akin to the
argument of Lemma 24 to show that X is contained in an isotropic subspace of dimension
1
2
dimV , so dimW ≤ 1

2
dimV . On the other hand, if X is maximal, we see equality must

hold, so we conclude. □

Remark 28. The proof of Lemma 27 shows that any maximal isotropic subspace X of V has
a “dual” maximal isotropic subspace Y such that V = X ⊕ Y . Indeed, this follows from
letting the “rest” of the n basis vectors extracted via Lemma 24 be a basis for Y . Note that
this choice of Y is not unique because extending the basis was not unique.

Thus, we will want to let P sp(V ) ⊆ GSp(V ) denote the subgroup fixing some given
maximal isotropic subspace. In our concrete situation, we define P sp

2n(k) ⊆ GSp2n(k) as
fixing the subspace {x1, . . . , xn}, so

P sp
2n(k) =

{[
A B

D

]
∈ GSp2n(k)

}
.

Now, to be in GSp2n(k), we are asking for[
A⊺

B⊺ D⊺

]
ŵ2n

[
A B

D

]
=

[
−D⊺A

A⊺D −B⊺D +D⊺B

]
to be a multiple of ŵ2n. As such, we see that we require D = λAι for some λ ∈ k× and A−1B
to be a symmetric matrix. Thus, any matrix in P sp

2n(k) can be uniquely written as[
λA

Aι

] [
In Z

In

]
=

[
λA λAZ

Aι

]
where A ∈ GLn(k) and λ ∈ k× and Z ∈ Mn(k) is symmetric. This motivates us to define
the subgroups

Dsp
2n(k) := Dn,n ∩GSp2n(k)

=

{[
λA

Aι

]
: A ∈ GLn(k)

}
,

U sp
2n(k) := Un,n ∩GSp2n(k)

=

{[
In Z

In

]
: Z ∈ kn×n is symmetric

}
15



so that P sp
2n(k) = Dsp

2n(k)U
sp
2n(k). For completeness, we note that the corresponding Borel

subgroup contained in P sp
2n(k) is

Bsp
2n(k) :=

{[
λA

Aι

]
: A ∈ GLn(k) is upper-triangular

}
· U sp

2n(k).

For example, the diagonal matrices of GSp2n(k) make up a maximal torus T sp
2n of Bsp

2n(k),
and the unipotent radical in Bsp

2n(k) is

U+
2n :=

{[
A

Aι

]
: A ∈ GLn(k) is upper-triangular and unipotent

}
· U sp

2n.

We let U−
2n denote the analogous family of lower-triangular matrices, namely

U−
2n :=

{[
A

Aι

]
: A ∈ GLn(k) is lower-triangular and unipotent

}
· {u : u⊺ ∈ U sp

2n}.

Continuing, we for brevity let W (GSp2n(k)), and for each w ∈ W , we define the subgroups

U−
w := U+

2n ∩ wU−
2nw

−1 and U+
w := U−

2n ∩ wU+
2nw

−1.

This allows us to define the standard intertwining operator attached to a Weyl group element
w ∈ W (GSp2n(k)): fix a character χ of T sp

2n, and extend it to Bsp
2n using Bsp

2n = T sp
2n ⋉ U sp

2n.

Then we define the operator Mw : Ind
GSp2n
Bsp

2n
χ→ Ind

GSp2n
Bsp

2n

wχ by

(Mwf)(g) :=
∑
u∈U−

w

f
(
w−1ug

)
.

Most notable is

(Mw2nf)(g) =
∑
u∈Usp

2n

f(w2nug).

One can check that Mw is well-defined and G-invariant. Furthermore, it is a general fact
about root systems and the Weyl groups attached to them that the multiplication map
U+
w ×U−

w → U+
2n is a bijection. Thus, if ℓ : W (GSp2n)→ Z denotes the length function, then

ℓ(w1) + ℓ(w2) = ℓ(w1w2) implies that Mw1 ◦Mw2 =Mw1w2 .

The whole point of investigating GSp2n(k) is that we will be able to approximately
embed GL2(k)

n into GSp2n(k). Indeed, using the basis provided by Lemma 24, we em-
bed GL2(k)

n ↪→ GL2n(k) by having the gi in the tuple (g1, . . . , gn) ∈ GL2(k)
n permute

span{xi, yi}. Concretely, this looks like

([
a1 b1
c1 d1

]
, . . . ,

[
an bn
cn dn

])
7→



a1 b1
. . .

. . .

an bn
c1 d1

. . .
. . .

cn dn


.

Using the above as out notation for gi, we see that ⟨gixi, giyi⟩ = ⟨aixi + ciyi, bixi + diyi⟩ =
aidi − bici = det gi, so ⟨giv, giv′⟩ = (det gi)⟨v, v′⟩ for any v, v′ ∈ span{xi, yi}. It follows that
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we want to define the subgroup

GL
(n)
2 (k) := GLn2 (k) ∩GSp2n(k)

= {(g1, . . . , gn) ∈ GLn2 (k) : det g1 = · · · = det gn} .

4.2. Double Coset Computation. In this subsection, we use the notation and conven-
tions of the previous subsection. Because no confusion will arise, we will omit the field k

when notating our groups. We will compute GL
(n)
2 \GSp2n /P

sp
2n for 2n = 6. We start with

GSp2n/P
sp
2n.

Lemma 29. Fix a symplectic vector space V of finite dimension. Then GSp(V ) has a tran-
sitive left action on the set X (V ) of maximal isotropic subspaces of V by left multiplication.
In particular, if P sp(V ) is the subgroup fixing some maximal isotropic subspace X, then
GSp(V )/P sp(V ) is in natural bijection with X (V ).

Proof. Set n := dimV . Lemma 27 tells us that X (V ) consists of isotropic subspaces of
dimension n/2. Now, our left action is defined simply by translation: for g ∈ GSp(V ) and
X ∈ X (V ), we set g ·X := gX. Here are the checks on this action.

• Well-defined: note that gX is indeed an isotropic subspace because g ∈ GSp(V ).
Indeed, for any x, x′ ∈ X, we see that ⟨gx, gx′⟩ = λ(g)⟨x, x′⟩ = 0 for some given
constant λ(g) ∈ k. Further, dim gX = dimX = 1

2
dimV verifies that gX is maximal.

• Transitive: given X,X ′ ∈ X (V ), we want g ∈ GSp(V ) such that X ′ = gX. Well, via
the modified Gram–Schmidt process of Lemma 24, we obtain can extend a basis of
X to a basis {x1, . . . , xn/2, y1, . . . , yn/2} of V satisfying the conclusion of Lemma 24
and such that X = span{x1, . . . , xn/2}. The same process for X ′ produces another
basis {x′1, . . . , x′n/2, y′1, . . . , y′n/2} of V with the analogous conclusions.

We now define g : V → V by g : xi 7→ x′i and g : yi 7→ y′i. By construction, gX = X ′,
and we see that g ∈ GSp(V ) by checking on the basis coming from X: note

⟨gxi, gxj⟩ = ⟨x′i, x′j⟩ = 0 = ⟨xi, xj⟩, ⟨gyi, gyj⟩ = ⟨y′i, y′j⟩ = 0 = ⟨yi, yj⟩
and

⟨gxi, gyj⟩ = ⟨x′i, y′j⟩ = 1i=j = ⟨xi, yj⟩
for any indices i and j.

The above checks establish the second sentence of the lemma. The last sentence follows
quickly from the Orbit–Stabilizer theorem: the bijection GSp(V )/P sp(V ) → X (V ) is given
by gP sp(V ) 7→ gX. □

For the remainder of the subsection, even though it is not totally necessary, we will set V :=
k2n to be a symplectic space with basis {x1, . . . , xn, y1, . . . , yn} extracted by Lemma 24. This

allows us to identify GL
(n)
2 with a subgroup of GSpn. For brevity, we set Vi := span{xi, yi}

so that V = V1 ⊕ · · · ⊕ Vn; we also set X2n := X (k2n).
In light of Lemma 29, we are interested in studying GL

(n)
2 \X2n. The approach is to attach

invariants to various isotropic subspaces in X2n and use those to classify the orbits. Here are
the relevant invariants.

Lemma 30. Fix notation as above.

(a) For any g ∈ GL
(n)
2 and X ∈ X (V ), we have dim(gX ∩ Vi) = dim(X ∩ Vi).
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(b) For any X ∈ X (V ), we have dim(X ∩ Vi) ∈ {0, 1}.

Thus, X 7→ dim(X ∩ Vi) defines a function GL
(n)
2 \Xn → {0, 1}.

Proof. To see (a), expand g = (g1, . . . , gn), and we compute

dim(X ∩ Vi) = dim(gX ∩ gVi) = dim(gX ∩ span{gixi, giyi}) = dim(gX ∩ Vi).
To see (b), we of course have dim(X ∩ Vi) ≥ 0. On the other hand, note dim(X ∩ Vi) ≥ 2
would imply that Vi = (X ∩ Vi) ⊆ X, but this cannot occur because ⟨xi, yi⟩ = 1 and X is
isotropic. □

In light of Lemma 30, we define

X(d1,...,dn) := {X ∈ Xn : dim(X ∩ Vi) = di for each i}.
Each X(d1,...,dn) provides a good candidate for an orbit when nonempty. Now, these invariants
di are pleasant to work with because they allow an inductive process. Here is our “base case.”

Lemma 31. Fix notation as above with 2n = 2. Then X2 = X(1), and X(1) is a GL
(1)
2 -orbit.

Proof. Here, V = V1 = k2, so any maximal isotropic subspace X ∈ X2 will have dim(X ∩
V1) = dimX = 1, so X ∈ X(1). It follows X2 = X(1). Lastly, note that GL

(1)
2 = GL2 = GSp2,

so the GL
(1)
2 -action on X2 is transitive by Lemma 29, so X(1) is indeed a single orbit. □

Here is our “inductive step.”

Lemma 32. Let V be a symplectic space, and let V = W ⊕W ′ be a decomposition of V
into symplectic spaces. For any maximal isotropic subspace X of V , if X ∩W is a maximal
isotropic subspace of W , then

X = (X ∩W )⊕ (X ∩W ′),

and X ∩W ′ is a maximal isotropic subspace of W ′.

Proof. To see that X = (X ∩W ) ⊕ (X ∩W ′), we must show that any x ∈ X allows us to
write x = w+w′ where w ∈ X∩W and w′ ∈ X∩W ′. Well, we may at least write x = w+w′

for w ∈ W and w′ ∈ W ′, and it remains to show w,w′ ∈ X. Well, any x0 ∈ X ∩W has

⟨x0, w⟩ = ⟨x0, w + w′⟩ = ⟨x0, x⟩ = 0,

where ⟨x0, w′⟩ = 0 because V = W ⊕W ′ is a decomposition of symplectic spaces. Thus,
(X∩W )∪span{w} is an isotropic subspace ofW , so maximality assures us that w ∈ X∩W .
To finish off, we see w′ = x− w ∈ X as well.

It remains to show that X∩W ′ is a maximal isotropic subspace. If V is finite dimensional,
one can see this by counting dimensions, but we will avoid this. Suppose w′

0 ∈ W ′ satisfies
⟨w′, w′

0⟩ = 0 for any w′ ∈ X ∩W ′; we must show w′
0 ∈ X. Well, for any x ∈ X, decompose

x = w + w′ where w ∈ W and w′ ∈ W ′. As above, we know w ∈ X, so w′ ∈ X, so

⟨x,w′
0⟩ = ⟨w,w′

0⟩+ ⟨w′, w′
0⟩ = 0.

Thus, maximality of X implies w′
0 ∈ X, completing the proof. □

Lemma 33. Fix notation as above with n ≥ 2. Given some X ∈ X(d1,...,dn), if dn = 1, then

X = (X ∩ kn−2)⊕ (X ∩Vn). Thus, in this case, X(d1,...,dn)
∼= X(d1,...,dn−1)×X(1) as GL

(n)
2 -sets.
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Proof. The second sentence follows from Lemma 32, where we are decomposing k2n into
k2n−2⊕ Vn. The point is that dn = 1 implies that X ∩ Vn is a maximal isotropic subspace of
Vn.

It remains to prove the last sentence. Well, our bijection is given as follows.

X(d1,...,dn)
∼= X(d1,...,dn−1) × X(1)

X 7→ (X ∩ k2n−2 , X ∩ Vn)
X1 ⊕X2 ←[ (X1 , X2)

The rightward map is well-defined by Lemma 32. Checking that the leftward map is well-
defined and that the maps are inverse is direct from what we’ve already established.

Lastly, we must check that the bijection is an isomorphism of GL
(n)
2 -sets. It’s enough to

show that the leftward map is GL
(n)
2 -equivariant, for which we note

(g1, . . . , gn)(X1, X2) = ((g1, . . . , gn−1X1, gnX2)

gets taken to (g1, . . . , gn−1)X1 ⊕ gnXn, which is indeed (g1, . . . , gn)(X1 ⊕X2). □

Corollary 34. Fix notation as above. If X(d1,...,dn) ⊆ X2n is a nonempty GL
(n)
2 -orbit, then

X(d1,...,dn,1) ⊆ X2n+2 is a nonempty GL
(n+1)
2 -orbit.

Proof. Lemma 33 grants us that

X(d1,...,dn,1)
∼= X(d1,...,dn) ×X(1),

so we will show that the right-hand side is a transitive GL
(n+1)
2 -set. (Note the right-hand side

is nonempty by hypothesis.) Well, for any two pairs (X1, X2) and (X ′
1, X

′
2) in X(d1,...,dn)×X(1),

we may find g1 ∈ GL
(n)
2 and g2 ∈ GL2 so that X ′

1 = g1X1 and X ′
2 = g2X2. But now

g := ((det g2)g1, (det g1)g2) ∈ GL
(n+1)
2

has (X ′
1, X

′
2) = g(X1, X2). □

As a starting step, we address 2n = 4.

Proposition 35. Fix notation as above with 2n = 4. Then X4 = X(0,0) ⊔ X(1,1), and these

are GL
(2)
2 -orbits.

Proof. Fix some X ∈ X(d1,d2). We have two cases. Quickly, if d1 = 1 or d2 = 1, without loss
of generality take d2 = 1. Then Lemma 33 lets us decompose

X(d1,1)
∼= X(d1) ×X(1),

but X(d1) must be X(1) by Lemma 31. It follows that we are looking at X(1,1), and X(1,1) is
an orbit by Corollary 34.

Lastly, we must deal with X(0,0). Observe that this collection is nonempty because it
contains X(0,0) := span{x1 − x2, y1 + y2}, so it remains to show that it is an orbit. We will
show that any X ∈ X(0,0,0) is in the same orbit as X(0,0).

Because X ∈ X(0,0), a nonzero element takes the form v1 + v2 where v1 ∈ V1 and v2 ∈ V2
are nonzero. Using an element of GL

(2)
2 to move the lines span{v1} ⊆ V1 and span{v2} ⊆ V2

around, we may assume c1x1 − c2x2 ∈ X for some nonzero c1, c2 ∈ k. Adjusting X by the
element

([
1/c1

c1

]
,
[
1/c2

c2

])
, we may assume that x1 − x2 ∈ X.
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Now, let {x1−x2, (a1x1+b1y1)+(a2x2+b2y2)} be a basis of X. Adjusting the second basis
element by x1 − x2, we may assume that a2 = 0. Checking that X is isotropic, we see that
b := b1 = b2, which we see must be nonzero, so without loss of generality our basis looks like
{x1− x2, y1 + y2− ax2}. Adjusting X by ([ 1 1 ], [

1 a
1 ]) turns out basis into {x1− x2, y1 + y2},

so X is in the same orbit as X(0,0). □

We are now ready for 2n = 6.

Proposition 36. Fix notation as above with 2n = 6. Then X4 = X(0,0,0) ⊔X(1,0,0) ⊔X(0,1,0) ⊔
X(0,0,1) ⊔ X(0,0,0), and these are GL

(2)
2 -orbits.

Proof. The argument is the same as in Proposition 35 but a little harder. Fix some X ∈
X(d1,d2,d3), and we have two cases. Quickly, if any of the di are 1, take d3 = 1 without loss of
generality. Then Lemma 33 lets us decompose into the n = 4 case, where we see

X(d1,d2) ∈ {X(0,0),X(1,1)}

by Proposition 35. Thus, we either have X(0,0,1) or X(1,1,1), and each of these are orbits by
Corollary 34.

It remains to deal with X(0,0,0). Again, this is nonempty because it contains X(0,0,0) :=
span{x1 − x2, x2 − x3, y1 + y2 + y3}, so it remains to show that it is an orbit. We will show
that any X ∈ X(0,0,0) is in the same orbit as X(0,0,0).

The key claim is that dim(X ∩ (V1 ⊕ V2)) ≥ 1. To see that the dimension is at least 1, let
π3 : V → V3 denote the projection. But then, dimX > dimV3, so ker(π3|X) = X ∩ (V1⊕ V2)
must be nonempty.

Thus, we may let v1+v2 be a nonzero vector in X ∩ (V1⊕V2). Adjusting X by an element

of GL
(3)
2 as in Proposition 35, we may assume x1 − x2 ∈ X. A symmetric argument to

the previous paragraph also allows us to let w2 + w3 be a nonzero vector in X ∩ (V2 ⊕ V3).
Adjusting X by an element of GL

(3)
2 again to move v3 around, we may assume our element

has the form (a2x2 + b2y2)− x3. However, we must have

⟨x1 − x2, (a2x2 + b2y2)− x3⟩ = 0,

so b2 = 0 follows. Now, adjusting X by
(
I2,
[
1/a2

a2

]
, I2
)
grants x2 − x3 ∈ X.

Now, let a third basis vector of X be given by v1+v2+v3. Adjusting this vector by x1−x2
and x2 − x3 allows us to assume that it takes the form c3x3 + d1y1 + d2y2 + d3y3. Testing

⟨x1 − x2, c3x3 + d1y1 + d2y2 + d3y3⟩ = ⟨x2 − x3, c3x3 + d1y1 + d2y2 + d3y3⟩ = 0

implies that d := d1 = d2 = d3, and we must have d ̸= 0 because X ∩ V3 = {0}. Thus, by
scaling, we may take our vector to have the form y1 + y2 + y3 − c3x3, whereupon adjusting
X by (I2, I2, [

1 c3
1 ]) grants y1 + y3 + y3 ∈ X. It follows that X = X(0,0,0). □

In the sequel, it will be helpful to have explicit representatives for P sp
6 \GSp6 /GL

(3)
2 . We

follow [Ike89, Lemma 1.1].

Corollary 37. We have the following representatives of P sp
6 \GSp6 /GL

(3)
2 .
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(a) The element

η0 :=


0 0 0 −1 0 0
0 1 −1 0 0 0
0 0 1 0 0 0
1 1 −1 0 0 0
0 0 0 −1 1 0
0 0 0 0 1 1


has η−1

0 X ∈ X(0,0,0). Further, the “stabilizer” GL
(3)
2 ∩ η−1

0 P sp
6 η0 is the subgroup

S(η0) :=

{([
a b1

d

]
,

[
a b2

d

]
,

[
a b3

d

])
∈ GL

(3)
2 : b1 + b2 + b3 = 0

}
.

(b) The element

η1 :=


0 0 0 −1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 1 0 0 0 0
0 0 0 −1 1 0
0 0 0 0 0 1


has η−1

1 X ∈ X(0,0,1). Further, the “stabilizer” GL
(3)
2 ∩ η−1

1 P sp
6 η1 is the subgroup

S(η1) :=

{([
a1 b1
c1 d1

]
,

[
a1 −b1
−c1 d1

]
,

[
a3 b3

d3

])
∈ GL

(3)
2

}
.

Rearranging the rows and columns appropriately produces elements η2 and η3 with
η−1
2 X ∈ X(0,1,0) and η

−1
3 X ∈ X(1,0,0).

(c) The element η5 := I6 has η−1
5 X ∈ X(1,1,1). Further, the “stabilizer” GL

(3)
2 ∩ η−1

5 P sp
6 η5

is the subgroup

S(η5) :=

{([
a1 b1

d1

]
,

[
a2 b2

d2

]
,

[
a3 b3

d3

])
∈ GL

(3)
2

}
.

Proof. We work with each class one at a time. We omit the checks that each ηi lives in GSp6.

(a) Note

η−1
0 =


0 −1 0 1 0 0
0 1 1 0 0 0
0 0 1 0 0 0
−1 0 0 0 0 0
−1 0 0 0 1 0
1 0 0 0 −1 1

 ,

so η−1
0 X is spanned by {−y1−y2+y3, x2−x1, x3+x2}. Adjusting η−1

0 by (I2, I2,−I2)
produces the element X(0,0,0) constructed in Proposition 36, so the first assertion
follows.
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For the stabilizer computation, we set g :=
([

a1 b1
c1 d1

]
,
[
a2 b2
c2 d2

]
,
[
a3 b3
c3 d3

])
and compute

(4.2.1) η0gη
−1
0 =


d1 c1 0 −c1 0 0

−b2 − b3 a2 a2 − a3 0 b2 + b3 −b3
b3 0 a3 0 −b3 b3

−b1 − b2 − b3 a2 − a1 a2 − a3 a1 b2 + b3 −b3
d1 − d2 c1 + c2 c2 −c1 d2 0
d3 − d2 c2 c2 + c3 0 d2 − d3 d3

 .

Thus, η0gη
−1
0 ∈ P

sp
6 if and only if g ∈ S(η0).

(b) We will only prove the assertions involving η1; the proofs of the others follow by
rearranging the basis. Note

η−1
1 =


0 −1 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−1 0 0 0 0 0
−1 0 0 0 1 0
0 0 0 0 0 1

 ,

so η−1
1 X is spanned by {−y1 − y2,−x1 + x2, x3}, which we can see is span{x1 −

x2, y1 + y2} ⊕ span{x3} and thus in X(0,0,1). (Note span{x1 − x2, y1 + y2} ∈ X(0,0) as
in Proposition 35.)

For the stabilizer computation, we we set g :=
([

a1 b1
c1 d1

]
,
[
a2 b2
c2 d2

]
,
[
a3 b3
c3 d3

])
and com-

pute

(4.2.2) η1gη
−1
1 =


d1 c1 0 −c1 0 0
−b2 a2 0 0 b2 0
0 0 a3 0 0 b3

−b1 − b2 −a1 + a2 0 a1 b2 0
d1 − d2 c1 + c2 0 −c1 d2 0

0 0 c3 0 0 d3

 .

Thus, η1gη
−1
1 ∈ P

sp
6 if and only if g ∈ S(η1).

(c) All assertions follow directly from the fact that η5 is the identity. □

Remark 38. Though it is not clear from the computation, we use the term “stabilizer” for

S(ηi) because S(ηi) consists of the elements of GL
(3)
2 fixing some isotropic subspace in the

corresponding class of GL
(3)
2 \X6. We have chosen a more explicit exposition because it will

be helpful to have explicit matrices computed later on.

4.3. Multiplicity One. In this subsection, we prove a multiplicity one result which will
become the functional equation. For the rest of this section, k will be a finite field, and
π1, π2, π3 are irreducible representations of GL2; note that π1⊗π2⊗π3 is a representation of

GL3
2 and hence of GL

(3)
2 by restriction. For each i, we let ωi denote the central character of

πi, and we set ω := ω1ω2ω3. Using the decomposition P sp
6 = Dsp

6 U
sp
6 , we define the characters

χ0 and χ1 on P sp
6 by

χ0 :

[
λA ∗

Aι

]
7→ λ and χ1 :

[
λA ∗

Aι

]
7→ detA.
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(Notably, χ0 is the restriction of the multiplier character m : GSp6 → C×.) We now set

ω̃ := ω ◦ χ0χ1 and I(ω) := Ind
GSp6
P sp
6

(ω̃).

Example 39. The definition of ω̃ is perhaps a little strange. As an example computation,
we note any c ∈ k× yields

ω̃(cI6) = ω̃

([
c2(1/c · I3)

(1/c · I3)ι
])

= ω
(
c2 det(1/c · I3)

)
= ω(c)−1.

Computations of ω̃ (of which we will do many below) tend to look like this.

The goal of the present subsection is to prove the following result.

Theorem 40. Fix notation as above. Suppose one of the following holds.

• Permutations of the following condition: π1 is cuspidal, and π1 ̸∼= π∨
2 , and π1 ̸∼= π∨

3 .
• Permutations of the following condition: π1 and π2 are cuspidal, and π1 ̸∼= π∨

2 .
• Each πi is cuspidal.

Then

dimHom
GL

(3)
2
(I(ω)⊗ π1 ⊗ π2 ⊗ π3,C) ≤ 1.

To begin, we make the following observation to allow us to use Frobenius reciprocity.

Lemma 41. For any group G with subgroups H1 and H2, any representation ρ of H1 has
the decomposition

ResGH2
IndGH1

ρ ∼=
⊕

η∈H1\G/H2

IndH2

H2∩η−1H1η
ρη,

where ρη(g) := ρ (ηgη−1).

Proof. The forward map sends f ∈ IndGH1
ρ to (fη)η where fη(h2) := f(ηh2) for any h2 ∈ H2.

To see that this map is well-defined, note any h ∈ H2 ∩ η−1H1η has fη(hh2) = f(ηhh2) =
ρ (ηhη−1) f(ηh2) = ρη(h)fη(h2). All group actions are translation on the right, so this map
is H2-invariant as well.

Continuing, the backward map send (fη)η to f defined by

f(h1ηh2) := ρ(h1)fη(h2)

for any h1 ∈ H1 and h2 ∈ H2. To see that this is well-defined, note h1ηh2 = h′1ηh
′
2 implies

η−1h−1
1 h′1η = h2(h

′
2)

−1, so this element is in H2 ∩ η−1H1η, so we see

ρ(h1)fη(h2) = ρ(h1)ρη
(
h2(h

′
2)

−1
)
fη(h

′
2) = ρ(h′1)fη(h

′
2).

Continuing, by construction, we see that f ∈ IndGH1
ρ, and this map is in fact inverse to the

forward map, so we have exhibited the needed isomorphism. □
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The above lemma allows us to use Frobenius reciprocity to write

Hom
GL

(3)
2
(I(ω)⊗ π1 ⊗ π2 ⊗ π3,C)

∼=
⊕

η∈P sp
6 \GSp6 /GL

(3)
2

Hom
GL

(3)
2

(
Ind

GL
(3)
2

GL
(3)
2 ∩η−1P sp

6 η
ω̃η ⊗ π1 ⊗ π2 ⊗ π3,C

)
∼=

⊕
η∈P sp

6 \GSp6 /GL
(3)
2

Hom
GL

(3)
2 ∩η−1P sp

6 η
(ω̃η ⊗ π1 ⊗ π2 ⊗ π3,C)

∼=
⊕

η∈P sp
6 \GSp6 /GL

(3)
2

Hom
GL

(3)
2 ∩η−1P sp

6 η

(
π1 ⊗ π2 ⊗ π3, ω̃−1

η

)
∼=

5⊕
i=1

HomS(ηi)

(
π1 ⊗ π2 ⊗ π3, ω̃−1

ηi

)
.

We now go through and examine HomS(ηi)

(
π1 ⊗ π2 ⊗ π3, ω̃−1

ηi

)
for each ηi.

Lemma 42. The representation π := IndP2
U2
ψ2 is naturally isomorphic to the vector space of

functions f : k× → C with P2-action given by([
a b

1

]
f

)
(x) = ψ(bx)f(ax).

Proof. By definition of π, a function f ∈ π is uniquely determined by its values f ([ x 1 ]) for
x ∈ k× because f ([ a b1 ]) = ψ(b)f ([ a 1 ]), so we may regard each f ∈ π as a function on k×.
To finish, we track through the P2-action as([

a b
1

]
f

)
(x) = f

([
x

1

] [
a b

1

])
= f

([
1 bx

1

] [
ax

1

])
= ψ(bx)f(ax),

which completes the proof. □

Lemma 43. Fix everything as above. Assume that at least one of the πi is cuspidal. Then

dimHomS(η0)

(
π1 ⊗ π2 ⊗ π3, ω̃−1

η0

)
≤ 1.

Proof. Without loss of generality, say that π1 is cuspidal. It will make no difference in the
argument, so immediately restrict our attention to the subgroup

P :=

{([
a b1

1

]
,

[
a b2

1

]
,

[
a b3

1

])
: b1 + b2 + b3 = 0

}
⊆ S(η0),

and in fact for much of the argument we will use

N :=

{([
1 b1

1

]
,

[
1 b2

1

]
,

[
1 b3

1

])
: b1 + b2 + b3 = 0

}
⊆ P.

Using (4.2.1), we can compute that ω̃η0 vanishes on N . Now, because our representations πi
are higher-dimensional, we may write ResP2 πi = π⊕ J(πi) where π := IndP2

U2
ψ2 and J(πi) is

the Jacquet module of U2-invariants; notably, J(π1) = 0. Thus, by expanding out the tensor
product, we have the following cases.
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• We show dimHomP (π⊗ π⊗ π,C) ≤ 1. We argue explicitly; namely, we claim that a
P -linear map T : π ⊗ π ⊗ π → C is uniquely determined by T (11, 11, 11) ∈ C, where
11 denotes the 1-indicator. Here, we are using Lemma 42’s description of π.
By linearity, T is determined by its values on indicators T (1a1 , 1a2 , 1a3). Now, we

see ([
a b

1

]
1ai

)
(x) = ψ(bx)1ai(ax) = ψ(bx)1ai/a(x) = ψ(bai/a)1ai/a(x).

Thus, for example, if a1 ̸= a2, we may find (b1, b2, b3) such that b1 + b2 + b3 = 0 while
ψ(a1b1 + a2b2 + a3b3) ̸= 0; explicitly, set b3 = 0 and b2 = −a1b1/a2 while letting b1
vary. Then the element

([
1 b1

1

]
,
[
1 b2

1

]
,
[
1 b3

1

])
implies that T (1a1 , 1a2 , 1a3) = 0. An

analogous argument shows that a2 ̸= a3 forces T (1a1 , 1a2 , 1a3) = 0.
Thus, T is determined by its values on T (1a, 1a, 1a). But the above work shows

that

T (1a, 1a, 1a) = T

([
a

1

]
1a,

[
a

1

]
1a,

[
a

1

]
1a

)
= T (11, 11, 11),

so T is indeed uniquely determined by T (11, 11, 11).
• We show dimHomN(π⊗ π⊗ J(π3),C) = 0. Well, fix some N -linear map T : π⊗ π⊗
J(π3)→ C. Because J(π3) is U2-invariant, we find

T

([
1 b1

1

]
v1,

[
1 b2

1

]
v2, v3

)
= T

([
1 b1

1

]
v1,

[
1 b2

1

]
v2,

[
1 −b1 − b2

1

]
v3

)
= T (v1, v2, v3)

for any (v1, v2, v3) and b1, b2 ∈ k. Thus, we can view T as a function J(π3) →
HomU2×U2(π ⊗ π,C). But this target is zero-dimensional: note

ResP2×P2
U2×U2

(π ⊗ π) = ResP2
U2
π ⊗ ResP2

U2
π =

⊕
ψ′,ψ′′∈k̂×
ψ′,ψ′′ ̸=1

(ψ′ ⊗ ψ′′)

by expanding out the tensor product. Thus, we see that there are no (U2 × U2)-
eigenvectors with eigenvalue 1, so dimHomU2×U2(C, π ⊗ π) = 0.
• We show dimHomN(π ⊗ J(π2) ⊗ J(π3)) = 0. Arguing as above, an N -linear map
T : π⊗J(π2)⊗J(π3)→ C can be thought of as a map J(π1)⊗J(π2)→ HomU2(π,C).
However, we see dimHomU2(π,C) = 0 from decomposing ResP2

U2
π =

⊕
ψ′∈k̂×,ψ′ ̸=1

ψ′.

Summing the above cases (and their permutations) completes the proof. □

Lemma 44. Fix everything as above. Assume that one of the following conditions holds.

• π3 is cuspidal.
• π1 ̸∼= π∨

2 .

Then dimHomS(η1)(π1 ⊗ π2 ⊗ π3, ω̃−1
η1
) = 0.

Proof. Quickly, we use (4.2.2) to compute ω̃−1
η1

on S(η1) to see that the symmetry condition

on T ∈ HomS(η1)(π1 ⊗ π2 ⊗ π3, ω̃−1
η1
) is

T

([
a1 b1
c1 d1

]
v1,

[
a1 −b1
−c1 d1

]
v2,

[
a3 b3

d3

]
v3

)
= ω(d3)T (v1, v2, v3).

We now argue each case independently.
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• Suppose π3 is cuspidal so that ResGL2
P2

π3 = π. As above, any S(η1)-linear map
T : π1 ⊗ π2 ⊗ π3 → ω̃−1

η1
can be thought of as a map π1 ⊗ π2 → HomB2(π3, (1, ω)),

where (1, ω) : B2 → C is given by (1, ω)
[
a3 b3

d3

]
= ω(d3).

However, HomB2(π3, (1, π)) ⊆ HomP2(π3,C) = HomP2(π,C) is zero-dimensional
because of the decomposition ResP2

U2
π =

⊕
ψ′∈k̂×,ψ′ ̸=1

ψ′.

• Suppose π1 ̸∼= π∨
2 . As above, any S(η1)-linear map T : π1 ⊗ π2 ⊗ π3 → ω̃−1

η1
can be

thought of as a map π3 → HomGL2(π1 ⊗ π2,C) where GL2 acts on π1 ⊗ π2 by[
a b
c d

]
(v1 ⊗ v2) =

[
a b
c d

]
v1 ⊗

[
a −b
−c d

]
v2.

Now, we claim HomGL2(π1 ⊗ π2,C) = 0, which will complete the argument. Well,
set w := [ −1

1 ], and the isomorphism π2 → π2 by π2(g) 7→ π2(wgw) sends the above
GL2-action on π1 ⊗ π2 to the diagonal action[

a b
c d

]
(v1 ⊗ v2) =

[
a b
c d

]
v1 ⊗

[
a b
c d

]
v2.

Thus, HomGL2(π1⊗π2,C) ∼= HomGL2(π1, π
∨
2 ), where everything has the standard GL2-

action. Because π1 ̸∼= π∨
2 , we see that HomGL2(π1, π

∨
2 ) vanishes, so we are done. □

Lemma 45. Fix everything as above. Assume that at least one of the πi is cuspidal. Then

dimHomS(η5)

(
π1 ⊗ π2 ⊗ π3, ω̃−1

η5

)
= 0.

Proof. Without loss of generality, suppose π1 is cuspidal. We immediately restrict to the
subgroup U2×U2×U2 ⊆ S(η5), upon which ω̃−1

η5
is trivial. Now, a (U2×U2×U2)-linear map

T : π1 ⊗ π2 ⊗ π3 → C can be thought of as a map T : π2 ⊗ π3 → HomU2(π1,C). However,
HomU2(π1,C) = 0 because of the decomposition ResGL2

U2
π1 ∼= ResP2

U2
π ∼=

⊕
ψ′∈k̂×,ψ′ ̸=1

ψ′. □

Combining Lemmas 43 to 45 (and their natural permutations) proves Theorem 40.

4.4. Normalizing the Intertwining Operator. Let 2n be a positive even integer. At
this point, we recognize that (Mw2n ◦ Mw2n) : I(ω) → I(ω), so one might hope that this
composite is a scalar and then to compute this scalar. However, there are cases (which we
will discuss later on) where I(ω) fails to be irreducible, so we cannot expect Mw2n ◦Mw2n

to be a scalar. With that said, there is a reasonably large subrepresentation of I(ω) upon
which Mw2n ◦Mw2n is behaved.

Before going into the following statements and proofs, we define some notation. Given
some finite-dimensional k-vector space V and operator T ∈ GL(V ), we define the character
ψT : End(V )→ k× by

ψT (A) := ψ(tr(AT )).

In our application, T will be an inverible symmetric matrix in GLn, and we will view ψT
as a character of U sp

2n by mapping U sp
2n → kn×n by

[
In A

In

]
7→ A. Now, the main point of

introducting ψT is to achieve a multiplicity-one result of eigenvectors with eigenvalue ψT .
Before stating our multiplicity one result, it will be helpful to understand characters on P sp

2n.

Lemma 46. Let χ : P sp
2n → C× be a character. Then χ is trivial on the subgroup{[

A
Aι

] [
1 Z

1

]
: detA = 1, Z ∈ Symn(k)

}
.
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Proof. We will show that the subgroup above is contained in the commutator subgroup. We
proceed in steps.

(1) We show that χ is trivial on U sp
2n. Well, for any u := [ 1 Z1 ] in U

sp
2n where Z ∈ Symn(k),

we use the fact that 2 ∈ k× to note that[
2

1

] [
1 Z

1

] [
2

1

]−1 [
1 Z

1

]−1

=

[
2 2Z

1

] [
1/2 −(1/2)Z

1

]
=

[
1 Z

1

]
,

so u is a commutator.
(2) We show that χ is trivial on the subgroup of matrices of the form [ A Aι ] for A ∈

SLn(k). Well, it is well-known that the commutator subgroup of GLn(k) is SLn(k)
(in the case that, say, k has odd characteristic), so we can find B,C ∈ GLn(k) such
that A = BCB−1C−1. It follows that[

A
Aι

]
=

[
B

Bι

] [
C

Cι

] [
B

Bι

]−1 [
C

Cι

]−1

,

so [ A Aι ] is a commutator.

The above two cases complete the proof. □

Remark 47. Another way to state Lemma 46 is that any character χ : P sp
2n → C× factors

through (m,χdet) : P
sp
2n → F×

q × F×
q , where m is the multiplier character, and χdet is the

“Siegel determinant” defined by

χdet

([
λA

Aι

] [
1 Z

1

])
:= detA.

In other words, there are characters αχ, βχ : F×
q → C× such that χ = (αχ ◦m)(βχ ◦ χdet).

Example 48. Let χ : P sp
2n → C× be a character of the form χ = (αχ ◦m)(βχ ◦ χdet) where

αχ, βχ : F×
q → C× are characters. Then we compute

(w2n)χ

([
λA

Aι

] [
1 Z

1

])
= χ

(
w2n

[
λA

Aι

]
w2n

)
= χ

([
wnA

ιwn
λwnAwn

])
= αχ(λ)βχ(λ)

−nβχ(detA)
−1.

Thus, (w2n)χ =
(
αχβ

−n
χ ◦m

) (
β−1
χ ◦ χdet

)
.

We now state our multiplicity one result.

Proposition 49. Fix notation as above. For any invertible symmetric matrix T ∈ GLn and
character χ : P sp

2n → C×, we have

dimHomUsp
2n

(
Ind

GSp2n
P sp
2n

χ, ψT

)
= 1,

where ψT is a character on U sp
2n as described above.
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Proof. We use Mackey theory. To begin, we use Frobenius reciprocity and Lemma 41 to note

HomUsp
2n

(
Ind

GSp2n
P sp
2n

χ, ψT

)
∼=

⊕
η∈P sp

2n\GSp2n /U
sp
2n

HomUsp
2n

(
IndUsp

2n∩η−1P sp
2nη

χη, ψT
)

∼=
⊕

η∈P sp
2n\GSp2n /U

sp
2n

HomUsp
2n∩η−1P sp

2nη
(χη, ψT ) .(4.4.1)

To continue this argument, we need a rough idea what P sp
2n\GSp2n /U

sp
2n is, for which we use

the Bruhat decomposition

GSp2n =
⊔

w∈W (GSp2n)

Bsp
2nwB

sp
2n,

where W (GSp2n) is the Weyl group. In particular, we want to understand the Weyl group.

Lemma 50. Let 2n be an even positive integer. Let Σ2n be the set of permutations σ ∈ S2n

such that σ(i+ n) ≡ σ(i) + n (mod 2n) for each i.

(a) For each w representing a class in W (GSp2n), there exists a unique permutation
σ ∈ Σ2n such that w = dσ for some diagonal matrix d.

(b) For each σ ∈ Σ2n, there exists some diagonal matrix d with entries in {±1} such that
dσ ∈ GSpn. In fact, d = diag(d1, d2, . . . , d2n) is uniquely determined by the values
{dσ(1), . . . , dσ(n)}.

Proof. We will show the parts independently.

(a) Recalling that the diagonal matrices of GSp2n make up a maximal torus in Bsp
2n, we

note that diagonal matrices are normalized by the semidirect product of permutation
matrices and diagonal matrices (this is even true in GL2n), so we can view elements
of W (GSp2n) as permutation matrices with elements adjusted by a diagonal element
to lie in GSp2n.
In particular, we may write w = dσ for some diagonal matrix d, and this σ is

unique. It remains to show σ ∈ Σ2n. Well, the main point is that dσ ∈ GSp2n

requires

dσŵ2nσ
⊺d⊺ = ŵ2n.

Setting d := diag(d1, . . . , d2n), we now pass through a basis vector eσ(i) to compute

(4.4.2) (−1)1i>ndσ(i+n)dσ(i)eσ(i+n) = (−1)1σ(i)>neσ(i)+n,

where indices live in {1, 2, . . . , 2n} but are considered (mod 2n). Because the diago-
nal elements of d are nonzero, we must have σ(i+ n) ≡ σ(i) + n (mod 2n), meaning
σ ∈ Σ2n.

(b) We need a diagonal matrix d = diag(d1, . . . , d2n) such that dσ ∈ GSp2n, meaning
dσŵ2nσ

⊺d⊺ = ŵ2n. Well, it suffices to check this on basis vectors eσ(i), for which we
see it is enough (4.4.2). But because σ ∈ Σ2n, it is equivalent to require

(−1)1i>ndσ(i)+ndσ(i) = (−1)1i>ndσ(i+n)dσ(i) = (−1)1σ(i)>n

for each index i. Observe (−1)1(i+n)>n = −(−1)1i>n and (−1)1σ(i+n)>n = −(−1)1σ(i)>n
(indices are still taken (mod 2n)), so if the above equation is satisfied at index i,
then it is satisfied at index i+ n.
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As such, given signs {dσ(1), . . . , dσ(n)}, we must set dσ(i)+n := (−1)1σ(i)>ndσ(i) for
each i ∈ {1, 2, . . . , 2} to satisfy the equation at the indices i ∈ {1, 2, . . . , n}, and this
choice of signs will work. □

In light of Lemma 50, we represent each w ∈ W (GSp2n) by dwσw where dw is a diagonal
matrix with entries in {±1} and σw ∈ Σ2n; the permutation σw is determined by w.

The Weyl elements W (GSp2n) provide representatives for double cosets B
sp
2n\GSp2n /B

sp
2n.

It follows that each g ∈ GSp2n can be expressed as pσwdwdu where p ∈ P sp
2n and w ∈

W (GSp2n) and d ∈ Dsp
2n and u ∈ U sp

2n. In other words, we have found that elements of
W (GSp2n)D

sp
2n succeed in representing all double cosets in P sp

2n\GSp2n /U
sp
2n. It will be helpful

later to have the following “normal” form for elements in Σ2n.

Lemma 51. Fix notation as above, and suppose σ ∈ Σ2n.

(a) There exists σ′ ∈ Dsp
2n ∩Σ2n such that σ′σ(i) ≡ i (mod n) for each i ∈ {1, 2, . . . , 2n}.

(b) For any σ′ ∈ Dsp
2n ∩ Σ2n,

{i ∈ {1, 2, . . . , n} : σ(i) ≤ n} = {i ∈ {1, 2, . . . , n} : σ′σ(i) ≤ n}.

Proof. We show the parts independently.

(a) The point is to “rearrange” the outputs of σ on {1, 2, . . . , n}. Indeed, we define
σ′(σ(i)) for i ∈ {1, 2, . . . , n} by

σ′(σ(i)) :=

{
i if σ(i) ≤ n,

i+ n if σ(i) > n.

Then, to have σ′ ∈ Σ2n, we must have σ′(σ(i+n)) = σ′(σ(i)+n) = σ′(i)+n for each
i ∈ {1, 2, . . . , n}, so the above values have uniquely determined an element σ′ ∈ Σ2n.
Now, by construction, we have σ′σ(i) ≡ i (mod n) for i ∈ {1, 2, . . . , n}, and this ex-

tends to all i ∈ {1, 2, . . . , 2n} because σ′σ ∈ Σ2n. Lastly, we see σ
′ maps {1, 2, . . . , n}

to {1, 2, . . . , n} and maps {n + 1, n + 2, . . . , 2n} to {n + 1, n + 2, . . . , 2n}, so as a
matrix σ′ looks like

σ′ =

[
A

D

]
.

Here, A and D are permutation matrices, and σ′(i+ n) = σ′(i) + n implies A = D =
Dι, so σ′ ∈ Dsp

2n.
(b) By hypothesis, σ′ sends {1, 2, . . . , n} to {1, 2, . . . , n} and sends {n+1, n+2, . . . , 2n} to
{n+1, n+2, . . . , 2n}, so σ(i) ≤ n if and only if σ′σ(i) ≤ n. The equality follows. □

Now, according to (4.4.1), we would like to understand χη and ψT on Hη := U sp
2n∩η−1P sp

2nη
for representatives η of our double cosets. We begin with χη.

Lemma 52. Fix notation as above. Fix some w ∈ W (GSp2n), and set η := σwdwd where
d ∈ Dsp

2n. Then χη is trivial on Hη := U sp
2n ∩ η−1P sp

2nη.

Proof. For any u ∈ Uη, we compute

χη(u) = χ
(
ηuη−1

)
= χ

(
σwdw

(
dud−1

)
d−1
w σ−1

w

)
= χσwdw

(
dud−1

)
,

so it is enough to show that χσwdw is trivial on Hσwdw . (Notably, dud
−1 ∈ U sp

2n still.) In other
words, we may assume that d = I2n.
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Now, fix any u ∈ Hη; we want to show χ (σwdwud
−1
w σ−1

w ) = 1. By Lemma 46, it suffices to
show that σwdwud

−1
w σ−1

w has multiplier 1 and has top-left quadrant with determinant 1. To
begin, we recall m : GSp2n → F×

q denotes the multiplier character and compute

m
(
σwdwud

−1
w σ−1

w

)
= m(σwdw)m(u)m(σwdw)

−1 = 1,

so we now want to show χ1 (σwdwud
−1
w σ−1

w ) = 1. We will show this by Gaussian elimination.
The following lemma will be useful.

Lemma 53. Let k be a field, and let z ∈ Mn(k) be called “sparse” if and only if zv = 0 or
v⊺z = 0 for each v ∈ kn. If z is sparse, then gzg−1 is sparse for any g ∈ GLn(k) satisfying
g−1 = g⊺.

Proof. For any v ∈ kn, we note either zg−1v = 0 or v⊺gz = (g−1v)
⊺
z = 0, which is what we

wanted. □

To use Lemma 53, we note that dwud
−1
w − I2n is sparse: indeed, we may check being

sparse on a basis, for which we note that any basis vector ei has dwud
−1
w ei = ei. Thus,

σwdwud
−1
w σ−1

w − I2n is still sparse, so we write

σwdwud
−1
w σ−1

w =

[
A+ In B

0 D + In

]
.

Recall our end goal is to show χ1 (σwdwud
−1
w σ−1

w ) = 1, so we want to show det(A+ In) = 1,
which we now do Gaussian elimination to establish.

For each basis vector ei with 1 ≤ i ≤ n, we know that either Aei = 0 or e⊺iA = 0, meaning
that for each i, either the ith column of A+In is ei or the ith row of A+In is e

⊺
i . For example,

if the ith column is ei, then Gaussian elimination allows us to subtract this column from each
other column, thus zeroing out the entire row while leaving the rest of the matrix unchanged.
A similar process works for columns, from which we find det(A + In) = det(In) = 1, which
is what we wanted. □

Combining Lemma 52 with (4.4.1), we want to count classes η ∈ P sp
2n\GSp2n /U

sp
2n so that

ψT is trivial on Uη. To complete the proof of the proposition, we thus must show that ψT is
trivial on Uη for precisely one class η. To begin, we explain which class that is.

Lemma 54. Fix notation as above.

(a) ψT is trivial on Hŵ2n = U sp
2n ∩ ŵ−1

2n P
sp
2nŵ2n.

(b) Fix some w ∈ W (GSp2n), and set η = σwdwd where d ∈ Dsp
2n. If σw(i) > n for each

i ∈ {1, 2, . . . , n}, then P sp
2nηU

sp
2n = P sp

2nŵ2nU
sp
2n.

Proof. We show the parts independently.

(a) Suppose u :=
[
In Z

In

]
lives in Hŵ2n . Then ŵ2nuŵ

−1
2n = uι =

[
In
−Z In

]
lives in P sp

2n, so
we must have Z = 0. Thus, u = I2n, and it follows ψT (u) = 1.

(b) We use Lemma 51, which provides σ ∈ Dsp
2n ∩ Σ2n such that σσw(i) ≡ i (mod n) for

each i ∈ {1, 2, . . . , n}. However, σw(i) > n for each i ∈ {1, 2, . . . , n}, so Lemma 51
enforces

σσw(i) = i+ n

for each i ∈ {1, 2, . . . , n}. Because σσw ∈ Σ2n, this extends to σσw(i) = i+n for each
i ∈ {1, 2, . . . , 2n}, where indices are taken (mod n) as usual.
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Continuing, we define the diagonal matrix dσ so that σdσσwdw = ŵ2n; more pre-
cisely, we may do this by the uniqueness of (b) in Lemma 50. Now, we see that
σdσ ∈ GSp2n, but σ maps {1, 2, . . . , n} → {1, 2, . . . , n} and {n+ 1, n+ 2, . . . , 2n} →
{n+ 1, n+ 2, . . . , 2n}, so σdσ ∈ Dsp

2n.
All that remains is computation. We see

P sp
2nηU

sp
2n = P sp

2nσdσσwdwdU
sp
2n = P sp

2nŵ2ndU
sp
2n = P sp

2nd
ιŵ2nU

sp
2n = P sp

2nŵ2nU
sp
2n,

which completes the proof. □

Thus, to complete the proof, we want to show that ψT is nontrivial for each double coset
η ∈ P sp

2nηU
sp
2n distinct from P sp

2nŵ2nU
sp
2n.

Lemma 55. Fix notation as above. Fix some w ∈ W (GSp2n), and set η := σwdwd where
d ∈ Dsp

2n. If P
sp
2nηU

sp
2n ̸= P sp

2nŵ2nU
sp
n , then ψT is nontrivial on Hη = U sp

2n ∩ η−1P sp
2nη.

Proof. Quickly, we claim that Hη = Hσwdw . Indeed, if u ∈ Hη, then d
−1(σwdw)

−1u(σwdw)d ∈
P sp
n , but d ∈ P sp

n implies (σwdw)
−1u(σwdw) ∈ P sp

n , so u ∈ Hσwdw . A symmetric argument
establishes the other inclusion.

Thus, we may assume that d = I2n. Now, by Lemma 54, P sp
2nηU

sp
n ̸= P sp

2nŵ2nU
sp
2n implies

that σw(i) ≤ n for some i ∈ {1, 2, . . . , n}; without loss of generality, assume σw(1) ≤ n.
Now, by adjusting σw by a permutation in Dsp

2n ∩ Σ2n via Lemma 51, we may assume that
σw(i) ≡ i (mod n) for each i ∈ {1, 2, . . . , 2n}. In particular, σw(1) = 1.

We are now ready to compute Hη. Fix u :=
[
In Z

In

]
for Z ∈ Symn, and we test for

η−1uη ∈ P sp
2n. Fix indices i, j ∈ {1, 2, . . . , n}, and we want to compute

e⊺i+nd
−1
w σ−1

w uσwdwej = ±(σwei+n)⊺u(σwej) = ±e⊺σw(i)+nueσw(j).

We have the following cases.

• If σw(i) = i and σw(j) = j, then we are looking at ±e⊺i+nuej = ±e
⊺
i+nej = 0 because

j ≤ n < i+ n.
• If σw(i) = i and σw(j) = j + n, then we are looking at ±e⊺i+nuej+n = ±1i=j = 0,
where i ̸= j because σw(i) = i while σw(j) ̸= j.
• If σw(i) = i + n and σw(j) = j, then we are looking at ±e⊺i uej = ±1i=j = 0, where
i ̸= j as in the previous case.
• Lastly, if σw(i) = i+n and σw(j) = j+n, then we are looking at ±e⊺i+nuej = ±uj,i+n.

Thus, we see

Hη = {u ∈ U sp
2n : ui+n,j = 0 if σw(i) = i+ n and σw(j) = j + n}.

Because σw(1) = 1, we thus see that

u11 u12 · · · u1n
u12 0 · · · 0
...

...
. . .

...
u1n 0 · · · 0

 : u11, u12, . . . , u1n ∈ k

 ⊆ Hη,

where we have identified Symn with U sp
2n in the usual way. However, for any invertible

symmetric T ∈ Sym×
n , we see that ψT is nontrivial on the above subgroup, so we are done. □

The above lemma completes the proof of Proposition 49. □
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Now, one way to think about Proposition 49 is that we have shown Ind
GSp2n
P sp
2n

χ has a single

U sp
2n-eigenvector with eigenvalue ψT . However, it is not so difficult to write one down. The

following is a finite-field analogue of a “spherical vector.”

Lemma 56. Fix notation as above, and fix some T ∈ Sym×
n and character χ : P sp

2n → C×.
Define fT,χ : GSp2n → C by

fT,χ(g) :=

{
χ(p)ψT (u) if g = pŵ2nu for p ∈ P sp

n , u ∈ U sp
n ,

0 else.

Then fT,χ is well-defined, nonzero, and lives in Ind
GSp2n
P sp
2n

χ. Further, fT,ω is a U sp
2n-eigenvector

with eigenvalue ψT .

Proof. We begin by checking that f is well-defined; note fT,χ ̸= 0 follows quickly because
fT,χ(ŵn) = 1. Well, suppose we have p1, p2 ∈ P sp

2n and u1, u2 ∈ U sp
2n such that p1ŵ2nu1 =

p2ŵ2nu2; we claim p1 = p2 and u2 = u2, from which ω̃(p1)ψT (u1) = ω̃(p2)ψT (u2) follows
immediately. Well, set p := p−1

2 p1 and u := u2u
−1
1 , and we want to show that p = u = 1. For

this, we observe

p = ŵ2nuŵ
−1
2n = uι.

Setting u := [ 1 Z1 ], we note uι = [ 1
−Z 1 ] lives in P sp

2n if and only if Z = 0, which means
u = p = I2n.

Next up, we show fT,χ ∈ Ind
GSp2n
P sp
2n

χ. Well, fix g0 ∈ GSp6 and p ∈ P sp
2n, and we want to

show fT,χ(pg0) = χ(p)fT,χ(g0). This follows directly from the definitions. For example, if g0
does take the form p0ŵ2nu0, then pg0 = pp0ŵ2nu0, and

fT,χ(pg0) = χ(pp0)ψT (u0) = χ(p)fT,χ(g0)

Otherwise, g0 does not take the form p0w2nu0, so pg0 also does not live in the double coset
P sp
2nŵ2nU

sp
2n, so fT,χ(pg0) = 0 = χ(p)fT,χ(g0).

Lastly, we show that fT,χ is a U sp
2n-eigenvector with eigenvalue ψT . This again follows

directly from the definitions. Fix g0 ∈ GSp2n and u ∈ U sp
2n, and we want to show that

fT,χ(g0u) = ψT (u)fT,χ(g0). Indeed, an identical argument to the above but switching ps with
us (and direction of multiplication) establishes the claim. □

Now, using fT,χ written above as a concrete U sp
2n-eignvector of Ind

GSp2n
P sp
2n

χ, we can use the

multiplicity-one result of Proposition 49 to achieve the following result.

Proposition 57. Fix notation as above, and let χ : P sp
2n → C× be a character of the form

χ = (αχ ◦m)(βχ ◦ χdet) where αχ, βχ : F×
q → C× are characters. Then

Mw2nfT,χ = αχ(−1)βχ(−1)n(n−1)/2 · gn(βχ, ψ, T )fT,(w2n)χ.

Here, (wn)χ is a character on P sp
2n given by (w2n)χ(du) = χ(w2ndw2n) for any d ∈ Dsp

2n and
u ∈ U sp

2n. Additionally, gn(βχ, ψ, T ) is the Gauss sum considered in Appendix B.
32



Proof. Quickly, we check that (w2n)χ is in fact a character: for any d1, d2 ∈ Dsp
2n and u1, u2 ∈

U sp
2n, we see

(w2n)χ(d1u1d2u2) =
(w2n)χ

(
d1d2 · d−1

2 u1d2u2
)

= χ(w2nd1d2w2n)

= χ(w2nd1w2n)χ(w2nd2w2n)

= (w2n)χ(d1u1)
(w2n)χ(d2u2).

Now, we note thatMw2n is a G-invariant operator, so because fT,χ is an U sp
2n-eigenvector with

eigenvalue ψT , we see

u ·Mw2nfT,χ =Mw2n(u · fT,χ) = ψT (u) ·Mw2nfT,χ,

soMw2nfT,χ continues to be a U
sp
2n-eigenvector with eigenvalue ψT but in the space Ind

GSp2n
P sp
2n

(w2n)χ.

By Proposition 49, the space of such eigenvectors is one-dimensional, and Lemma 56 grants
us a nonzero eigenvector fT,(w2n)χ. Thus, there is a (unique) constant c such that

Mw2nfT,χ = cfT,(w2n)χ.

It remains to compute the constant c. Well, plugging in ŵ2n, we see that

c = cfT,(w2n)χ(ŵn)

=Mw2nfT,χ(ŵ2n)

=
∑
u∈Usp

2n

fT,χ(w2nuŵ2n).

Now, fT,χ is supported on P sp
2nŵ2nU

sp
2n, so to have fT,χ(w2nuŵ2n) ̸= 0, there must exist v ∈ U sp

2n

such that w2nuŵ2nv
−1ŵ−1

2n ∈ P
sp
2n. Writing u := [ 1 X1 ] and v := [ 1 Y1 ], we compute

w2nuŵ2nv
−1ŵ−1

2n = w2nuv
⊺ =

[
wn

wn

] [
1 X

1

] [
1
Y 1

]
=

[
wnY wn

wn(1 +XY ) wnX

]
.

This lives in P sp
2n if and only if X is invertible and Y = −X−1. So in the case where X is

invertible, we note that the above work gives the decomposition

w2n

[
1 X

1

]
ŵ2n =

[
−wnX−1 wn

wnX

]
ŵn

[
1 −X−1

1

]
.

It follows that

c =
∑

X∈Sym×
n (k)

fT,χ

([
−wnX−1 wn

wnX

]
ŵn

[
1 −X−1

1

])

=
∑

A∈Sym×
n (k)

χ

([
wnA wn

−wnA−1

])
ψT (A)

= αχ(−1)βχ(−1)n(n−1)/2
∑

A∈Sym×
n (k)

βχ(detA)ψT (A),

as desired. Notably, detwn = (−1)n(n−1)/2. □
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Corollary 58. Fix notation as above, and let χ : P sp
2n → C× be a character of the form

χ = (αχ ◦m)(βχ ◦ χdet) where αχ, βχ : F×
q → C× are characters. Then

(Mw2n ◦Mw2n)(fT,χ) = gn (βχ, ψ, T ) gn
(
β−1
χ , ψ−1, T

)
fT,χ.

Proof. The main point is that plugging Example 48 into Proposition 57 implies

Mw2nfT,(w2n)χ = αχ(−1)βχ(−1)n(n−1)/2βχ(−1)n
∑

A∈Sym×
n (k)

βχ(detA)
−1ψT (A)

= αχ(−1)βχ(−1)n(n−1)/2
∑

A∈Sym×
n (k)

βχ(detA)
−1ψT (A)

−1

= αχ(−1)βχ(−1)n(n−1)/2gn
(
β−1
χ , ψ−1, T

)
.

Combining with Proposition 57 completes the proof. □

Example 59. Take χ = ω̃ so that αχ = βχ = ω. If ω2 ̸= 1, then Theorem 89 implies that

gn (βχ, ψ, T ) gn
(
β−1
χ , ψ−1, T

)
= q

1
2(
n+1
2 ).

Corollary 58 tells us that Mw2n ◦Mw2n behaves as a scalar on the particular vector fT,χ.

To extend this to all of Ind
GSp2n
P sp
2n

χ, we check when Ind
GSp2n
P sp
2n

χ is irreducible.

Proposition 60. Fix notation as above, and let χ : P sp
2n → C× be a character of the form

χ = (αχ ◦m)(βχ ◦ χdet) where αχ, βχ : F×
q → C× are characters. Then

dimEndGSp2n Ind
GSp2n
P sp
2n

χ =


n+ 1 if βχ = 1,

⌊(n+ 1)/2⌋ if βχ ̸= 1 and β2
χ = 1,

1 if β2
χ ̸= 1.

In particular, if ω2 ̸= 1, then I(ω) is irreducible.

Proof. We compute dimEndGSp2n Ind
GSp2n
P sp
2n

χ using Mackey theory. The proof uses many of

the same tools as Proposition 49. Using Frobenius reciprocity and Lemma 41, we see

EndGSp2n Ind
GSp2n
P sp
2n

χ ∼= HomP sp
2n

(
Ind

GSp2n
P sp
2n

χ, ω
)

∼=
⊕

η∈P sp
2n\GSp2n /P

sp
2n

HomP sp
2n∩η−1P sp

2nη
(χη, χ).

Thus, we are interested in studying double cosets P sp
2n\GSp2n /P

sp
2n. As in Proposition 49,

we use the Bruhat decomposition, which tells us that double cosets in Bsp
2n\GSp2n /B

sp
2n are

uniquely represented by the Weyl elements {σwdw : w ∈ W (GSp6)}, so these Weyl elements
also provide representatives of the double cosets in P sp

2n\GSp2n /P
sp
2n. As in Lemma 51, we

want to provide a “normal form” for our Weyl elements.

Lemma 61. Fix notation as above, and fix σ1d1, σ2d2 representing Weyl elements w1, w2 ∈
W (GSp2n). Then

#{i ∈ {1, 2, . . . , n} : σ1(i) > n} = #{i ∈ {1, 2, . . . , n} : σ2(i) > n}

if and only if P sp
2nw1P

sp
2n = P sp

2nw2P
sp
2n.
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Proof. For brevity, define

r(w) := #{i ∈ {1, 2, . . . , n} : σw(i) > n}.

We want to show that r descends to an injective map P sp
2n\GSp2n /P

sp
2n → Z.

To begin, we show that the map is well-defined. Let X be the maximal isotropic subspace
of k2n spanned by {e1, . . . , en}, and we let Y be the maximal isotropic subspace spanned by
{en+1, . . . , e2n}; we then let πY : k

2n → Y denote the projection. Now, we begin by claiming

r(w)
?
= dimπY (wX).

Indeed, πY (wX) is spanned by the vectors πY (wei) for i ∈ {1, 2, . . . , n} and hence by the
vectors eσw(i) where w(i) > n. The equality follows.

Now, we thus see that πY (wpX) = πY (wX) for any p ∈ P sp
2n, so r is well-defined on

GSp2n /P
sp
2n. Furthermore, we note that dim πY (pW ) = dim pπY (W ) = dimπY (W ) for any

subspace W ⊆ k2n, so it follows that r further descends to a function on P sp
2n\GSp2n /P

sp
2n.

Lastly, we must show that r is injective. Well, fix some r ∈ {0, 1, . . . , n}, and we will
show that any w ∈ W (GSp6) with r(w) = r is in the same double coset as some fixed Weyl
element. To begin, we may choose a permutation σ of {1, 2, . . . , n} so that

{i ∈ {1, 2, . . . , n} : σwσ(i) > n} = {1, 2, . . . , r}.

Then σ may be extended to a permutation in Σ2n as in Lemma 51, and we can see that
σ ∈ Dsp

2n. Thus, replacing σ1 with σ and doing similarly for w2, we may assume that

{i ∈ {1, 2, . . . , n} : σw(i) > n} = {1, 2, . . . , r}

on the nose. From here, Lemma 51 grants us another σ′ ∈ Dsp
2n ∩ Σ2n so that σ′σ(i) ≡ i

(mod n) while also preserving {i ∈ {1, 2, . . . , n} : σw(i) > n}, so by adjusting σw by this σ′,
we may assume that

σw(i) =

{
i if 1 ≤ i ≤ r,

i+ n if r < i ≤ n.

These data uniquely determine σw ∈ Σ2n and hence the Weyl element w. This completes
the proof of injectivity. □

The proof of Lemma 61 implies that there are n + 1 double cosets in P sp
2n\GSp2n /P

sp
2n,

which we can compute are given by

ηr :=


In−r

−Ir
In−r

Ir


where 0 ≤ r ≤ n. Notably, η−1

r = η⊺r . Now, for each η ∈ P sp
6 \GSp6 /P

sp
6 , we set Pη :=

P sp
2n ∩ η−1P sp

2nη. We want to check when χηr = χ. To begin, we compute Pηr : writing out
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some g ∈ P sp
2n as a block matrix, we compute

ηrgη
−1
r =


In−r

−Ir
In−r

Ir



A1 A2 B1 B2

A3 A4 B3 B4

D1 D2

D3 D4



In−r

−Ir
In−r

Ir


−1

=


A1 −B2 B1 A2

D4 −D3

−D2 D1

A3 −B4 B3 A4

 ,
which live in P sp

2n if and only if A3 = B4 = D2 = 0. Thus, χηr = χ if and only if we always
have

χ



A1 −B2 B1 A2

D4 −D3

D1

B3 A4


 = χ



A1 A2 B1 B2

A4 B3

D1

D3 D4




The multiplier of the left-hand side is m (ηrgη
−1
r ) = m(g), which is also the multiplier of the

right-hand side. Thus, we no longer care about αχ. It remains to look at βχ, where we see
we require

βχ(detD1 · detA4)
−1 = βχ(detD1 · detD4)

−1,

where we take the convention that the “empty” matrix has determinant 1. Equivalently,
we are asking to always have βχ(detA4) = βχ(detD4). Now, for g ∈ P sp

2n, we see that
A4 = m(g)Dι

4, so we are asking for

βχ(detA4)
2 = βχ(m(g))r.

We have the following cases.

• If β2
χ = 1 and r is even, then both sides are 1.

• If r = 0, then A4 is the empty matrix, so both sides are 1.
• Suppose r is odd and in particular nonzero; we claim χηr = χ if and only if βχ = 1.
Here, A4 is an arbitrary nonempty invertible r × r matrix, so detA4 is an arbitrary
element of F×

q ; the same holds for m(g). Thus, we are basically asking for

βχ(x)
2 = βχ(y)

r

for any x, y ∈ F×
q . Setting y = 1 forces β2

χ = 1, and setting x = 1 forces βrχ = 1.
Because r is odd, this is equivalent to βχ = 1.

Synthesizing the above cases completes the proof. □

Remark 62. Adjusting the tallying portion of the above argument correctly, we find that

dimEndSp2n Ind
Sp2n
P χ =

{
n+ 1 if χ2 = 1,

1 if χ2 ̸= 1.

Here, P ⊆ Sp2n is the Siegel parabolic Sp2n ∩ P
sp
2n.

Proposition 60 now assures us that in the case where χ2 ̸= 1, the composite (Mw6 ◦
Mw6) : I(ω) → I(ω) must be a scalar, and in fact this scalar is q3 by Example 59. When
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χ2 = 1, the composite no longer need to be a scalar, but we can understand it. The idea is
to build a reasonably nice basis.

Lemma 63. Fix notation as above, and let χ : P sp
2n → C× be a character. For each irreducible

subrepresentation π ⊆ Ind
GSp2n
P sp
2n

χ, there is a vector v ∈ π which is a χ-eigenvector.

Proof. Observe that

HomP sp
2n
(Res π, χ) = HomGSp2n

(
π, Ind

GSp2n
P sp
2n

χ
)
≥ 1,

so we are done. □

Thus, if we want to understand howMw6 acts on its various irreducible subrepresentations,
we are allowed to only look at the χ-eigenvectors. The computation of Proposition 60 explains
that χ = (αχ◦m)(βχ◦χdet) with βχ = 1 makes this space four-dimensional, and β2

χ = 1 while
βχ ̸= 1 makes this space two-dimensional. Explicitly, such an eigenvector can be reduced to
a function on P sp

6 \GSp6 /P
sp
6 , which a prior has four representatives η0, η1, η2, η3, but η1 and

η3 do not contribute in the quadratic case. Letting f0, f1, f2, f3 denote the corresponding
basis of eigenvectors (with f1 = f3 = 0 in the quadratic case), we are able to write Mw6 as
a 4× 4 matrix.

Example 64. In the case of χ = 1 and n = 3, we have Mw6 : I(1)→ I(1) can be written as
the matrix 

0 0 0 1
0 0 1/q (q − 1)/q
0 1/q3 (q2 − 1) /q3 (q − 1)/q

1/q6 (q3 − 1) /q6 (q3 − 1) /q4 (q4 − q3 − q + 1) /q4

 .
This diagonalizes and has all nonzero eigenvalues. A similar computation can be done in the
quadratic case to understand the composite (Mw6 ◦Mw6).

Remark 65. It is our expectation that the eigenvalues of Mw2n can all be understood as
(possibly signed) explicit powers of q even in the cases where χ2 = 1, but we have not been
able to prove this.

4.5. The Zeta Function. To define our zeta function, we begin by defining the subgroups
Z := {cI6 : c ∈ k×} and

N :=

{([
1 b1

1

]
,

[
1 b2

1

]
,

[
1 b3

1

])
: b1 + b2 + b3 = 0

}
⊆ GL

(3)
2 .

Note that ZN ⊆ S(η0), so η0ZNη
−1
0 ⊆ P sp

6 , so define for brevity S(ω) := Ind
GSp6
η0ZNη

−1
0

ω−1,

where ω−1 is considered to be a character by its behavior on Z, which is canonically isomor-
phic to k×. We have the following definition.

Definition 66. We define Z : S(ω)⊗
(
IndGL2

U2
ψ2

)⊗3 → C by

Z(f,W1,W2,W3) :=
∑

g∈ZN\GL
(3)
2

f(η0g)W1(g1)W2(g2)W3(g3),

where g = (g1, g2, g3). In the future, we may abbreviate W1(g1)W2(g2)W3(g3) to W (g).
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Indeed, Z is linear in each coordinate, so its definition on the tensor product is well-
founded. To see that the summands are N -invariant, the important check is that, by con-
struction of f ∈ S(ω), any cn ∈ ZN has

f(η0cng) = ω−1(c)f(η0g)

while Wi(cn1g) = ωi(c)ψ2(n1)Wi(g), so all the added terms cancel. (Notably, ω = ω1ω2ω3

and ψ2(n1n2n3) = 1 by construction of N .)

We would like to combine Z with our multiplicity-one result Theorem 40. For this, we
need the following two checks.

Lemma 67. Fix three irreducible representations π1, π2, and π3 of GL2 of Whittaker type.

Then Z restricts to a GL
(3)
2 -linear map

I(ω)⊗W(π1, ψ)⊗W(π2, ψ)⊗W(π3, ψ)→ C.

Proof. A direct computation shows that I(ω) ⊆ S(ω): indeed, for f ∈ I(ω), we need to
check that

f
(
η0znη

−1
0 g
) ?
= ω(z)−1f(g)

for any η0znη
−1
0 ∈ η0ZNη−1

0 , but this can be done by directly computing ω̃
(
η0znη

−1
0

)
. Thus,

it does make sense to say that Z restricts to I(ω)⊗W(π1, ψ)⊗W(π2, ψ)⊗W(π3, ψ).

It remains to see that Z is GL
(3)
2 -linear. This is also a direct computation: we see that

Z(g0f ⊗ g0W ) =
∑

g∈ZN\GL
(3)
2

(g0f)(g)(g0W )(g)

=
∑

g∈ZN\GL
(3)
2

f(gg0)W (gg0)

=
∑

g∈ZN\GL
(3)
2

f(g)W (g)

= Z(f ⊗W ),

as desired. □

Lemma 68. Fix three irreducible representations π1, π2, and π3 of GL2 of Whittaker type.
Then the restriction

Z : I(ω)⊗W(π1, ψ)⊗W(π2, ψ)⊗W(π3, ψ)→ C
is nonzero.

Proof. We must find an input on which Z is nonzero. For this, we use Bessel functions
combined with the function f ∈ I(ω) defined by

f(g) :=

{
ω̃(p) if g = pη0 for some p ∈ P sp

6

0 else.

Note that f ∈ I(ω) by construction. We now compute

Z(f ⊗ Jπ1,ψ ⊗ Jπ2,ψ ⊗ Jπ3,ψ) =
∑

g∈ZN\GL
(3)
2

f(η0g)Jπ1,ψ(g1)Jπ2,ψ(g2)Jπ3,ψ(g3),
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where g = (g1, g2, g3) as usual. Now, f(η0g) ̸= 0 requires η0gη
−1
0 ∈ P

sp
6 , so η0 ∈ S(η0), so we

may write g as

g =

([
a b1

d

]
,

[
a b2

d

]
,

[
a b3

d

])
,

where b1 + b2 + b3 = 0. Using the fact that we only care about the coset ZNg, we may
assume that b1 = b2 = b3 = 0 and that d = 1. Indeed, modding out by Z allows us to assume
that d = 1, and then we see([

a b1
1

]
,

[
a b2

1

]
,

[
a b3

1

])
=

([
1 b1

1

]
,

[
1 b2

1

]
,

[
1 b3

1

])([
a 0

1

]
,

[
a 0

1

]
,

[
a 0

1

])
,

so modding out by N gets rid of the left term. Now, by Proposition 6, the only time we can
have Jπ•,ψ ([ a 1 ]) ̸= 0 is for a = 1. In total, we must have g = (I2, I2, I2), which is a single
coset. Thus, we find

Z(f ⊗ Jπ1,ψ ⊗ Jπ2,ψ ⊗ Jπ3,ψ) = f(η0)Jπ1,ψ(I2)Jπ2,ψ(I2)Jπ3,ψ(I2) = 1,

which is indeed nonzero. □

4.6. The Functional Equation. We now combine Theorem 40 with the zeta function
constructed in the previous subsection to define our gamma factor.

Lemma 69. Fix three cuspidal irreducible representations π1, π2, and π3 of GL2. Then there
is a unique constant γ ∈ C× such that

Z(Mw6f,W ) = γZ(f,W )

for any f ∈ I(ω) and W ∈ W(π1, ψ)⊗W(π2, ψ)⊗W(π3, ψ).

Proof. Because Mw6 is GSp6-invariant, we see that (f,W ) 7→ Z(Mw6f,W ) is also GL
(3)
2 -

invariant by Lemma 67. However, the space

Hom
GL

(3)
2
(I(ω)⊗ π1 ⊗ π2 ⊗ π3,C)

is one-dimensional by Proposition 11, so existence of the needed constant γ exists because
Z is a nonzero element of the above space by Lemma 68 and hence a basis. □

Definition 70. Fix three cuspidal irreducible representations π1, π2, and π3 of GL2. Then
the γ-factor is the unique Γ(π1 × π2 × π3, ψ) such that

Z(Mw6f,W ) = Γ(π1 × π2 × π3, ψ)Z(f,W )

for any f ∈ I(ω) and W ∈ W(π1, ψ)⊗W(π2, ψ)⊗W(π3, ψ).

Here are some immediate corollaries of our definition.

Corollary 71. Fix three cuspidal irreducible representations π1, π2, and π3 of GL2. Then

Γ(π1 × π2 × π3, ψ) =
1

#(ZN)

∑
g=(g1,g2,g3)∈GL

(3)
2

η0gη
−1
0 =pw6u

p∈P sp
6 ,u∈Usp

6

ω̃(p)Jπ1,ψ(g1)Jπ2,ψ(g2)Jπ3,ψ(g3).
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Proof. Let f0 ∈ I(ω) be the vector supported on P sp
6 η0 and defined by f(pη0) = ω̃(p)

for each p ∈ P sp
6 . Then the proof of Lemma 14 implies that Z(f0,J ) = 1 where J =

Jπ1,ψ ⊗ Jπ2,ψ ⊗ Jπ3,ψ. Thus, by definition, we find

γ(π1 × π2 × π3, ψ) =
∑

g∈ZN\GL
(3)
2

Mw6f0(η0g)J (g)

=
∑

g∈ZN\GL
(3)
2

( ∑
u∈Usp

6

f0(w6uη0g)

)
J (g).

Now, f0(w6ug) ̸= 0 if and only if we can write w6uη0g = pη0 for some p ∈ P sp
6 , which only

happens when η0gη
−1
0 = u−1w6p. Such a decomposition of η0gη

−1
0 in U sp

6 w6P
sp
6 is unique (see,

for example, the proof of Lemma 56), so the result follows upon writing out the definition
of f0. □

Corollary 72. Fix three cuspidal irreducible representations π1, π2, and π3 of GL2. Then

Γ
(
π∨
1 × π∨

2 × π∨
3 , ψ

−1
)
= Γ(π1 × π2 × π3, ψ).

Proof. This follows immediately from taking the conjugate of both sides of Corollary 71 and
noting that

Jπ,ψ(g) = Jπ,ψ
(
g−1
)
= Jπ∨,ψ−1(g)

by [Nie14, Propositions 3.5]. □

Remark 73. One can use Corollary 72 to compute the magnitude of Γ by using the functional
equation twice, but doing this requires adjusting the functional equation somewhat. In
particular, one is able to show that Γ is nonzero upon checking that none of the eigenvalues
of Mw6 ◦Mw6 are zero as done in Example 64.

5. Comparison with Local Field Scenario

The Local Langlands Correspondence gives us access to gamma factor on the Galois side,
which are better understood as in §6, from the local p-adic scenario. In order to gain access
to the Galois side from our current scenario over finite fields, we will demonstrate a way to
lift our functional equation over finite fields to one over local p-adic fields, hence relating
their respective gamma factors.

In this section, K is a local p-adic field, OK is the ring of integers of K, p ⊂ OK is
the prime ideal of OK , k := OK/p is the residue field of K, q = |k|, and ν : OK → k is
the valuation map. We will also denote ν as the valuation map on GLn(OK), where the
valuation is taken entry-wise. Additionally, we define once and for all an additive character
ψ : K → C× with conductor p. As such, the restriction of ψ to OK induces a character on
k, which by abuse of notation we will also label as ψ.

By convention, we set Haar measure dx on K so that vol(p) = 1, and we set Haar measure
d×x on K× by d×x := dx/|x|. Later on we will also want a Haar measure on SL2(OK), which
we normalize so that

vol

({[
1 + a b
c 1 + d

]
∈ SL2(OK) : a, b, c, d ∈ p

})
= 1.
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All the listed groups are unimodular (in particular, either abelian or compact), so their left
and right Haar measures align.

5.1. Review of Level Zero Representations. Given an irreducible cuspidal representa-
tion of GLn(k) and some nonzero complex number z ∈ C×, we can produce an irreducible
supercuspidal representation of GLn(K). Such representations of GLn(K) are called of level
zero.

Definition 74 (Level Zero Representation). A representation π of GLn(K) is of level zero
if there exists an irreducible cuspidal representation σ of GLn(k) and a representation Λ of
K× ·GLn(O) such that Λ|GLn(O) = σ ◦ ν and

π ∼= ind
GLn(K)

K× GLn(O) Λ,

where ind is smooth compact induction.

The representation Λ, and hence the representation π, can be recovered given just σ, which
determines Λ on GLn(O), and the central character ωΛ of Λ. Likewise, ωΛ is determined
by the central character of σ and s := ωΛ(ϖ) ∈ C×. By [BK93, Theorem 8.4.1], this map
(σ, s) 7→ π is a bijection to level zero representations of GLn(K). The fact that π is irreducible
supercuspidal also comes from [BK93].

Given this bijection, we may unambiguously denote a level zero representation as (σ, s) or
σs, where σ is an irreducible cuspidal representation of GLn(k) and s ∈ C×.

5.2. Lifting the Zeta Sum. Throughout this subsection, we fix cuspidal representations
π1, π2, π3 of GL2(k) which lift to level-zero supercuspidal representations Π1,Π2,Π3 of GL2(K)
as described in section 5.1. By convention, we write λi := ωΠi(ϖ), so the pair (πi, λi) uniquely
determines Πi.

In this subsection, we examine how one can relate the finite-field Z-sum defined in sec-
tion 4.5 with its local counterpart. This lifting process must be done in steps: we must know
how to lift Whittaker functions, we must know to lift elements of I(ω), and lastly we must
compare the Z-sum with the Z-integral.

To begin, we describe how to lift Whittaker functions.

Proposition 75 ([YZ20, Proposition 3.9]). Let Π be a level-zero supercuspidal representation
of GL2(K) arising from the cuspidal representation π of GL2(k) and λ := ωΠ(ϖ). For any
Whittaker function W ∈ W(π, ψ), there is a Whittaker function LW ∈ W(Π, ψ) supported
on U2(K)K×GL2(OK) such that

LW (uzg) = ψ(u)ωΠ(z)W (ν(g))

for any u ∈ U2(K) and z ∈ K× and g ∈ GL2(OK).

Next up, we must lift f ∈ I(ωπ) to Lf ∈ I(ωΠ, s, t). For brevity, given complex numbers
s, t ∈ C, we define I(ωΠ, s, t) as containing right GSp6(OK)-finite functions f : GSp6(K)→ C
such that

f

([
λA ∗

Aι

]
g

)
= ωΠ(λ detA)|λ|s |detA|t f(g).

41



For brevity, we define

ωΠ,s,t

([
λA ∗

Aι

])
:= ωΠ(λ detA)|λ|s |detA|t .

We are now ready to state our lifting result.

Proposition 76. Fix notation as above, and let f ∈ I(ωπ). Then there is a function
Ls,tf ∈ I(ωΠ, s, t) supported on P sp

6 (K)GSp6(OK) such that

Ls,tf
([
λA ∗

Aι

]
g

)
= ωΠ(λ detA)|λ|s |detA|t f(ν(g))

for any [ λA ∗
Aι ] ∈ P

sp
6 (K) and g ∈ GSp6(OK).

Proof. To begin, define a function f0 : GSp6(K)→ C by

f0(g) :=

{
f0(ν(g)) if g ∈ GSp6(OK),
0 if g /∈ GSp6(OK).

By construction, f0(hg) = ωπ(ν(h))f0(g) for any h ∈ P sp
6 (OK) and g ∈ GSp6(K). This

allows us to define

Ls,tf(g) :=
∫
P sp
6 (OK)\P sp

6 (K)

ωΠ,s,t(h)
−1f0(hg) dh.

The left-invariance property of f0 by P sp
6 (OK) implies that this integral is well-defined (i.e.,

the integrand does not depend on choice of representative of P sp
6 (OK)\P sp

6 (K)). It remains
to check that Lf satisfies the needed symmetry conditions. To begin, for h0 ∈ P sp

6 and
g ∈ GSp6(K), we compute

Ls,tf(h0g) =
∫
P sp
6 (OK)\P sp

6 (K)

ωΠ,s,t(h)
−1f0(hh0g) dh

=

∫
P sp
6 (OK)\P sp

6 (K)

ωΠ,s,t

(
hh−1

0

)−1
f0(hg) dh

= ωΠ,s,t(h0)Ls,tf(g).

Additionally, we see that Ls,tf(g) = f0(g) = f(ν(g)) for any g ∈ GSp6(OK), which when
combined with Ls,tf ∈ I(ω, s) completes the proof. □

Remark 77. By the Iwasawa decomposition, GSp6(K) = P sp
6 (K)GSp6(OK), so the support

of Ls,tf is not hindered by this condition.

The last piece we need before our theorem is to recall the definition of the Z-integral. For
brevity, letW(Π, ψ) consist of functions of the formW := W1⊗W2⊗W3 whereWi ∈ W(Πi, ψ)
for i ∈ {1, 2, 3}; then define LW to be the corresponding lift. Then for f ∈ I(ωΠ, s, t) and
W ∈ W(Π, ψ), one defines

Z(f,W ) :=

∫
Z(K)N0(K)\GL

(3)
2 (K)

f(η0g)W (g) dg.

This integral absolutely converges for Re s, t≫ 0. We are now ready to prove our result.
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Theorem 78. Fix notation and Haar measures as above. Then for Re s, t ≫ 0 and any
f ∈ I(ω) and W ∈ W(π, ψ), we have

Z(Ls,tf,LW ) = (q − 1)Z(f,W ).

Proof. We compute Z(Ls,tf,LW ) directly. As in [Ike89, section 3.1], we note that each

element of Z(K)N0(K)\GL
(3)
2 (K) is represented by a matrix of the form

g :=

([
a

1

] [
1 b

1

] [
x

x−1

]
g1,

[
a

1

]
g2,

[
a

1

] [
y

y−1

]
g3

)
where a, x, y ∈ K× and b ∈ K and g1, g2, g3 ∈ SL2(OK). In this case, the Haar measure dg
becomes |axy|−2 d×a d×x d×y db dg1 dg2 dg3. Now, to have W (g) ̸= 0, we claim that a, x, y ∈
O×
K . We take this in cases.

• We show that a ∈ O×
K . The main point is that we need [ a 1 ]g2 to live in the support

of W2, which is U2(K)K×GL2(OK), so we must have

z

[
1 u

1

] [
a

1

]
∈ GL2(OK)

for some z, u ∈ K. The matrix is upper-triangular, and the diagonal entries are az
and z, so we see that z ∈ O×

K and then a ∈ O×
K are forced.

• We show x ∈ O×
K ; the argument that y ∈ O×

K is similar. Once again, the main point
is that [ a 1 ][ 1 b1 ][

x
x−1 ]g1 to live in the support of W1, so we must have

z

[
1 u

1

] [
a

1

] [
1 b

1

] [
x

x−1

]
∈ GL2(OK)

for some z ∈ K× and u ∈ K. Again, the diagonal entries of this matrix are zax and
zx−1; because a ∈ O×

K , we see that zx, zx−1 ∈ O×
K . Thus,

|x| =
√
|zx| / |zx−1| = 1,

so x ∈ O×
K follows.

We now apply the variable substitution [ x x−1 ]g1 7→ g1 and
[ y

y−1

]
g3 7→ g3; we do not

pick up a modular character from this substitution because SL2(OK) is compact and hence
unimodular. At this point, we see Z(Ls,tf,LW ) equals(∫

O×
K

d×x

)2 ∫
K

∫
O×
K

∫
SL2(OK)3

Ls,tf
(
η0

([
a

1

] [
1 b

1

]
g1,

[
a

1

]
g2,

[
a

1

]
g3

))
LW1

([
a

1

] [
1 b

1

]
g1

)
LW2

([
a

1

]
g2

)
LW3

([
a

1

]
g3

)
dg1 dg2 dg3 d

×a db.

The outside integral evaluates to (q − 1)2 because of how we have chosen to normalize our
Haar measures. We now separate the computation into two cases.

• We integrate over b ∈ OK ; label the relevant contribution ZOK (Ls,tf,LW ). In this
case, all matrices live in GLd(OK) for suitable dimension d, so the constructions of
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Ls,tf and LWi immediately makes ZOK (Ls,tf,LW ) equal

(q − 1)2
∑

b∈k,a∈k×
g1,g2,g3∈SL2(k)

f

(
η0

([
a

1

] [
1 b

1

]
g1,

[
a

1

]
g2,

[
a

1

]
g3

))

W1

([
a

1

] [
1 b

1

]
g1

)
W2

([
a

1

]
g2

)
W3

([
a

1

]
g3

)
.

Notably, the Haar measure d×a is simply da on O×
K , and dg on SL2(OK) was con-

structed to make this integration work as above. Anyway, rearranging by sending
[ 1 b1 ]g1 7→ g1, we see that ZOK (Ls,tf,LW ) equals

q(q − 1)2
∑
a∈k×

g1,g2,g3∈SL2(k)

f

(
η0

([
a

1

]
g1,

[
a

1

]
g2,

[
a

1

]
g3

))

W1

([
a

1

]
g1

)
W2

([
a

1

]
g2

)
W3

([
a

1

]
g3

)
At this point, we recognize that we have the following bijections.

k× × SL2(k) × SL2(k) × SL2(k) ∼= GL
(3)
2 (k)

(a , g1 , g2 , g3) 7→ ([ a 1 ]g1, [
a
1 ]g2, [

a
1 ]g3)

(det g1 ,
[
1/deg g1

1

]
g1 ,

[
1/deg g1

1

]
g2 ,

[
1/deg g1

1

]
g3)←[ (g1, g2, g3)

Thus, we see that ZOK (Ls,tf,LW ) equals

q(q − 1)2
∑

g∈GL
(3)
2 (k)

f(η0g)W (g).

Modding out by Z(k)N0(k), which has magnitude q(q − 1), we see that this equals
(q − 1)Z(f,W ).
• We integrate over b /∈ OK ; label the relevant contribution ZK\OK (Ls,tf,LW ). We
would like to move b as far as out as possible to gain better control of it. As such,
we note [

a
1

] [
1 b

1

]
=

[
1 ab

1

] [
a

1

]
and so apply the substitution ab 7→ b; note |a| = 1, so db does not change. Doing so
tells us that ZK\OK (Ls,tf,LW ) equals

(q − 1)2
∫
K\OK

∫
O×
K

∫
SL2(OK)3

Ls,tf
(
η0

([
1 b

1

] [
a

1

]
g1,

[
a

1

]
g2,

[
a

1

]
g3

))
ψ(b)LW1

([
a

1

]
g1

)
LW2

([
a

1

]
g2

)
LW3

([
a

1

]
g3

)
dg1 dg2 dg3 d

×a db.

We now apply an Iwasawa decomposition to move the b outside Ls,tf . Explicitly, we
find

η0

([
1 b

1

]
, 1, 1

)
=

([
1/b −1

b

]
, 1, 1

)([
1

−1 1/b

]
, 1, 1

)
η0,
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so ZK\OK (Ls,tf,LW ) equals

(q − 1)2
∫
K\OK

∫
O×
K

∫
SL2(OK)3

ωΠ,s,t

(([
1/b −1

b

]
, 1, 1

))
ψ(b)

Ls,tf
(([

1
−1 1/b

]
, 1, 1

)
η0

([
a

1

]
g1,

[
a

1

]
g2,

[
a

1

]
g3

))
LW1

([
a

1

]
g1

)
LW2

([
a

1

]
g2

)
LW3

([
a

1

]
g3

)
dg1 dg2 dg3 d

×a db.

Now, 1/b ∈ p, so b does not impact any of the last two lines above, so factoring out
the integral on b and arguing as in the previous case, we see that ZK\OK (Ls,tf,LW )
equals

(q − 1)2
∫
K\OK

ωΠ,s,t

(([
1/b −1

b

]
, 1, 1

))
ψ(b) db︸ ︷︷ ︸

I:=

∑
g∈GL

(3)
2 (k)

f

(([
1

−1

]
, 1, 1

)
η0g

)
W (g).

It remains to compute the integral I. This computation is somewhat technical.
Evaluating ωΠ,s,t and “stratifying” by |b|, this integral is

I =

∫
K\OK

ωΠ(1/b) |1/b|t ψ(b) db

=

∫
K\OK

ωΠ(b)
−1 |b|−t−1 ψ(b) d×b

=
∞∑
r=1

∫
|b|=qr

ωΠ(b)
−1 |b|−t−1 ψ(b) d×b.

Setting b 7→ bϖ−r and then noting d×b = db on O×
K yields

I =
∞∑
r=1

(
ωΠ(ϖ)rq−r(t+1)

∫
O×
K

ωΠ(b)
−1ψ(bϖ−r) db

)

=
∞∑
r=1

(
ωΠ(ϖ)rq−r(t+1)

∑
x∈k×

∫
x+p

ωΠ(b)
−1ψ(bϖ−r) db

)

=
∞∑
r=1

(
ωΠ(ϖ)rq−r(t+1)

∑
x∈k×

ωπ(x)
−1ψ(xϖ−r)

∫
p

ψ(bϖ−r) db

)
.

Now, ψ is a nontrivial character on OK , so for r ≥ 1, we see that b 7→ ψ(bϖ−r) is
a nontrivial character on pr = ϖrOK and hence on p. Thus, the integral vanishes,
meaning we have no contribution in this case.

Tallying the contributions from the above cases completes the proof. □

5.3. Lifting the Intertwining Operator. Using notation from section 4.1, recall U+
2n is the

unipotent radical, U−
2n its analogue for lower triangular matrices, and U−

w := U+
2n ∩wU−

2nw
−1

for any Weyl group element w ∈ W (GSp2n). We have defined an intertwining operator
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Mw2n : Ind
GSp2n(k)

Bsp
2n(k)

χ→ Ind
GSp2n(k)

Bsp
2n(k)

w2nχ using the long Weyl element, namely

(Mw2nf)(g) :=
∑

u∈U−
w2n

(k)

f(w2nug),

where wχ(g) := χ(w−1gw). The analogous intertwining operator in the local p-adic case is

an operator M̃χ
w2n

: ind
GSp2n(K)

Bsp
2n(K)

χ→ ind
GSp2n(K)

Bsp
2n(K)

w2nχ given by

(M̃χ
w2n

f)(g) :=

∫
U−
w2n

(K)

f(w2nug) du.

Wemay similarly define an intertwining operator for anyWeyl group element w ∈ W (GSp2n),
but we use the operator associated to w2n in our functional equation producing the triple
product gamma factor.

Our present objective is to relate Mw2n : Ind
GSp2n(k)

Bsp
2n(k)

χ → Ind
GSp2n(k)

Bsp
2n(k)

w2nχ over finite field

with the intertwining operator M̃χ
w2n

for n = 3 and χ = ωΠ,s,t. We will first work for general
χ, then determine what happens for χ = ωΠ,s,t.

Following the convention of [Cas75], if σ : Bsp
2n → GL(W ) is a representation, we will

define smooth compact induction as

ind
GSp2n
Bsp

2n
σ := {f : GSp2n → W locally compact | f(bg) = σ(b)δ

1/2
B (b)f(g)∀ b ∈ Bsp

2n, g ∈ GSp2n}.

For all practical purposes, σ = χ will be a character on Bsp
2n. One can routinely compute the

modular quasicharacter δB of Bsp
6 to be

δB




λx1

λx2 ∗
λx3

x−1
1

x−1
2

x−1
3



 = |λ|6|x1|6|x2|4|x3|2.

It is difficult to interface with our intertwining operator M̃χ
w2n

directly. Instead, the name

of the game will be to decompose M̃χ
w2n

into intertwining operators M̃χ
si
associated to simple

reflections si, and then track our lifted test function through each simple reflection.

The Weyl group W (GSp6) is of Cartan type C3 and thus has three simple reflections
s1, s2, s3, defined below.

s1 :=


−1

1
1

−1
1

1

 , s2 :=


1

−1
1

1
−1

1

 , s3 :=


1

1
−1

1
1

1
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Since we wish to work with each M̃χ
si
, which is an integral over U−

si
, it is useful to provide

these sets explicitly. Following the definition U−
si
:= U+

6 ∩ siU−
6 s

−1
i , we can compute

U−
s1
=




1 −x

1
1

1
x 1

1

 : x ∈ K



U−
s2
=




1

1 −x
1

1
1
x 1

 : x ∈ K



U−
s3
=




1

1
1 −x

1
1

1

 : x ∈ K


.

As Weyl group elements, one can compute w6 = s3s2s1s3s2s3. (As elements of GSp6,
the two sides differ by a maximal torus element.) This decomposition of w6 in W (GSp6)

translates to a decomposition of M̃χ
w6

in the Hecke algebra, namely

M̃χ
w6
Lf = M̃

s2s1s3s2s3χ
s3

M̃
s1s3s2s3χ
s2

M̃
s3s2s3χ
s1

M̃
s2s3χ
s3

M̃
s3χ
s2
M̃χ

s3
Lf.

We will describe these twisted characters. Fix any Borel character χ := τzm⊗αz1⊗βz2⊗µz3 ,
where

χ




λx1

λx2 ∗
λx3

x−1
1

x−1
2

x−1
3



 = τ(λ)α(x1)β(x2)µ(x3)|λ|zm|x1|z1 |x2|z2|x3|z3 .

(In fact, all characters of the Borel subgroup are induced from characters on the maximal
split torus, hence are of this form.) Then, we may describe the twisted characters on each
component:

s3χ = τµ−1
zm−z3 ⊗ αz1 ⊗ βz2 ⊗ µ

−1
−z3

s2s3χ = τµ−1
zm−z3 ⊗ αz1 ⊗ µ

−1
−z3 ⊗ βz2

s2s3s3χ = τβ−1µ−1
zm−z2−z3 ⊗ αz1 ⊗ µ

−1
−z3 ⊗ β

−1
−z2

s1s3s2s3χ = τβ−1µ−1
zm−z2−z3 ⊗ µ

−1
−z3 ⊗ αz1 ⊗ β

−1
−z2

s2s1s3s2s3χ = τβ−1µ−1
zm−z2−z3 ⊗ µ

−1
−z3 ⊗ β

−1
−z2 ⊗ αz1
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w6χ = τα−1β−1µ−1
zm−z1−z2−z3 ⊗ µ

−1
−z3 ⊗ β

−1
−z2 ⊗ α

−1
−z1 .

For a representation σ : Bsp
2n(K)→ GL(W ), smooth compact induction is defined as

ind
GSp2n(K)

Bsp
2n(K)

σ := {f : GSp2n → W | f(bg) = δ
1/2
B (b)σ(b)f(g)∀ b ∈ Bsp

2n}.

Given a character χ0 = τ⊗α1⊗· · ·⊗αn of Bsp
2n(k), some lifting χ = τzm⊗(α1)z1⊗· · ·⊗(αn)zn

character of Bsp
2n(K), a function f ∈ Ind

GSp2n(k)

Bsp
2n(k)

χ0, and its corresponding inflation f0 :

GSp2n(K)→ C as defined in the proof of Proposition 76, we see that the lifting of functions
given by

Lf(g) :=
∫
Bsp

2n(OK)\Bsp
2n(K)

δ
−1/2
B χ−1(b)f0(bg) db

satisfies Lf ∈ ind
GSp2n(K)

Bsp
2n(K)

χ and Lf |GSp2n(OK) = f0|GSp2n(OK).

We are now ready to relate each M̃χ
si
Lf to its corresponding intertwining operator Msif

over finite fields. To establish notation, let χ0 = τ⊗α⊗β⊗µ, lift it to χ = τzm⊗αz1⊗βz2⊗µz3 ,
and fix f ∈ Ind

GSp6(k)

Bsp
6 (k)

. For the proceeding computations, we will use the equalities[
1

−1

] [
1 −x

1

]
=

[
1/x 1

x

] [
1
−1/x 1

]
[

1
−1

] [
1
x 1

]
=

[
x
−1 1/x

] [
1 1/x

1

]
.

This is an Iwasawa decomposition when |x| > 1.

For the following, we may assume our support of M̃χ
si
Lf to be GSp6(OK), as for any

element g ∈ GSp6(K), we can find an Iwasawa decomposition g = bk and factor out the Borel
term b using our definition of compact induction. Thus, we can fairly assume g ∈ GSp6(OK).
We have

(
M̃χ

s1
Lf
)
(g) =

∫
U−
s1

Lf(s−1
1 ug) du =

∫
K

L

s−1
1


1 −x

1
1

1
x 1

1

 g
 dx

=

∫
OK
Lf

s−1
1


1 −x

1
1

1
x 1

1

 g
 dx

+

∫
|x|>1

Lf




1/x 1

x
1

x
−1 1/x

1




1
−1/x 1

1
1 1/x

1
1

 g
 dx
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=
∑
x∈k

f

s−1
1


1 −x

1
1

1
x 1

1

 ν(g)


+ f(ν(g))

∫
|x|>1

δ
1/2
B · χ




1/x 1

x
1

x
−1 1/x

1



 dx

= (Ms1f) (ν(g)) + f(ν(g))

∫
|x|>1

α(x)−1|x|−z1β(x)|x|z2δ1/2B

1/x 1
x

1

 |x| d×x
= L (Ms1f) (g) + Lf(g)

∫
|x|>1

βα−1(x)|x|z2−z1 ·
∣∣∣∣ 1

|x|2

∣∣∣∣1/2 · |x| d×x
= L (Ms1f) (g) + Lf(g)

∫
|x|<1

αβ−1(x)|x|z1−z2 d×x

= L (Ms1f) (g) + Lf(g)
∑
r≥1

q−r(z1−z2)
∫
O×
K

αβ−1(x) d×x

= L (Ms1f) (g) + Lf(g) · δα,β(q − 1)
qz2−z1

1− qz2−z1
,

so we conclude

M̃χ
s1
Lf = L (Ms1f) + δα,β · (q − 1)

qz2−z1

1− qz2−z1
Lf.

The procedure for M̃χ
s2
Lf follows a similar story:

(
M̃χ

s2
Lf
)
(g) =

∫
U−
s2

Lf(s−1
2 ug) du =

∫
K

Lf

s−1
2


1

1 −x
1

1
1
x 1

 g
 dx

=

∫
OK
Lf

s−1
2


1

1 −x
1

1
1
x 1

 g
 dx
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+

∫
|x|>1

Lf




1

1/x 1
x

1
x
−1 1/x




1

1
−1/x 1

1
1 1/x

1

 g
 dx

=
∑
x∈k

f

s−1
2


1

1 −x
1

1
1
x 1

 ν(g)


+ f(ν(g))

∫
|x|>1

δ
1/2
B · χ




1

1/x 1
x

1
x
−1 1/x



 dx

= (Ms2f)(ν(g)) + f(ν(g))

∫
|x|>1

β(x)−1|x|−z2µ(x)|x|z3δ1/2B

1 1/x 1
x

 |x| d×x
= L(Ms2f)(g) + Lf(g)

∫
|x|>1

β−1µ(x)|x|z3−z2
∣∣∣∣ 1x2
∣∣∣∣1/2 · |x| d×x

= L(Ms2f)(g) + Lf(g)
∫
|x|<1

βµ−1(x)|x|z2−z3 d×x

= L(Ms2f)(g) + Lf(g)
∑
r≥1

qr(z3−z2)
∫
O×
K

βµ−1(x) d×x

= L(Ms2f)(g) + Lf(g) · δβ,µ(q − 1)
qz3−z2

1− qz3−z2
,

so

M̃χ
s2
Lf = L(Ms2f) + δβ,µ · (q − 1)

qz3−z2

1− qz3−z2
Lf.

Finally, we run these simplifications on the intertwining operator for s3.

(
M̃χ

s3
Lf
)
(g) =

∫
U−
s3

Lf(s−1
3 ug) du =

∫
K

Lf

s−1
3


1

1
1 −x

1
1

1

 g
 dx
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=

∫
OK
Lf

s−1
3


1

1
1 −x

1
1

1

 g
 dx

+

∫
|x|>1

Lf




1

1
1/x 1

1
1

x




1

1
1

1
1

−1/x 1

 g
 dx

=
∑
x∈k

f

s−1
3


1

1
1 −x

1
1

1

 ν(g)


+ f(ν(g))

∫
|x|>1

δ
1/2
B · χ




1

1
1/x 1

1
1

x



 dx

= (Ms3f)(ν(g)) + f(ν(g))

∫
|x|>1

µ

(
1

x

) ∣∣∣∣1x
∣∣∣∣z3 (|x|−2)1/2|x| d×x

= L(Ms3f)(g) + Lf(g)
∫
|x|<1

µ(x)|x|z3 d×x

= L(Ms3f)(g) + Lf(g)
∑
r≥1

qr(−z3)
∫
O×
K

µ(x) d×x

= L(Ms3f)(g) + Lf(g) · 1µ=1(q − 1)
q−z3

1− q−z3
.

To summarize, given a fixed character χ = τzm⊗αz1⊗βz2⊗µz3 of B
sp
6 and f ∈ Ind

GSp6(k)

Bsp
6 (k)

χ0,

M̃χ
s1
Lf = L (Ms1f) + δα,β · (q − 1)

qz2−z1

1− qz2−z1
Lf

M̃χ
s2
Lf = L (Ms2f) + δβ,µ · (q − 1)

qz3−z2

1− qz3−z2
Lf

M̃χ
s3
Lf = L (Ms3f) + 1µ=1 · (q − 1)

q−z3

1− q−z3
Lf

We can now carefully expand M̃χ
w6
Lf = M̃

s2s1s3s2s3χ
s3 M̃

s1s3s2s3χ
s2 M̃

s3s2s3χ
s1 M̃

s2s3χ
s3 M̃

s3χ
s2 M̃χ

s3
Lf us-

ing the above three equations. We will also use the relation M2
s3

= (q − 1)Ms3 + q, which
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comes from Ms3 being a generator of the Iwahori-Hecke algebra of W (GSp6). Since we hope
for χ to come from the product of central characters ωπ, we will enforce α = β = µ = ωΠ.
Assuming ωΠ ̸= 1,

M̃χ
w6
Lf = L(Mw6f) + 1ω2

Π=1 · (q − 1)

(
q−z2−z1

1− q−z2−z1
L(Ms3Ms1Ms3Ms2Ms3f

+
q−z3−z1

1− q−z3−z1
L(Ms3Ms2Ms3Ms2Ms3f) + (q − 1)

q−z3−z2

1− q−z3−z2
L(Ms3Ms2Ms1Ms3f)

+ (q − 1)2
q−z3−z1

1− q−z3−z1

(
q−z2−z1

1− q−z2−z1
+

q−z3−z2

1− q−z3−z2

)
L(Ms3Ms2Ms3f)

+ (q − 1)2
(q−z3−z2)(q−z2−z1)

(1− q−z3−z2)(1− q−z2−z1)
L(Ms3Ms1Ms3f)

+ q
q−z3−z2

1− q−z3−z2
L(Ms3Ms2Ms1f)

+ (q − 1)q
(q−z3−z1)(q−z2−z1)

(1− q−z3−z1)(1− q−z2−z1)
L(Ms2Ms3f)

+ (q − 1)q
(q−z3−z2)(q−z2−z1)

(1− q−z3−z2)(1− q−z2−z1)
L(Ms3Ms1f)

+ (q − 1)q
(q−z3−z2)(q−z3−z1)

(1− q−z3−z2)(1− q−z3−z1)
L(Ms3Ms2f)

+ (q − 1)2((q − 1)2 + q)
q−z3−z2q−z3−z1q−z2−z1

(1− q−z3−z2)(1− q−z3−z1)(1− q−z2−z1)
L(Ms3f)

+ (q − 1)3q
q−z3−z2q−z3−z1q−z2−z1

(1− q−z3−z2)(1− q−z3−z1)(1− q−z2−z1)
Lf
)
.

Although we declared ωΠ ̸= 1 to manage the number of error terms, if we were to relieve

this assumption (i.e., if we kept track of the error terms contributed by M̃χ
s3
), then one can

show the error term would have common denominator (1− q2−z1)(1− q2−z2)(1− q2−z3). We
will use this shortly to identify the poles of the lifted intertwining operator.

Now we choose appropriate values for zm, z1, z2, z3. Following [Ike99, p.303-4], we normal-
ize our intertwining operator as(

M̃χ
w6

)∗
:= γ(2s− 2, χ, ψ)γ(4s− 3, χ2, ψ)M̃χ

w6
,

where the gamma factor is defined by

γ(s, χ, ψ) := ε(s, χ, ψ)
L(χ−1, 1− s)

L(χ, s)
= ε(s, χ, ψ)

1− q−sχ(ϖ)

1− q−(1−s)χ(ϖ)−1
.

The normalizing factors γ(2s− 2, χ, ψ) and γ(4s− 3, χ2, ψ) suggest that M̃χ
w6

has a pole at
4s− 3 = 0 when χ2 = 1, and an additional pole at 2s− 2 = 0 when χ = 1.

Again following [Ike99, p.303], we define the degenerate principal series I(ω, s) as the space

of functions f : GSp6(K)→ C such that for any p =

[
λA ∗

Aι

]
and g ∈ GSp6(K), we have

f(pg) = ω(λ detA)|λ|3s+3/2| detA|2s+1f(g) = ωΠ,3s+3/2,2s+1f(g).
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We will want to apply our intertwining operator on I(ω′
Π, s) for some twisting ω′

Π := (ωΠ)zm⊗
(ωΠ)z1 ⊗ (ωΠ)z2 ⊗ (ωΠ)z3 of ωΠ. By definition of compact induction, I(ω′

Π, s) ⊆ ind
GSp6(K)

Bsp
6 (K)

χ

for a character χ such that δ
1/2
B · χ = ω′

Π,3s+3/2,2s+1. Using our previous computation of δB,
we have

χ

([
λA ∗

Aι

])
= ωΠ(λ detA)|λ|3s−3/2+zm|x1|2s−2+z1 |x2|2s−1+z2|x3|2s+z3 ,

where A has diagonal entries x1, x2, x3. Let y1(s) := 2s − 2 + z1, y2(s) := 2s − 1 + z2,
y3(s) := 2s+ z3. The poles for the error term occurring when ω2

Π = 1 happen at each of the
following three equalities: 

y2(s) = −y3(s)
y2(s) = −y1(s)
y3(s) = −y1(s).

We expect there to be only one pole at s = 3/4, so these equalities must all be true for
s = 3/4. In particular, this yields y1(3/4) = −y2(3/4) = y3(3/4) = −1/2. Solving for the
zi’s accordingly, we have

z1 =
1

2
, z2 = −

1

2
, z3 = −

3

2
,

so these are our values for z1, z2, z3. Our choice for zm is inconsequential, so we may freely
set zm = 0.

6. Gamma Factors from the Galois Side

Although this project aims to perform all computations strictly on the representation
theory side, certain powerful correspondences between the representation/automorphic side
and the Galois side allow us to “preview” our results from the Galois side.

To elaborate, let K be a local p-adic field and k its residue field, which we know to be
finite. There is a way to lift a representation of GLn(k) to a certain class of representations of
GLn(K), and the Local Langlands Correspondence gives us a bijection between irreducible
admissible complex representations of GLn(K) and certain representations of the Weil group,
called Weil-Deligne representations. These are our central objects of interest on the Galois
side, which we introduce first.

Along each correspondence, we have explicit relations between the epsilon factors. Thus,
computations of epsilon factors of Weil-Deligne representations will inform us on the epsilon
factor of representations of GL2×GL2×GL2, up to sign and power of q = |k|.

We will adopt the same notation as in the previous section. Additionally, let kn be the
(unique) degree-n field extension of k in k.

6.1. Weil-Deligne Representations. As these are representations of the Weil group, it
makes sense to begin by defining the Weil group.

We recall some results from local class field theory. Since kn/k is a finite extension of
a finite field, the extension is Galois and it is cyclic of order n, with generator the Frobe-
nius element Φk : x 7→ xq. Furthermore, for m < n, we have natural projection maps
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Gal(kn/k) → Gal(km/k) where any σ ∈ Gal(kn/k) is restricted to an automorphism of km.
Thus, {Gal(kn/k)}n forms a directed system, so we can write

Gal(k/k) = lim←−
n

Gal(kn/k) = lim←−
n

Z/nZ = Ẑ,

where Ẑ is the profinite completion of Z. Note that Ẑ comes equipped with a natural profinite
topology, and the Frobenius element ΦK topologically generates Gal(k/k), i.e. ⟨Φk⟩ ⊂
Gal(k/k) is dense.

We also have a natural map Gal(K/K) → Gal(k/k). Any σ ∈ Gal(K/K) restricts to an
automorphism on O, which in turn induces an automorphism on k = O/P (here, P is the
prime of O). Since P is a prime lying over p, this induced automorphism of k fixes k, so we
have produced an element of Gal(k/k). Call this map π : Gal(K/K)→ Gal(k/k). We now
have a short exact sequence

1→ IK → Gal(K/K)
π−→ Gal(k/k) ≃ Ẑ→ 1,

where IK is the inertia group of K.

Definition 79 (Weil group). The Weil group WK of K is a topological group, where as a
group, WK := π−1(⟨ΦK⟩) ⊂ Gal(K/K), and its topology is such that π : WK → ⟨ΦK⟩ ≃ Z is
continuous (Z has the discrete topology) and the induced subspace topology on IK coincides
with the induced subspace topology from IK ⊂ Gal(K/K).

Equivalently, we could define the Weil group as the pullback of the following:

1 IK WK Z 1

1 IK Gal(K/K) Ẑ 1

One can observe that we can express WK as the semidirect product WK = IK ⋊ ⟨ΦK⟩.
While we are still in class field theory, we will define the wild inertia group, as it will

appear briefly later.

Definition 80 (Wild Inertia Group). Let Ktr be the maximal tamely ramified extension
of K. Then, the wild inertia group is PK := Gal(K/Ktr). Equivalently, PK is the first
ramification group of K/K.

Now we may define Weil-Deligne representations.

Definition 81 (Weil-Deligne Representation). A Weil-Deligne representation is a pair
ϕ = (ρ,N) such that:

(1) ρ : WK → GL(Vρ) is a finite dimensional representation such that ρ(w) is semisimple
for every w ∈ WK and ker ρ contains an open subgroup of IK ,

(2) N ∈ End(Vρ) is nilpotent, satisfying ρ(w)Nρ(w)
−1 = ∥w∥ ·N for all w ∈ WK .

Equivalence of Weil-Deligne representations comes naturally: we say two Weil-Deligne
representations ϕ = (ρ,N) and ϕ′ = (ρ′, N ′) are equivalent if there exists a linear isomorphism
α : V → V ′ such that for all w ∈ WK , both diagrams commute:
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V V ′ V V ′

V V ′ V V ′

α

ρ′(w)

α

ρ(w)

α

N N ′

α

We say the two Weil-Deligne representations are IK-equivalent if the above diagrams
commute with ρ, ρ′ replaced by their respective restrictions to IK .

Finally, we say a Weil-Deligne representation is tamely ramified if it is trivial on the
wild inertia group, i.e. (ρ,N) is tamely ramified if ρ(PK) = 1.

6.2. Macdonald’s Correspondence. Let Φt
I(GLn) be the set of IK-equivalence classes of

n-dimensional tamely ramified Weil-Deligne representations of WK , and let Π(GLn(k)) be
the set of isomorphism classes of irreducible representations of GLn(k). We now provide a
way to identify Π(GLn(k)) with Φt

I(GLn), which will allow us to obtain information about
epsilon factors of irreducible representations of GLn(k) from computations of epsilon factors
for Weil-Deligne representations, which we are able to do.

This correspondence, called the Macdonald’s Correspondence, between Π(GLn(k)) and
Φt
I(GLn) is parameterized by a certain class of partition-valued functions, which we now

construct.

Let Pn be the set of partitions of n, and P :=
⋃
n≥0Pn. For a partition p ∈ P , we have

p ∈ Pn for some integer n; we define |p| = n. Denote Γn as the character group k̂×n . We
have natural norm maps Nn,m : k×n → k×m for m | n; these induce maps on their character
groups Nn,m : Γm → Γn. These maps turn {Γn} into a directed system, so we may define
Γ := lim−→n

Γn.

Denote Φ := ΦK as the Frobenius element. It acts on Γ via Φ · γ = γq for γ ∈ Γ. Denote
the set of Φ-orbits in Γ as Φ\Γ. Given a Φ-orbit f , we define the degree of f as d(f) := |f |.
Definition 82. Define Pn(Γ) as the set of partition-valued functions λ : Γ→ P such that

(1) λ ◦ Φ = λ, i.e. λ is constant on Φ-orbits;
(2)

∑
γ∈Γ |λ(γ)| = n.

This set is the central force behind Macdonald’s Correspondence. We have bijections from
Pn(Γ) to both Π(GLn(k)) and Φt

I(GLn), so we can identify πλ with ϕλ = (ρλ, Nλ), where
πλ ∈ Π(GLn(k)) and ϕλ ∈ Φt

I(GLn) are the respective corresponding representations to
λ ∈ Pn(Γ).

Note from (1), since any λ is invariant on Φ-orbits in Γ, for any f ∈ Φ\Γ, we may
unambiguously define λ(f) := λ(γ) for any γ ∈ f . Even better, Gauss sums are invariant

on Φ-orbits. Fix an additive character ψ ∈ k̂+, and define ψn = ψ ◦ tracekn/k. Let γ ∈ Γn.
Then, we compute

τ(Φ · γ, ψn) = −
∑
x∈k×n

Φ · γ(x−1)ψn(x)

= −
∑
x∈k×n

γ(x−q)ψn(x)

= −
∑
x∈k×n

γ(x−q)ψn(x
q)
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= −
∑
x∈k×n

γ(x−1)ψn(x)

= τ(γ, ψn),

where the third equality follows from x, xq being Galois conjugates and the fourth equality
follows from the Frobenius map x 7→ xq being an automorphism. Thus, like with λ ∈ Pn(Γ),
we can unambiguously define for any f ∈ Φ\Γ, τ(f, ψ) := τ(γ, ψn) for any γ ∈ f .

6.3. Epsilon Factors for GL2×GL2×GL2. We know that the epsilon factor on the Galois
side is multiplicative, so we have the equation

ε0(π, ψ) =
∏

fi∈Φ\Γ

ε0(πf1 ⊗ πf2 ⊗ πf3 , ψ)

where f1 is the indicator partition-valued function such that f1(γ) = (1) if γ ∈ f1 and () (the
empty partition) otherwise. Let ρ := (ρ1⊗ ρ2⊗ ρ3)I be a Weil-Deligne representation, where
under the Macdonald Correspondence, each ρi corresponds to some πi ∈ Π(GLn(k)). In turn,

each πi is represented by a matrix of the form

(
αi

αqi

)
for some α ∈ k×2 \k×. Then, ρ is rep-

resented by a diagonal matrix whose diagonal entries are representations of the Galois orbits
of α1α2α3, which are {α1α2α3, α1α2α

q
3, α1α

q
2α3, α

q
1α2, α3, α1α

q
2α

q
3, α

q
1α2α

q
3, α

q
1α

q
2α3, α

q
1α

q
2α

q
3}.

Using the multiplicativity of ε0 and choose a representative for each Φ-orbit, we conclude
from the Galois side

ε0(ρ, ψ) := q−4τ(α1α2α3, ψ2)τ(α1α2α
q
3, ψ2)τ(α1α

q
2α3, ψ2)τ(α1α

q
2α

q
3, ψ).

6.4. Product of Gauss Sums as Norm Sum. Having a product of Gauss sums is a bit
clunky. Luckily, there is a clever way to write our product as a single sum, iterating over
the units of a tensor product.

Consider the tensor product kn⊗k kn⊗k kn. We have kn ≃ k[θ] for some θ ∈ kn where the
minimal polynomial p(X) ∈ k[X] of θ has degree n. Thus, we can write k[θ] ≃ k[X]/(p(X)).
This gives us a series of isomorphisms

kn ⊗k kn ⊗k kn ≃ kn ⊗k k[X]/(p(X))⊗k k[Y ]/(p(Y ))

≃ kn ⊗k k[X, Y ]/(p(X), p(Y ))

≃ kn[X, Y ]/(p(X), p(Y )).

Expanding p(X) = a0 + a1X + · · ·+Xn, we see that

p
(
θ1/q

r)qr
=
(
a0 + a1θ

1/qr + · · ·+ θn/q
r)qr

= a0 + a1θ + · · ·+ θn = 0,

so p
(
θ1/q

r)
= 0 for every r < n. It follows that we can factor

p(X) =
n∏
r=1

(X − θ1/qr−1

).
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Thus, by Chinese Remainder Theorem, we have a final isomorphism

kn[X, Y ]/(p(X), p(Y )) ≃ k⊕n
2

n

[f(X, Y )] 7→
(
f(θ1/q

i−1

, θ1/q
j−1

)
)
1≤i,j≤n

.

This isomorphism kn⊗kkn⊗kk⊕n
2

n provides three distinct actions of kn on k
⊕n2

n , depending
on which component kn is acting on in the tensor product. For the following, fix α ∈ kn.

The first component of the tensor product is simply multiplied as a scalar to the polynomial
via the isomorphisms, so α acts on (x1, . . . , xn2) by scalar multiplication, i.e. the first action
is defined as

α ·1 (x1, . . . , xn2) = (αx1, . . . , αxn2).

The second component contributes a polynomial in X. Let α = a0 + a1θ + · · · + amθ
m;

this corresponds to the polynomial α(X) = α(X, Y ) = a0 + a1X + · · ·+ amX
m. We wish to

write α(θ1/q
r
) in terms of α(θ). We have

α(θ1/q
r

)q
r

= (a0 + a1θ
1/qr + · · ·+ amθ

m/qr)q
r

= a0 + a1θ + · · ·+ amθ
m = α(θ),

where the second equality follows because ai ∈ k and char k | |k| = q. Thus, for any
f(X, Y ) ∈ kn[X, Y ]/(p(X), p(Y )) and 1 ≤ i, j ≤ n, we have

α(θ1/q
i−1

, θ1/q
j−1

)f(θ1/q
i−1

, θ1/q
j−1

) = α(θ1/q
i−1

)f(θ1/q
i−1

, θ1/q
j−1

)

= α(θ)1/q
i−1

f(θ1/q
i−1

, θ1/q
j−1

)

= α1/qi−1

f(θ1/q
i−1

, θ1/q
j−1

),

so the second action is given by

α ·2 (x1, . . . , xn2) =

(
αq

−⌊ j−1
n ⌋
xj

)
1≤j≤n2

= (αx1, . . . , αxn, α
1/qxn+1, . . . , α

1/qn−1

xn2).

Finally, the last component contributes a polynomial in Y , so the action is similar to the
above in the sense that we have

α(θ1/q
i−1

, θ1/q
j−1

)f(θ1/q
i−1

, θ1/q
j−1

) = α1/qj−1

f(θ1/q
i−1

, θ1/q
j−1

),

which provides a third action given by

α ·3 (x1, . . . , xn2) =
(
αq

−(jmodn)

xj

)
1≤j≤n2

= (αx1, α
1/qx2, . . . , α

1/qn+1

xn, αxn+1, . . . , α
1/qn+1

xn2).

Let cj =
⌊
j−1
n

⌋
and dj = j (mod n). Consider the map T(x1,...,xn2 ) : k

⊕n2

n → k⊕n
2

n given
by (y1, . . . , yn2) 7→ (x1y1, . . . , xn2yn2), where multiplication in each component is standard
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multiplication in kn. We can write this tuple in terms of each of our three actions:

T(x1,...,xn2 )(y1, . . . , yn2) = (x1 ·1 y1, . . . , xn2 ·1 yn2)

= (xq
−cj

j ·2 yj)1≤j≤n2

= (xq
−dj

j ·3 yj)1≤j≤n2 .

We can define the trace of T(x1,...,xn2 ), viewed as a k-linear map. Taking the standard basis

of k⊕n
2

n , this amounts to just the sum of all the components, i.e. traceT(x1,...,xn2 ) =
∑n2

i=1 xi.

We can also define three distinct norm functions, one for each action, which takes the
determinant of T(x1,...,xn2 ) with respect to the standard basis on k⊕n

2

n and the given action.
Restricting our interest to the case n = 2, we have

T(x1,x2,x3,x4)(y1, y2, y3, y4) = (x1 ·1 y1, x2 ·1 y2, x3 ·1 y3, x4 ·1 y4)

= (x1 ·2 y1, x2 ·2 y2, x1/q3 ·2 y3, x
1/q
4 ·2 y4)

= (x1 ·3 y1, x1/q2 ·3 y2, x3 ·3 y3, x
1/q
4 ·3 y4).

Letting N1, N2, N3 be the norm functions with respect to ·1, ·2, ·3, respectively, we can
compute

N1(x1, x2, x3, x4) = x1x2x3x4

N2(x1, x2, x3, x4) = x1x2x
q
3x

q
4

N3(x1, x2, x3, x4) = x1x
q
2x3x

q
4.

Via the isomorphism k2 ⊗k k2 ⊗k k2 ≃ k⊕4
2 , we see that the diagonal multiplication rule

on the left agrees with component-wise multiplication on the right. Thus, the units in
k2 ⊗k k2 ⊗k k2 are isomorphic to (k×2 )

⊕4, so we write

ε0(ρ, ψ) = q−4τ(α1α2α3, ψ2)τ(α1α2α
q
3, ψ2)τ(α1α

q
2α3, ψ2)τ(α1α

q
2α

q
3, ψ)

= q−4

3∏
j=0

∑
x∈k×2

α−1
1 (x)α−1

2

(
xq

⌊j/2⌋
)
α−1
3

(
xq

j mod 2
)
ψ2(x)

=
∑

x⃗∈(k×2 )⊕4

α−1
1 (N1(x⃗))α

−1
2 (N2(x⃗))α

−1
3 (N3(x⃗))ψ(tr x⃗)

=
∑

ξ∈(k2⊗kk2⊗kk2)×
α−1
1 (N1(ξ))α

−1
2 (N2(ξ))α

−1
3 (N3(ξ))ψ(tr ξ).

Appendix A. Computation of c(1, I6, ψ)

Throughout this section, Fq denotes a finite field with q elements, where q is an odd prime-
power, and Sym×

3 denotes the set of invertible 3× 3 matrices with entries in Fq. The goal of
the present section is to prove the following result.

Theorem 83. We have ∑
A∈Sym×

3

ψ(trA) = q2.
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We will prove this by using combinatorics and elementary number theory in order to com-
pute the number of invertible symmetric matrices with given diagonal entries. For brevity,
given (a11, a22, a33) ∈ F3

q, we say that A ∈ Sym×
3 has “type (a11, a22, a33) if and only if

A =

a11 a12 a13
a12 a22 a23
a13 a23 a33

 .
We now examine each type individually, in ascending levels of difficulty.

Lemma 84. There are (q − 1)3 matrices in Sym×
3 of type (0, 0, 0).

Proof. Our matrices take the form

A :=

 0 a12 a13
a12 0 a23
a13 a23 0

 ,
which has determinant detA = 2a12a13a23. As such, this matrix is invertible if and only if
each a12, a13, a23 is nonzero, totaling to (q − 1)3 matrices. □

Lemma 85. For any a ∈ F×
q , there are q3− q2− (q− 1)2 matrices in Sym×

3 of type (a, 0, 0).
The same statement holds for permutations of (a, 0, 0).

Proof. Our matrices take the form

A :=

 a a12 a13
a12 0 a23
a13 a23 0

 ,
which has determinant detA = 2a12a13a23 − aa223. By counting the complement, we would
like to show that there are q2 + (q − 1)2 solutions (x, y, z) ∈ F3

q to 2xyz − ax2 = 0. There
are two cases.

• If x = 0, then any (y, z) ∈ F2
q will work, totaling to q2 matrices here.

• If x ̸= 0, then we see 2yz = ax ̸= 0. Thus, there are q − 1 choices for y ∈ F×
q , from

which z is forced. Counting over all x ∈ F×
q , there are (q − 1)2 matrices here.

Summing completes the proof. □

Lemma 86. For any a, b ∈ F×
q , there are q3− q− (q−1)2 matrices in Sym×

3 of type (a, b, 0).
The statement holds for permutations of (a, b, 0).

Proof. Our matrices take the form

A :=

 a a12 a13
a12 b a23
a13 a23 0

 ,
which has determinant detA = 2a12a13a23 − aa223 − ba213. By counting the complement, we
would like to show that there are q + (q − 1)2 solutions (x, y, z) ∈ F3

q to 2xyz = ax2 + by2.
We have two cases.

• If x = 0, then we must have y = 0, from which any z ∈ Fq will do. There are q
matrices here.
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• If x ̸= 0 and y ̸= 0, then z := (ax2 + by2) /(2xy) is forced. Totaling, there are (q−1)2

matrices here.

Summing completes the proof. □

Lemma 87. For any a, b, c ∈ F×
q , there are q3 − (q2 + 1) matrices in Sym×

3 of type (a, b, c).

Proof. Our matrices take the form

A :=

 a a12 a13
a12 b a23
a13 a23 c

 .
Scaling will not change invertibility, so for psychological reasons we replace A with a−1A so
that we may assume a = 1. Then detA = 2a12a13a23 − ba212 − ca212 − a223 + bc. By counting
the complement, we would like to show that there are q2 + 1 solutions (x, y, z) ∈ F3

q to

x2 − 2xyz = −cy2 − bz2 + bc. Sending x 7→ x+ yz, we are counting solutions to

x2 = y2z2 − cy2 − bz2 + bc =
(
y2 − b

) (
z2 − c

)
.

We now do casework on what elements on the right-hand side are squares. This requires the
following lemma.

Lemma 88. Fix a ∈ F×
q . The number of x ∈ Fq such that x2 − a is a square is{

q−1
2

if a is not a square,
q+1
2

if a is a square.

Proof. We are counting the number of x ∈ Fq for which there is a solution y ∈ Fq to the
equation x2 − a = y2. This rearranges to

(x+ y)(x− y) = a.

Setting s := x+y
2

and d := x−y
2
, we see that sd = a/4, so it is necessary and sufficient to have

x = s+ a
4s

for some s ∈ F×
q . In other words, we are currently counting the size of the image

of the map x : F×
q → Fq given by

x : s 7→ s+
a

4s
.

Now, x(s1) = x(s2) if and only if s1 +
a
4s1

= s2 +
a
4s2

, which upon clearing fractions and
rearranging is equivalent to

(4s1s2 − a)(s1 − s2) = 0.

This is now equivalent to s1 = s2 or s1 = a
4s2

. Thus, for each s ∈ F×
q , we see that

x−1({x(s)}) = {s, a/(4s)}, a set which has size 2 unless a is a square and s is a square
root of a/4.

To finish, we see that if a is not a square, there are q−1
2

values of x. Otherwise, a is a

square, and there are two fibers with exactly one element, totaling to q−3
2

+ 2 = q+1
2

values
of x. This completes the proof. □

We now have the following cases on b and c.
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• Suppose b and c are not squares. Then y2 − b and z2 − c are always nonzero, so for
(y2 − b) (z2 − c) to be a square, either both are squares or neither are squares. Each
such pair (y, z) produces two valid values of x, so we have counted

2

((
q − 1

2

)2

+

(
q + 1

2

)2
)

= q2 + 1

triples (x, y, z) in this case.
• Suppose exactly one of b or c is a square; without loss of generality, say that b is a
square. There are two values of y for which y2 − b vanishes, from which z has any
value and x = 0, totaling to 2q solutions here.

Continuing, there are q−3
2

additional values of y for which y2−b is a nonzero square;
here, z2 − c must be a (nonzero) square, giving

2

(
q − 3

2

)(
q − 1

2

)
=
q2 − 4q + 3

2

additional solutions.
Lastly, there are q−1

2
values of y for which y2 − b is not a square; here z2 − c must

not be a square, giving

2

(
q − 1

2

)(
q + 1

2

)
=
q2 − 1

2

more solutions. Summing all three cases gives 2q+ 1
2
(q2 − 4q + 3)+ 1

2
(q2 − 1) = q2+1

solutions.
• Suppose that both b and c are squares. There are two values of y for which y2 − b
from which z has any value and x = 0, totaling to 2q solutions. There are two values
for z for which z2 − c vanishes again, which adds 2q − 4 more solutions.
In the remaining cases, both y2− b and z2− c must be nonzero. For their product

to be a square, either both are squares or neither is a square, so we have counted

2

((
q − 3

2

)2

+

(
q − 1

2

)2
)

= q2 − 4q + 5

more solutions. In total, there are 2q − 4 + q2 − 4q + 5 = q2 + 1 solutions.

The above casework completes the proof of Lemma 87. □

We are now ready to prove Theorem 83.

Proof of Theorem 83. For given t ∈ Fq, we will count A ∈ Sym×
3 (Fq) such that trA = t. We

have two cases.

• Suppose t = 0. Then the type of any A ∈ Sym×
3 (Fq) has one of the following forms.

– Type (0, 0, 0): there are (q − 1)3 matrices here.
– Permutations of type (0, a,−a) for given a ∈ F×

q : there are q3 − q − (q − 1)2

matrices.
– Type (a, b,−a− b) for given a, b,−a− b ∈ F×

q : there are q3 − (q2 + 1) matrices.
Totaling all cases, we have

(q − 1)3 + 3 (q − 1)
(
q3 − q − (q − 1)2

)
+ (q − 1) (q − 2)

(
q3 − q2 − 1

)
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matrices. Simplifying, this is q5 − q4.
• Suppose t ̸= 0. Then the type of any A ∈ Sym×

3 (Fq) has one of the following forms.
– Permutations of type (t, 0, 0): there are q3 − q2 − (q − 1)2 matrices here.
– Permutations of type (a, t−a, 0) for given a, t−a ∈ F×

q : there are q
3−q−(q−1)2

matrices.
– Type (a, b, t−a−b) for given a, b, t−a−b ∈ F×

q : there are q
3−(q2 + 1) matrices.

Quickly, note that a /∈ {0, t} requires b /∈ {0, t− a} and hence q − 2 options for
b; otherwise a = t requires b ̸= 0 and hence q − 1 options for b.

Totaling all cases, we have

3
(
q3 − q2 − (q − 1)2

)
+3(q−2)

(
q3 − q − (q − 1)2

)
+((q−2)(q−2)+(q−1))

(
q3 −

(
q2 + 1

))
matrices. Simplifying, this is q5 − q4 − q2.

Combining cases, we see∑
A∈Sym×

3 (Fq)

ψ(trA) =
∑
t∈Fq

#
{
A ∈ Sym×

3 (Fq) : trA = t
}
ψ(t)

= q2ψ(0) +
∑
t∈Fq

(
q5 − q4 − q2

)
ψ(t)

= q2,

which is what we wanted. □

Appendix B. Computation of the Symmetric Gauss Sum

Let Fq denote the finite field with q elements, where q is an odd prime-power, and let
Sym×

n (Fq) denote the set of invertible symmetric n×n matrices with entries in Fq. The goal
of the present section is to compute the “symmetric” Gauss sum

gn(ω, ψ, T ) :=
∑

A∈Sym×
n (Fq)

ω(detA)ψ(trAT )

where n ∈ Z≥0 is a nonnegative integer, ω : F×
q → C× and ψ : Fq → C× are characters,

and T ∈ Sym×
n (Fq). Here, Sym×

0 is understood to consist of a single empty 0 × 0 matrix
with trace 0 and determinant 1 so that g0(ω, ψ, T ) = 1. In the case where ω is a quadratic
character, such sums were considered by [Wal17].

In the following discussion, we will make use of many Gauss sums, so it will be helpful to
have the notation

g(ω, ψ) :=
∑
a∈F×

q

ω(a)ψ(a),

where ω and ψ are as above. For example, g1(ω, ψ, 1) = g(ω, ψ).

We now state our main result.

Theorem 89. Let ω : F×
q → C× and ψ : Fq → C× be characters, and let χ : F×

q → C× denote

the nontrivial quadratic character, and fix some T ∈ Sym×
n (Fq). Further, assume that ψ is

nontrivial.
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• If n = 2m is an even nonnegative integer, then

g2m(ω, ψ, T ) =
χ(−1)mχ(detT )qm2

ω(4m detT )
· g
(
ω2, ψ

)m
.

• If n = 2m+ 1 is an odd nonnegative integer, then

g2m+1(ω, ψ, T ) =
qm(m+1)

ω(4m detT )
· g(ω, ψ)g

(
ω2, ψ

)m
.

Remark 90. The theorem implies that∑
A∈Sym×

n (Fq)

ω
(
detAT−1

)
ψ(trA) =

∑
B∈Sym×

n (Fq)

ω(detB)ψ(trBT ),

but this is not obvious: in particular, one cannot apply the variable change B := AT−1

because AT−1 need not be symmetric! We would be interested in a more direct proof of the
above equality.

Remark 91. In the “generic” case ω2 ̸= 1, all Gauss sums have magnitude
√
q (see Proposi-

tion 93), so Theorem 89 implies

|gn(ω, ψ, T )| = qn(n+1)/4 = q
1
2(
n+1
2 ).

This is roughly what we expect to be true from “square-root cancellation”: |Symn(Fq)| =
q(

n+1
2 ).

B.1. Quadratic Twists of Gauss Sums. The goal of this subsection is to prove the
following result.

Proposition 92. Let ω : F×
q → C× and ψ : Fq → C× be characters, and let χ : F×

q → C×

denote the nontrivial quadratic character. Then

ω(4)g(ω, ψ)g(ωχ, ψ) = g
(
ω2, ψ

)
g(χ, ψ).

Proof. Expanding out the Gauss sums, we are trying to show that∑
a,b∈F×

q

ω(4ab)χ(b)ψ(a+ b)
?
=
∑
a,b∈F×

q

ω
(
a2
)
χ(b)ψ(a+ b).

Fixing some d ∈ F×
q and t ∈ Fq, it is enough to show that

(B.1.1)
∑
a+b=t
4ab=d

χ(b)
?
=
∑
a+b=t
a2=d

χ(b)

and then sum over all possible values of d and t. At this point, the proof has become
combinatorial number theory. For convenience, extend χ to Fq by χ(0) := 0, and allow
a, b ∈ Fq in the right-hand sum above; this will not change its value.

For example, suppose that d is not a square. Then the right-hand side of (B.1.1) is
empty and hence zero. On the other hand, we claim that the left-hand side is zero. Let
(a1, b1), . . . , (am, bm) denote the solutions to the system of equations a+ b = t and 4ab = d.
Because d is not a square, ak ̸= bk for each k—in fact, if ak is a square, then bk is not a
square (and vice versa). Thus, if (a, b) is a solution, then (b, a) is a distinct solution with
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{χ(a), χ(b)} = {1,−1}, so the two pairs (a, b) and (b, a) contribute 1−1 = 0 to the left-hand
side of (B.1.1). It follows that the left-hand side vanishes.

Thus, in the rest of the proof, we may assume that d = x2 where x ∈ F×
q , so the right-hand

side of (B.1.1) reads

χ(t+ x) + χ(t− x).
To continue, observe that solving the system of equations a+ b = t and 4ab = d is equivalent
to having a = t− b and

(2b− t)2 = t2 − d.
As such, for our next case, suppose that t2 − d fails to be a square. Then the left-hand side
of (B.1.1) is empty and hence vanishes, so we want to show that the right-hand side also
vanishes. Well, t2 − d = (t+ x)(t− x) is then not a square, so both are nonzero, and one is
a square while the other is not a square. Thus, χ(t+ x) + χ(t− x) = 0, as needed.

Thus, in the rest of the proof, we may assume that t2−d = y2 for some y ∈ Fq. Quickly, we
deal with the case where y = 0. On one hand, we have t2 = d, so t = ±x, so the right-hand
side of (B.1.1) is χ(2t). On the other hand, we see the left-hand side of (B.1.1) is χ(t/2), so
we finish by noting χ(2t) = χ(t/2).

At the current point, we can now say that t2 = x2+ y2 where x, y ∈ F×
q , and the left-hand

side of (B.1.1) is χ
(
t+y
2

)
+ χ

(
t−y
2

)
, so we are trying to show that

(B.1.2) χ

(
t+ y

2

)
+ χ

(
t− y
2

)
?
= χ(t+ x) + χ(t− x).

Because (t− x)(t+ x) = y2 and
(
t+y
2

) (
t−y
2

)
= 1

4
x2, we see that all values above are nonzero,

and χ
(
t+y
2

)
= χ

(
t−y
2

)
and χ(t + x) = χ(t − x). Because, these values are in {±1}, we see

that it is enough to show that χ(t+ x) = 1 if and only if χ
(
t+y
2

)
= 1.

The main claim, now, is that χ(t + x) = 1 implies that χ
(
t+y
2

)
= 1. This approximately

boils down to the enumeration of Pythagorean triples. The above logic grants that χ(t+x) =
χ(t−x) = 1, so both t+x and t−x are squares; write t+x = x21 and t−x = x22 for x1, x2 ∈ F×

q .
Adjusting signs, we may assume that y = x1x2. Thus,

t+ y

2
=

1

2

(
x21 + x22

2
+ x1x2

)
=

(
x1 + x2

2

)2

is a square, and we know t+y
2

is nonzero from the above logic, so χ
(
t+y
2

)
= 1, as desired.

To finish the proof, we must show the reverse implication: we claim that χ
(
t+y
2

)
= 1

implies χ(t+ x) = 1. Well, we see that
(
x
2

)2
+
(
y
2

)2
=
(
t
2

)2
, so the argument of the previous

paragraph tells us that χ
(
t
2
+ y

2

)
= 1 implies

χ(t+ x) = χ

(
t+ x

4

)
= χ

( t
2
+ x

2

2

)
= 1,

as desired. □

Before continuing, it will be helpful to have the following well-known fact about the qua-
dratic Gauss sum. Because the proof is so quick, we include the proof.
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Proposition 93. Let ω : F×
q → C× and ψ : Fq → C× denote nontrivial characters. Then

g(ω, ψ)g
(
ω−1, ψ−1

)
= q.

Thus, if χ : F×
q → C× denotes the nontrivial quadratic character, then g(χ, ψ)2 = χ(−1)q.

Proof. For the first claim, we want to show∑
a,b∈F×

q

ω(a/b)ψ(a− b) ?
= q.

Well, set c := a/b so that the sum is∑
c∈F×

q

(
ω(c)

∑
a∈F×

q

ψ(a− ac)

)
.

If c ̸= 1, then the inner sum is −ψ(0)+
∑

a∈Fq ψ(a− ac) = −1. Otherwise, if c = 1, then the
inner sum is q − 1. In total, we are left with

(q − 1) +
∑

c∈F×
q \{1}

−ω(c) = q −
∑
c∈F×

q

ω(c) = q,

which is what we wanted.

For the second claim, we see

g
(
χ−1, ψ−1

)
=
∑
a∈F×

q

χ(a)ψ(−a) = χ(−1)
∑
a∈F×

q

χ(a)ψ(a) = χ(−1)g(χ, ψ),

so the second claim follows from the first. □

B.2. The Main Computation. In this subsection, we prove Theorem 89. The key idea is
to use Gaussian elimination of symmetric matrices in order to be able to use induction; note
that this idea was used to count the number of invertible symmetric matrices over Z/nZ in
[BM87]. As such, the hard work is done in the following lemma.

Lemma 94. Let ω : F×
q → C× and ψ : Fq → C× be characters, and let χ : F×

q → C× denote
the nontrivial quadratic character. Further, assume that ψ is nontrivial. For any positive
integer n and d1, . . . , dn+1 ∈ F×

q ,

gn+1(ω, ψ, diag(d1, . . . , dn+1)) = gn(ω, ψ, diag(d1, . . . , dn))·
χ(d1 · · · dn)χ(dn+1)

n

ω(dn+1)
·g (ωχn, ψ) g(χ, ψ)n.

Proof. For brevity, set T := diag(d1, . . . , dn+1). For a matrix square A ∈ Mm(Fq), we use
the notation Akℓ denote the entry of A in the kth row and ℓth column. Now, for some
A ∈ Sym×

n+1, there are two cases.

• Suppose An+1,n+1 ̸= 0; here, set T ′ := diag(d1, . . . , dn) for brevity. For our Gaussian
elimination, we note that the map

Sym×
n (Fq)× Fnq × F×

q → {A ∈ Sym×
n+1(Fq) : An+1,n+1 ̸= 0}

(A′ , v , c) 7→
[
1 v
1

] [
A′

c

] [
1
v⊺ 1

]
=

[
A′ + cvv⊺ cv

cv⊺ c

]
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is a bijection. Indeed, An+1,n+1 uniquely determines c, the values Ak,n+1 for 1 ≤ k ≤ n
uniquely determine v, and then the rest of the matrix uniquely determines A′. Using
this bijection, we see that

S ̸=0 :=
∑

A∈Sym×
n+1(Fq)

An+1,n+1 ̸=0

ω(detA)ψ(trAT )

=
∑

A∈Sym×
n (Fq)

v∈Fnq ,c∈F
×
q

ω(c detA′)ψ (trA′T ′ + c tr vv⊺T ′ + cdn+1)

= gn(ω, ψ, T
′)
∑
c∈F×

q

ω(c)ψ(cdn+1)
∑
v∈Fnq

ψ (c tr vv⊺T ′)

= gn(ω, ψ, T
′)
∑
c∈F×

q

ω(c)ψ(cdn+1)
n∏
k=1

(∑
a∈Fq

ψ
(
cdka

2
))

.

Quickly, we claim that∑
a∈Fq

ψ
(
cdka

2
) ?
=
∑
a∈Fq

(1 + χ(cdka))ψ(a),

where we have extended χ to Fq by χ(0) := 0. Indeed, for any b ∈ Fq, we see that
ψ(b) appears on the left-hand side 0 times if b does not have the form cdka

2, appears
1 time if b = 0, and appears 2 times if b is nonzero and has the form cdka

2; these
values are exactly 1+χ(cdka) in all cases. As such, the claim follows, and because ψ
is nontrivial, we actually have∑

a∈Fq

ψ
(
cdka

2
)
=
∑
a∈Fq

χ(cdka)ψ(a) = χ(cdk)g(χ, ψ).

Plugging this in, we see that

S ̸=0 = gn(ω, ψ, T
′)
∑
c∈F×

q

ω(c)χ(c)nψ(cdn+1)χ(d1 · · · dn)g(χ, ψ)n

= gn(ω, ψ, T
′) · χ(d1 · · · dn)χ(dn+1)

n

ω(dn+1)

∑
c∈F×

q

ω(c)χ(c)nψ(c)g(χ, ψ)n

= gn(ω, ψ, T
′) · χ(d1 · · · dn)χ(dn+1)

n

ω(dn+1)
· g (ωχn, ψ) g(χ, ψ)n.

• Suppose An+1,n+1 = 0; here, set T ′ := diag(d1, . . . , dn−1) for brevity. The computation
in the previous case implies that we would like to show∑

A∈Sym×
n+1(Fq)

A′
n+1,n+1=0

ω(detA)ψ(trAT )
?
= 0.

66



In fact, let en+1 denote the nth basis vector, and for any v ∈ kn−1 and c ∈ k, we
claim

S(v, c) :=
∑

A∈Sym×
n+1(Fq)

Aen+1=(v,c,0)

ω(detA)ψ(trAT )
?
= 0.

To do Gaussian elimination, we would like to assume c ̸= 0. Well, because A is
invertible, we know that Ak,n+1 ̸= 0 for some 1 ≤ k ≤ n (recall An+1,n+1 = 0
already), so if the sum is to be nonempty, we may assume that c ̸= 0 or vk ̸= 0 for
some k. If vk ̸= 0, then note swapping the kth row and column with the nth row and
column (of both A and T ) will not affect the trace or detetrminant but does switch
vk with c, which grants c ̸= 0.
We now do Gaussian elimination: note that there is a bijection

Sym×
n−1(Fq)× Fn−1

q × Fq→ {A ∈ Sym×
n+1(Fq) : Aen+1 = (v, c, 0)}

(A′ , w , d) 7→

1 1
c
v w
1

1

A′

d c
c

 1
1
c
v⊺ 1
w⊺ 1


(Here, Sym×

0 is understood to consist of only the “empty” 0× 0 matrix.) To see that
this is a bijection, we expand out the matrix product asA′ + d

c2
vv⊺ + (vw⊺ + wv⊺) dv + cw v
dv⊺ + cw⊺ d c

v⊺ c 0

 ,
so we see that An,n forces d, which then forces w from Ak,n as 1 ≤ k ≤ n; the rest of
the data then forces A′. Thus,

S(v, c) =
∑

A′∈Sym×
n−1(Fq)

w∈Fn−1
q ,d∈Fq

ω
(
−c2 detA′)ψ(trA′T ′ +

d

c2
tr vv⊺T ′ + 2 tr vw⊺T ′ + ddn

)

=
∑

A′∈Sym×
n−1(Fq)

ω
(
−c2 detA′)ψ(trAT ′)

(∑
d∈Fq

ψ

(
ddn +

d

c2
tr vv⊺T ′

) ∑
w∈Fn−1

q

ψ(2 tr vw⊺T ′)

)
.

Beginning with the innermost sum, we see tr vw⊺T ′ = d1v1w1 + · · · + dn−1vn−1wn−1,
so this sum is ∑

w∈Fn−1
q

ψ(2 tr vw⊺T ′) =
n−1∏
k=1

( ∑
wk∈Fq

ψ(2dkvkwk)

)
.

In order for these inner sums to be nonzero, we note that we must have vk = 0 for
each k because ψ is a nontrivial character. Thus, we may assume v = 0, from which
we see

S(0, c) =

( ∑
A′∈Sym×

n−1(Fq)

ω(detA′)ψ(trA′T ′)

)(∑
d∈Fq

ψ(dnd)

)
= 0,

so we conclude in this case as well.

Summing the above two cases finishes the proof of Lemma 94. □
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We are now ready to prove Theorem 89.

Proof of Theorem 89. Quickly, we reduce to the case where T is diagonal. Indeed, by
choosing an orthogonal basis for the symmetric bilinear form given by T , we receive some
g ∈ GLn(Fq) such that D := gTg⊺ is diagonal. As such, we compute

gn(ω, ψ, T ) =
∑

A∈Sym×
n (Fq)

ω(detA)ψ(trAT )

=
∑

A∈Sym×
n (Fq)

ω(detA)ψ
(
tr g−⊺Ag−1D

)
=

∑
A∈Sym×

n (Fq)

ω (det g⊺Ag)ψ (trAD)

= ω(det g)2gn(ω, ψ,D).

Now, suppose we have proven the theorem for diagonal matrices. In this case, we see
gn(ω, ψ,D) = (detD)−1gn(ω, ψ, 1), so detD = (det g)2(detT ) implies that

gn(ω, ψ, T ) = (detT )−1gn(ω, ψ, 1),

which is the theorem for T , as desired.

Thus, we may assume that T := diag(d1, . . . , dn). At this point, we induct on n. For n = 0
and n = 1, there is nothing to say. For the induction, assume n ≥ 2, and we use Lemma 94;
for brevity, set T ′ := diag(d1, . . . , dn−1). There are two cases.

• Suppose that n = 2m is an even positive integer. In this case, Lemma 94 and
induction yields

g2m(ω, ψ) = g2m−1(ω, ψ) ·
χ(detT )

ω(dn+1)
· g(ωχ, ψ)g(χ, ψ)2m−1

=
χ(detT )q(m−1)m

ω(4m−1 detT )
· g(ω, ψ)g

(
ω2, ψ

)m−1
g(ωχ, ψ)g(χ, ψ)2m−1.

By Proposition 92, this is

g2m(ω, ψ) =
χ(detT )qm

2−m

ω(4m detT )
· g
(
ω2, ψ

)m
g(χ, ψ)2m.

Lastly, Proposition 93 yields

g2m(ω, ψ) =
χ(−1)mχ(detT )qm2

ω(4m detT )
· g
(
ω2, ψ

)m
.

• Suppose n = 2m+ 1 is an odd positive integer with m ≥ 1. In this case, Lemma 94
and induction yields

g2m+1(ω, ψ) = g2m(ω, ψ)g(ω, ψ) ·
χ(detT ′)

ω(dn+1)
· g(χ, ψ)2m

=
χ(−1)mqm2

ω(4m detT )
· g
(
ω2, ψ

)m
g(ω, ψ)g(χ, ψ)2m.
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From here, Proposition 93 implies

g2m+1(ω, ψ) =
qm

2+m

ω(4)m
· g(ω, ψ)g

(
ω2, ψ

)m
.

The above cases complete the induction. □

B.3. A Gamma Matrix Computation. In this subsection, we use Theorem 89 to compute
the finite-field analogue of a γ-matrix attachaed to the prehomogeneous space Symn(Fq). For
context, the p-adic analogue of Theorem 89 is intimately related to zeta functions attached
to prehomogeneous spaces; see [KS97, Section 3] or [Ike17, Section 2]. We refer to [Sat89]
for the general theory of prehomogeneous spaces.

In our case, we note that (GLn, Symn) is a prehomogeneous space, where the action is
given by g ·A := gAg⊺. In other words, there is a proper algebraic subset S ⊆ Symn(k) such
that Symn(k) \ S is a single GLn(k)-oribt. To see this, for any field k, we note that two
invertible symmetric matrices A,B ∈ Symn(k) have some g ∈ GLn(k) such that g · A = B
if and only if detA and detB are the same element in k×/k×2; thus, when passing to the
algebraic closure, Sym×

n (k) is a Zariski-open GLn(k)-orbit in Symn(k).

We now define our zeta function. Let the GLn(Fq)-orbits of Sym×
n (Fq) be denoted by Y1⊔

Y−1, corresponding to if A ∈ Sym×
n (Fq) has square or non-square determinant, respectively.

Now, because the proper algebraic subset S ⊆ Symn(Fq) is cut out by det, our attached zeta
functions are

Zk(ω, φ) :=
∑
A∈Yk

ω(detA)φ(A),

where ω : F×
q → C× is a character and φ : Symn(Fq) → C is some test function; let

S(Symn(Fq)) denote this space of test functions. Now, fix once and for all a nontrivial
additive character ψ : Fq → C×, so we may define the Fourier transform

Fψφ(A) :=
∑

B∈Symn(Fq)

φ(B)ψ(trAB).

Remark 95. To view Fψ as a Fourier transform, we claim Fψ−1 ◦ Fψ = q(
n+1
2 ). It suffices to

check this result on indicators 1C where C ∈ Symn(Fq). Then we see Fψ1C(B) = ψ(trBC)
for any B ∈ Symn(Fq), so

(Fψ−1Fψ1C) (A) =
∑

B∈Symn(Fq)

ψ(tr(C − A)B).

If A = C, then the sum is q(
n+1
2 ). Otherwise, A′ := C − A ̸= 0, and we need the sum to

vanish. Well, if A′
k′ℓ′ ̸= 0 for some indices k′ and ℓ′, then consider the matrix B(k′, ℓ′) by

B(k′, ℓ′)kℓ = 1{k,ℓ}={k′,ℓ′}, which gives∑
b∈Fq

ψ(trA′bB(k′, ℓ′)) =
∑
b∈Fq

n∑
k,ℓ=1

ψ(bA′
kℓB(k′, ℓ′)ℓk) =

∑
b∈Fq

ψ(2bA′
k′ℓ′) = 0.

Grouping the rest of the sum by Symn(Fq)/FqB(k′, ℓ′) shows that
∑

B∈Symn(Fq)
ψ(trA′B) = 0,

as needed.
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A functional equation of zeta functions attached to prehomogeneous spaces is typically a
result relating Z•(ω, φ) to a dual version Z• (ω

−1,Fψφ); some such results exist in the liter-
ature [DG98], but we will prove an analogue here for completeness. To prove our analogue,
we begin with the following multiplicity-two result.

Proposition 96. Fix notation as above, and let ω : F×
q → C× be a character.

(a) For any k ∈ {±1} and g ∈ GLn(Fq) and φ ∈ S(Symn(Fq)), we have

Zk(ω, g · φ) = ω(det g)2Zk(ω, φ).

(b) The functionals Z1(ω) and Z2(ω) are a basis of the space

HomGLn(Fq)
(
S(Symn(Fq))◦, ω2 ◦ det

)
,

where S(Symn(Fq))◦ denotes the functionals on Symn(Fq) supported on Sym×
n (Fq).

Proof. Quickly, we recall that the GLn(Fq)-action on Symn(Fq) is given by (g · φ)(A) =

φ (g−1 · A) = φ (g−1Ag−⊺). From this one can see that S
(
Sym×

n (Fq)
)◦

is in fact a GLn(Fq)-
subrepresentation of Symn(Fq).

To see (a), we directly compute

Zk(ω, g · φ) =
∑
A∈Yk

ω(detA)(g · φ)(A)

=
∑
A∈Yk

ω(detA)φ
(
g−1 · A

)
=
∑
A∈Yk

ω(det g · A)φ(A)

= ω(det g)2
∑
A∈Yk

ω(detA)φ(A),

which is what we wanted.

Thus, we spend most of our time on (b). Fix representatives A1 ∈ Y1 and A−1 ∈ Y−1. Then
we see that Z1(ω) and Z2(ω) are at least linearly independent as functionals on S (Symn(Fq))

◦

because Zk(ω, 1Aℓ) = 1k=ℓω(detAℓ).

It remains to show that Z1 and Z2 span this eigenspace. The main point is that Sym×
n (Fq)

has only two orbits, so any eigenvector Z is essentially determined by two values. Rigorously,
without loss of generality, we replace Z with

Z − Z(1A1)

ω(detA1)
· Z1(ω)−

Z(1A−1)

ω(detA−1)
· Z−1(ω)

so that Z(1A1) = Z(1A−1) = 0. We now claim that Z = 0, which will complete the proof. It
is enough to show that Z(1A) = 0 for any A ∈ Sym×

n (Fq).
Well, Sym×

n (Fq) = Y1 ⊔ Y−1, so without loss of generality, take A ∈ Y1. Then we may find
g ∈ GLn(Fq) so that A = g · A1, so

1A(B) = 1g·A1(B) = 1A1

(
g−1 ·B

)
= (g · 1A1)(B)

for any B ∈ Symn(Fq). Thus, because Z is an eigenvector,

Z(1A) = Z(g · 1A1) = ω(det g)2Z(1A1) = 0,
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as desired. □

Remark 97. In fact, for any eigenvector Z, the proof of Proposition 96 shows that

Z(φ) =
Z(1A1)

ω(detA1)
· Z1(ω, φ) +

Z(1A−1)

ω(detA−1)
· Z−1(ω, φ)

for any φ ∈ S(Symn(Fq))◦. Here, we recall A1 ∈ Y1 and A−1 ∈ Y−1 are any representatives.

To use Proposition 96, we thus want to show that φ 7→ Z (ω−1,Fψφ) is an eigenvector.
This follows formally from the following lemma.

Lemma 98. For any g ∈ GLn(Fq), the following diagram commutes.

S(Symn(Fq)) S(Symn(Fq))

S(Symn(Fq)) S(Symn(Fq))

Fψ

Fψ

g g−⊺

Proof. This is a direct computation. For any g ∈ GLn(Fq) and φ ∈ S(Symn(Fq)) and
A ∈ Symn(Fq), we compute

(Fψgφ)(A) =
∑

B∈Symn(Fq)

(gφ)(B)ψ(trAB)

=
∑

B∈Symn(Fq)

φ
(
g−1Bg−⊺

)
ψ(trAB)

=
∑

B∈Symn(Fq)

φ(B)ψ (trAgBg⊺)

=
∑

B∈Symn(Fq)

φ(B)ψ (tr g⊺AgB)

= Fψφ (g⊺ · A)
=
(
g−⊺Fψφ

)
(A),

which is what we wanted. □

Theorem 99. Fix notation as above. Let ω : F×
q → C× be a character. For any k ∈ {±1},

there exist unique constants γk,1(ω) and γk,−1(ω) such that

Zk
(
ω−1,Fψφ

)
= γk,1(ω)Z1(ω, φ) + γk,−1(ω)Z−1(ω, φ)

for any φ ∈ S(Symn(Fq)) supported on Sym×
n (Fq).

Proof. This follows formally from Proposition 96 and Lemma 98. Indeed, it is enough to
show that the functional φ 7→ Zk (ω

−1,Fψφ) on S(Symn(Fq)) is a GLn(Fq)-eigenvector with
eigenvalue ω2 ◦ det. Well, for any φ ∈ S(Symn(Fq)) and g ∈ GLn(Fq), we use Lemma 98 to
compute

Zk
(
ω−1,Fψ(gφ)

)
= Zk

(
ω−1, g−⊺Fψφ

)
=
(
ω−1

(
det g−⊺

))2
Zk
(
ω−1,Fψφ

)
= ω(det g)2Zk

(
ω−1,Fψφ

)
,
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as desired. □

The main point of this subsection is to explicitly compute the constants γk,ℓ(ω), which
make up the “change-of-basis” γ-matrix. To this end, we have the following result.

Theorem 100. Fix notation as above. Let ω : F×
q → C× be a character, and let χ : F×

q → C×

be the nontrivial quadratic character. For any k, ℓ ∈ {±1}, we have

(B.3.1) ck,ℓ(ω) =
gn (ω

−1, ψ, 1) + kℓgn (ω
−1χ, ψ, 1)

2
.

In particular, we have the following.

• If n = 2m is an even nonnegative integer, then

ck,ℓ(ω) = χ(−1)mω(4)mqm2

g
(
ω−2, ψ

)m
1k=ℓ.

• If n = 2m+ 1 is an odd nonnegative integer, then

ck,ℓ(ω) = ω(4)mqm(m+1)g
(
ω−2, ψ

)m · g (ω−1, ψ) + kℓg (ω−1χ, ψ)

2
.

Proof. The last computations follow from directly from plugging (B.3.1) into Theorem 89,
so we will spend our time proving (B.3.1). Using Remark 97, we see

γk,ℓ(ω) =
Zk (ω

−1Fψ1Aℓ)
ω(detAℓ)

=
1

ω(detAℓ)

∑
A∈Yk

ω−1(detA)Fψ1Aℓ(A),

where Aℓ ∈ Yℓ is some representative. A direct computation shows Fψ1Aℓ(A) = ψ(trAAℓ),
so

γk,ℓ(ω) =
1

ω(detAℓ)

∑
A∈Yk

ω−1(detA)ψ(trAAℓ).

To express this in terms of gns, we need to change the sum from over A ∈ Yk to over
A ∈ Sym×

n (Fq). To this end, we note that A ∈ Yk if and only if χ(detA) = k and is −k
otherwise, so a direct computation shows that 1Yk =

1
2
(1 + kχ ◦ det). Thus,

γk,ℓ(ω) =
1

ω(detAℓ)

∑
A∈Sym×

n

ω−1(detA)ψ(trAAℓ)

(
1 + kχ(detA)

2

)

=
gn (ω

−1, ψ, Aℓ) + kgn (ω
−1χ, ψ,Aℓ)

2ω(detAℓ)
.

To finish up, we note that Theorem 89 implies that gn (ω
−1, ψ, Aℓ) = ω(detAℓ)gn (ω

−1, ψ, 1)
and

gn
(
ω−1χ, ψ,Aℓ

)
= ω(detAℓ)χ(detAℓ)gn

(
ω−1χ, ψ, 1

)
= ω(detAℓ)ℓgn

(
ω−1χ, ψ, 1

)
,

from which substitution completes the proof. □

Corollary 101. Fix notation as above. Let ω : F×
q → C× be a character. The functions

φ 7→ Z• (ω
−1,Fψφ) form a basis of the space

HomGLn(Fq)
(
S(Symn(Fq))◦, ω2 ◦ det

)
,

where S(Symn(Fq))◦ denotes the functionals on Symn(Fq) supported on Sym×
n (Fq).
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Proof. For brevity, define Z ′
•(φ) := Z• (ω

−1,Fψφ). Note that Z ′
• is in fact an eigenvector by

the proof of Theorem 99, and this space has basis given by Z1(ω) and Z2(ω) by Proposi-
tion 96. Now, the constants (γk,ℓ)k,ℓ∈{±1} make a change-of-basis matrix from {Z1(ω), Z2(ω)}
to {Z ′

1, Z
′
2}, so it suffices to show that

det

[
γ1,1 γ1,−1

γ−1,1 γ−1,−1

]
?

̸= 0.

To use Theorem 100, we set g+ := gn (ω
−1, ψ, 1) and g− := gn (ω

−1χ, ψ, 1), from which we
compute

det

[
γ1,1 γ1,−1

γ−1,1 γ−1,−1

]
= det

1

2

[
g+ + g− g+ − g−
g+ − g− g+ + g−

]
= g+g−.

Now, g+ and g− are nonzero by Theorem 89 (and Proposition 93), so we are done. □

Remark 102. Combining the above computation with Remark 91, in the “generic” case
ω2 ̸= 1, we have ∣∣∣∣det [ γ1,1 γ1,−1

γ−1,1 γ−1,−1

]∣∣∣∣ = q(
n+1
2 ).

If we were to normalize Fψ to F∗
ψ := q−

1
2(
n+1
2 )Fψ and redefine everything with the normalized

Fourier transform, then this determinant would have absolute value 1. This normalization
factor is desirable because Remark 95 implies F∗

ψ−1 ◦ F∗
ψ = 1.

B.4. Combinatorics. In this subsection, we use Theorem 89 to compute the number of
symmetric invertible matrices over Fq with specified trace and determinant. This requires a
more complete understanding of the sums gn(ω, ψ, T ) than Theorem 89 provides; in partic-
ular, we need to understand the case when ψ is trivial. Nonetheless, the method of proof
Theorem 89 still applies.

Proposition 103. Fix a nonnegative integer n and some T ∈ Sym×
n (Fq).

(a) Let ω : F×
q → C× be a nontrivial character. If n is odd or ω2 ̸= 1, then gn(ω, 1, T ) = 0.

(b) Let χ : F×
q → C× be the nontrivial quadratic character. If n = 2m is even, then

g2m(χ, 1, T ) = χ(−1)mqm2
m−1∏
k=0

(
q2k+1 − 1

)
.

Proof. For the proof of (a), we have two cases.

• Suppose ω2 ̸= 1. Then for any g ∈ GLn(Fq), we see that A ∈ Sym×
n (Fq) if and only

if gAg⊺ ∈ Sym×
n (Fq), so

gn(ω, 1, T ) =
∑

A∈Sym×
n (Fq)

ω(detA) =
∑

A∈Sym×
n (Fq)

ω(det gAg⊺) = ω(det g)2gn(ω, 1, T ).

Thus, to conclude gn(ω, 1, T ) = 0, it suffices to find g ∈ GLn(Fq) with ω(det g)2 ̸= 1.
Well, ω2 ̸= 1, so find c ∈ F×

q such that ω(c)2 ̸= 1 and then set g := diag(c, 1, . . . , 1).

• Suppose n is odd. By the previous case, we may assume that ω2 = 1. Now, for any
c ∈ F×

q , we see that A ∈ Sym×
n (Fq) if and only if cA ∈ Sym×

n (Fq), so

gn(ω, 1, T ) =
∑

A∈Sym×
n (Fq)

ω(detA) =
∑

A∈Sym×
n (Fq)

ω(c detA) = ω(c)ngn(ω, 1, T ).
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Now, if we did have gn(ω, 1, T ) ̸= 0, then we would have ω(c)n = 1 for all c ∈ F×
q

and hence ωn = 1; however, n is odd and ω2 = 1 already, so it would follow ω = 1.
However, ω ̸= 1 by hypothesis.

For the proof of (b), we imitate the proof of Theorem 89. As an analogue of Lemma 94, we
claim that

(B.4.1) g2m+2(χ, 1, T )
?
= g2m(χ, 1, T ) · χ(−1)q2m+1

(
q2m+1 − 1

)
for any nonnegative integer m. Note that (B.4.1) will complete the proof of (b) by an
induction.

Now, the proof of (B.4.1) is analogous to Lemma 94; there are two cases. Set n := 2m for
brevity.

• We sum over A ∈ Sym×
n+2(Fq) with An+2,n+2 ̸= 0. As in Lemma 94, we have the

following bijection.

Sym×
n+1(Fq)× Fn+1

q × F×
q → {A ∈ Sym×

n+2(Fq) : An+2,n+2 ̸= 0}

(A′ , v , c) 7→
[
1 v
1

] [
A′

c

] [
1
v⊺ 1

]
It follows that∑

A∈Sym×
n+2(Fq)

An+2,n+2 ̸=0

χ(detA) =

( ∑
A′∈Sym×

n+1(Fq)

χ(detA)

)( ∑
c∈F×

q ,v∈Fn+1
q

ω(c)

)
,

but the left sum vanishes by (a) because it is g2m+1(χ, 1, T ) = 0. Thus, there is no
contribution in this case.
• We sum over A ∈ Sym×

n+2(Fq) with An+2,n+2 = 0. In light of the previous case, we
expect all contribution from this case. Let en+2 denote the (n + 2)nd basis vector.
For any v ∈ Fnq and c ∈ Fq, we claim that∑

A∈Sym×
n+2(Fq)

Aen+2=(v,c,0)

χ(detA)
?
= g2m(χ, 1, T ) · χ(−1)q2m+1,

from which the claim will follow upon summing over all vectors (v, c) ∈ Fn+1
q with at

least one nonzero entry. Quickly, because some entry in (v, c) ∈ Fn+1
q , we note that

we can rearrange the rows and columns of A to allow us to assume that c ̸= 0.
Thus, as in Lemma 94, we have the following bijection.

Sym×
n (Fq)× Fnq × Fq→ {A ∈ Sym×

n+2(Fq) : Aen+2 = (v, c, 0)}

(A′ , w , d) 7→

1 1
c
v w
1

1

A′

d c
c

 1
1
c
v⊺ 1
w⊺ 1


It follows that∑

A∈Sym×
n+2(Fq)

Aen+2=(v,c,0)

χ(detA) =
∑

w∈Fnq ,d∈Fq

( ∑
A′∈Sym×

n (Fq)

χ
(
−c2 detA

))
.

which is what we wanted upon noting χ (−c2) = χ(−1) and collecting sums.
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Combining the above casework completes the proof of (b). □

Remark 104. One can prove (b) by a combinatorial argument, directly counting the number
of invertible symmetric matrices with square determinant; this is done in [Mac69, Theorem 4].
We have included the above proof to emphasize the strength of the Gaussian elimination
technique to compute these Gauss sums.

The last sum gn(ω, ψ, T ) to consider is the case where ω and ψ are both trivial. Equiv-
alently, we are counting the number of invertible symmetric n × n matrices with entries in
Fq. This result is well-known; for example, see [Mac69, Theorem 2]. However, to emphasize
the strength of our method (and for completeness), we will present a proof using Gaussian
elimination, as done in [BM87] in the case of Fp.

Proposition 105. Fix a nonnegative integer n and some T ∈ Sym×
n (Fq).

(a) If n = 2m is even, then

g2m(1, 1, T ) = qm
2+m

m−1∏
k=0

(
q2k+1 − 1

)
.

(b) If n = 2m+ 1 is odd, then

g2m+1(1, 1, T ) = qm
2+m

m∏
k=0

(
q2k+1 − 1

)
.

Proof. The proof will be by induction on n. In analogy to Lemma 94, the main claim is that

(B.4.2) gn+2(1, 1, T )
?
= qn+1(q − 1)gn+1(1, 1, T ) + qn+1

(
qn+1 − 1

)
gn(1, 1, T )

for any nonnegative integer n. The proof of Equation (B.4.2) uses the typical Gaussian
elimination technique.

• We sum over A ∈ Sym×
n+2(Fq) where An+2,n+2 ̸= 0. As in Lemma 94, we have the

following bijection.

Sym×
n+1(Fq)× Fn+1

q × F×
q → {A ∈ Sym×

n+2(Fq) : An+2,n+2 ̸= 0}

(A′ , v , c) 7→
[
1 v
1

] [
A′

c

] [
1
v⊺ 1

]
It follows that the number of matrices in this case is qn+1(q − 1)gn+1(1, 1, T ).
• We sum over A ∈ Sym×

n+2(Fq) where An+2,n+2 = 0. Let en+2 denote the (n + 2)nd
basis vector. For any v ∈ Fnq and c ∈ Fq, we claim that

#
{
A ∈ Sym×

n+2(Fq) : Aen+2 = (v, c, 0)
} ?
= qn+1gn(1, 1, T ),

from which (B.4.2) will follow by summing over all (v, c) ∈ Fn+1
q with at least one

nonzero entry. Quickly, because some entry in (v, c) ∈ Fn+1
q , we note that we can

rearrange the rows and columns of A to allow us to assume that c ̸= 0.
Now, as in Lemma 94, we have the following bijection.

Sym×
n (Fq)× Fnq × Fq→ {A ∈ Sym×

n+2(Fq) : Aen+2 = (v, c, 0)}

(A′ , w , d) 7→

1 1
c
v w
1

1

A′

d c
c

 1
1
c
v⊺ 1
w⊺ 1
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The desired equality follows.

Summing the above cases completes the proof of (B.4.2).

We now complete the proof by an induction on n. For n = 0 and n = 1, there is nothing
to say. Now, to synthesize cases, we note that

qm
2+m

m∏
k=0

(
q2k+1 − 1

)
= q

1
2
(2m+1)(2m+2)

∏
1≤k≤2m+1

k odd

(
1− 1

qk

)

and analogously for the even case. Thus, for our induction, we take n ≥ 0 and use (B.4.2)
to see gn+2(1, 1, T ) is

qn+1(q − 1)gn+1(1, 1, T ) + qn+1
(
qn+1 − 1

)
gn(1, 1, T )

= q
1
2
(n+2)(n+1)

qn+1(q − 1)
∏

n<k≤n+1
k odd

(
1− 1

qk

)
+
(
qn+1 − 1

) ∏
1≤k≤n
k odd

(
1− 1

qk

)
.

If n is odd, we have

q
1
2
(n+2)(n+1)

(
qn+2 − 1

) ∏
1≤k≤n
k odd

(
1− 1

qk

)
,

which simplifies correctly. If n is even, we have

q
1
2
(n+2)(n+1)

(
qn+1(q − 1)

(
1− 1

qn+1

)
+
(
qn+1 − 1

))
︸ ︷︷ ︸

q(qn+1−1)

∏
1≤k≤n
k odd

(
1− 1

qk

)
,

which still simplifies correctly. This completes the induction. □

We are now ready for our combinatorics.

Theorem 106. Let n be a nonnegative integer, and fix some T ∈ Sym×
n (Fq). Further, fix

d ∈ F×
q and t ∈ Fq.

(a) Suppose that n = 2m + 1 is odd. Then the number of A ∈ Sym×
2m+1(Fq) such that

detA = d and trAT = t is

qm
2+m

q(q − 1)

(
m∏
k=0

(
q2k+1 − 1

)
− (q − 1)m+1

)

+ qm
2+m ·#

{
(x, y1, . . . , ym) : x+ (y1 + · · ·+ ym) = t,

x(y1 · · · ym)2

4m detT
= d

}
.

(b) Suppose that n = 2m is even. Let χ : F×
q → C× denote the nontrivial quadratic

character. Then the number of A ∈ Sym×
2m(Fq) such that detA = d and trAT = t is

qm
2

q(q − 1)

(
(qm + χ(−1)mχ(d))

m−1∏
k=0

(
q2k+1 − 1

)
− χ(−1)m (χ(d) + χ(detT )) (q − 1)m

)

+ χ(−1)mχ(detT )qm2 ·#
{
(y1, . . . , ym) : y1 + · · ·+ ym = t,

(y1 · · · ym)2

4m detT
= d

}
.
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Proof. We prove these separately.

(a) For any characters ω : F×
q → C× and ψ : Fq → C×, we claim that

gn(ω, ψ, T )
?
=

qm(m+1)

ω (4m detT )
· g(ω, ψ)g

(
ω2, ψ

)m
+
gn(1, 1, T )− qm(m+1)(q − 1)m+1

q(q + 1)

∑
a∈F×

q ,b∈Fq

ω(a)ψ(b).

This is by casework. If ψ is nontrivial, the second sum on the right-hand side vanishes,
so the claim follows from Theorem 89. If ψ is trivial and ω is nontrivial, then the
right-hand side vanishes, and left-hand side vanishes by Proposition 103. Lastly, if
both ψ and ω are trivial, then both sides are gn(1, 1, T ).
Now, we notice that full expansion gives

1

ω (4m detT )
· g(ω, ψ)g

(
ω2, ψ

)
=

∑
x,y1,...,ym∈F×

q

ω

(
x(y1 · · · ym)2

4 detT

)
ψ(x+ (y1 + · · ·+ ym)),

so by summing appropriately over all ω and ψ, we see that the number of A ∈
Sym×

n (Fq) such that detA = d and trAT = t is

gn(1, 1, T )− qm(m+1)(q − 1)m+1

q(q + 1)

+ qm
2+m ·#

{
(x, y1, . . . , ym) : x+ (y1 + · · ·+ ym) = t,

x(y1 · · · ym)2

4m detT
= d

}
.

To finish, we note that we can simplify the first term with from Proposition 105.
(b) For any characters ω : F×

q → C× and ψ : Fq → C×, we claim that

gn(ω, ψ, T )
?
=
χ(−1)mχ(detT )qm2

ω (4m detT )
· g
(
ω2, ψ

)m
+
gn(χ, 1, T )− χ(−1)mqm

2
(q − 1)m

q(q − 1)

∑
a∈F×

q ,b∈Fq

χ(a)ω(a)ψ(b)

+
gn(1, 1, T )− χ(−1)mχ(detT )qm

2
(q − 1)m

q(q − 1)

∑
a∈F×

q ,b∈Fq

ω(a)ψ(b).

Again, this is by casework. If ψ is trivial, this is Theorem 89; otherwise, ψ is trivial.
Then if ω2 ̸= 1 (i.e., ω /∈ {1, χ}) the right-hand side vanishes, and the left-hand
side vanishes by Proposition 103. Lastly, if ω ∈ {1, χ}, then both sides are equal by
construction.

Now, as in (a), by full expansion of ω (4m detT )−1 g (ω2, ψ)
m

and summing the
claim over all ω and ψ appropriately, we see that the number of A ∈ Sym×

n (Fq) such
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that detA = d and trAT = t is

gn(χ, 1, T )− χ(−1)mqm
2
(q − 1)m

q(q − 1)
· χ(d) + gn(1, 1, T )− χ(−1)mχ(detT )qm

2
(q − 1)m

q(q − 1)

+ χ(−1)mχ(detT )qm2 ·#
{
(y1, . . . , ym) : y1 + · · ·+ ym = t,

(y1 · · · ym)2

4m detT
= d

}
.

It remains to simplify the first two terms. On one hand, we note Proposition 103
gives

gn(χ, 1, T )− χ(−1)mqm
2
(q − 1)m

q(q − 1)
· χ(d) = χ(−1)mqm2

q(q − 1)

(
m−1∏
k=0

(
q2k+1 − 1

)
− (q − 1)m

)
χ(d).

On the other hand, Proposition 105 gives

gn(1, 1, T )− χ(−1)mχ(detT )qm
2
(q − 1)m

q(q − 1)
=

qm
2

q(q − 1)

(
qm

m−1∏
k=0

(
q2k+1 − 1

)
− χ(−1)mχ(detT )(q − 1)m

)
.

Summing the above two equalities completes the simplification. □

References

[Mac69] Jessie MacWilliams. “Orthogonal Matrices Over Finite Fields”. In: The American
Mathematical Monthly 76.2 (1969), pp. 152–164. issn: 00029890, 19300972. url:
http://www.jstor.org/stable/2317262 (visited on 07/30/2023).

[Gel70] S I Gel’fand. “Representations of the Full Linear Group Over a Finite Field”.
In: Mathematics of the USSR-Sbornik 12.1 (Feb. 1970), p. 13. doi: 10.1070/
SM1970v012n01ABEH000907.

[Cas75] W. Casselman. Introduction to the theory of admissible representations of p-adic
reductive groups. Germany: Sonderforschungsber. 72 der Univ., 1975.

[Pia83] I.I. Piatetski-Shapiro. Complex Representations of GL(2,K) for Finite Fields K.
Contemporary mathematics - American Mathematical Society. American Mathe-
matical Society, 1983.

[BM87] Richard P Brent and Brendan D McKay. “Determinants and ranks of random
matrices over Zm”. In: Discrete Mathematics 66.1 (1987), pp. 35–49. issn: 0012-
365X. doi: https://doi.org/10.1016/0012-365X(87)90117-8. url: https:
//www.sciencedirect.com/science/article/pii/0012365X87901178.

[PR87] I. Piatetski-Shapiro and Stephen Rallis. “Rankin triple L functions”. en. In: Com-
positio Mathematica 64.1 (1987), pp. 31–115. url: http://www.numdam.org/
item/CM_1987__64_1_31_0/.

[Ike89] Tamotsu Ikeda. “On the functional equations of the triple L-functions”. In: Journal
of Mathematics of Kyoto University 29.2 (1989), pp. 175–219. doi: 10.1215/kjm/
1250520261. url: https://doi.org/10.1215/kjm/1250520261.

[Sat89] Fumihiro Sato. “On Functional Equations of Zeta Distributions”. In: Automor-
phic Forms and Geometry of Arithmetic Varieties. Ed. by K. Hashimoto and Y.
Namikawa. Vol. 15. Advanced Studies in Pure Mathematics. Academic Press, 1989,
pp. 465–508. isbn: 978-0-12-330580-0. doi: https://doi.org/10.1016/B978-
0-12-330580-0.50024-0. url: https://www.sciencedirect.com/science/
article/pii/B9780123305800500240.

78

http://www.jstor.org/stable/2317262
https://doi.org/10.1070/SM1970v012n01ABEH000907
https://doi.org/10.1070/SM1970v012n01ABEH000907
https://doi.org/https://doi.org/10.1016/0012-365X(87)90117-8
https://www.sciencedirect.com/science/article/pii/0012365X87901178
https://www.sciencedirect.com/science/article/pii/0012365X87901178
http://www.numdam.org/item/CM_1987__64_1_31_0/
http://www.numdam.org/item/CM_1987__64_1_31_0/
https://doi.org/10.1215/kjm/1250520261
https://doi.org/10.1215/kjm/1250520261
https://doi.org/10.1215/kjm/1250520261
https://doi.org/https://doi.org/10.1016/B978-0-12-330580-0.50024-0
https://doi.org/https://doi.org/10.1016/B978-0-12-330580-0.50024-0
https://www.sciencedirect.com/science/article/pii/B9780123305800500240
https://www.sciencedirect.com/science/article/pii/B9780123305800500240


[BK93] Colin J. Bushnell and P. C. Kutzko. The Admissible Dual of GL(N) via Compact
Open Subgroups. Vol. 129. AM-129. Princeton: Princeton University Press, 1993.
doi: 10.1515/9781400882496. url: https://doi.org/10.1515/9781400882496.

[KS97] Stephen S. Kudla and W. Jay Sweet. “Degenerate principal series representations
for U(n, n)”. In: Israel Journal of Mathematics 98 (1997), pp. 253–306. doi: 10.
1007/BF02937337.

[DG98] Jan Denef and Akihiko Gyoja. “Character Sums Asociated to Prehomogeneous
Vector Spaces”. In: Compositio Mathematica 113.3 (1998), pp. 273–346. doi: 10.
1023/A:1000404921277.

[Ike99] Tamotsu Ikeda. “On the gamma factor of the triple L-function, I”. In: Duke Math-
ematical Journal 97.2 (Apr. 1999), pp. 301–318. doi: 10.1215/S0012-7094-99-
09713-2. url: https://doi.org/10.1215/S0012-7094-99-09713-2.

[Nie14] Chufeng Nien. “A PROOFOF THE FINITE FIELD ANALOGUEOF JACQUET’S
CONJECTURE”. In: American Journal of Mathematics 136.3 (2014), pp. 653–674.
issn: 00029327, 10806377. url: http://www.jstor.org/stable/24477689 (vis-
ited on 10/27/2023).

[Ike17] Tamotsu Ikeda. “On the functional equation of the Siegel series”. In: Journal of
Number Theory 172 (2017), pp. 44–62. issn: 0022-314X. doi: https : / / doi .
org/10.1016/j.jnt.2016.08.002. url: https://www.sciencedirect.com/
science/article/pii/S0022314X16302104.

[Wal17] LynneWalling. “Higher level quadratically twisted Gauss sums and totally isotropic
subspaces”. In: (2017). doi: 10.48550/arXiv.1708.07978.

[Ye19] Rongqing Ye. “Rankin–Selberg gamma factors of level zero representations of
GLn”. In: Forum Mathematicum 31.2 (2019), pp. 503–516. doi: 10.1515/forum-
2018-0099. url: https://doi.org/10.1515/forum-2018-0099.

[YZ20] Rongqing Ye and Elad Zelingher. “Exterior square gamma factors for cuspidal
representations of GLn: finite field analogs and level-zero representations”. In: Is-
rael Journal of Mathematics 240.2 (Oct. 2020), pp. 889–934. issn: 1565-8511. doi:
10.1007/s11856-020-2084-y. url: https://doi.org/10.1007/s11856-020-
2084-y.

[SZ23] David Soudry and Elad Zelingher. “On gamma factors for representations of finite
general linear groups”. In: (2023). url: https://arxiv.org/abs/2301.04964.

79

https://doi.org/10.1515/9781400882496
https://doi.org/10.1515/9781400882496
https://doi.org/10.1007/BF02937337
https://doi.org/10.1007/BF02937337
https://doi.org/10.1023/A:1000404921277
https://doi.org/10.1023/A:1000404921277
https://doi.org/10.1215/S0012-7094-99-09713-2
https://doi.org/10.1215/S0012-7094-99-09713-2
https://doi.org/10.1215/S0012-7094-99-09713-2
http://www.jstor.org/stable/24477689
https://doi.org/https://doi.org/10.1016/j.jnt.2016.08.002
https://doi.org/https://doi.org/10.1016/j.jnt.2016.08.002
https://www.sciencedirect.com/science/article/pii/S0022314X16302104
https://www.sciencedirect.com/science/article/pii/S0022314X16302104
https://doi.org/10.48550/arXiv.1708.07978
https://doi.org/10.1515/forum-2018-0099
https://doi.org/10.1515/forum-2018-0099
https://doi.org/10.1515/forum-2018-0099
https://doi.org/10.1007/s11856-020-2084-y
https://doi.org/10.1007/s11856-020-2084-y
https://doi.org/10.1007/s11856-020-2084-y
https://arxiv.org/abs/2301.04964

	1. Introduction
	1.1. Layout
	1.2. Acknowledgements
	1.3. Notation

	2. Whittaker Models
	2.1. Existence of Whittaker Models
	2.2. Bessel Functions
	2.3. A Symmetry on Whittaker Models

	3. Gamma Factors for GLn x GLn
	3.1. A Multiplicity One Result
	3.2. The Functional Equation
	3.3. Computation for n=2

	4. Gamma Factors for GL2 x GL2 x GL2
	4.1. Review of Symplectic Spaces and Notation
	4.2. Double Coset Computation
	4.3. Multiplicity One
	4.4. Normalizing the Intertwining Operator
	4.5. The Zeta Function
	4.6. The Functional Equation

	5. Comparison with Local Field Scenario
	5.1. Review of Level Zero Representations
	5.2. Lifting the Zeta Sum
	5.3. Lifting the Intertwining Operator

	6. Gamma Factors from the Galois Side
	6.1. Weil-Deligne Representations
	6.2. Macdonald's Correspondence
	6.3. Epsilon Factors for GL2 x GL2 x GL2
	6.4. Product of Gauss Sums as Norm Sum

	Appendix A. Computation of c(1,I6,psi)
	Appendix B. Computation of the Symmetric Gauss Sum
	B.1. Quadratic Twists of Gauss Sums
	B.2. The Main Computation
	B.3. A Gamma Matrix Computation
	B.4. Combinatorics

	References

