REU 2023 PROGRESS

NIR ELBER, HAHN LHEEM

Contents

1. Introduction 2
1.1. Layout 2
1.2. Acknowledgements 3
1.3. Notation 3
2. Whittaker Models 4
2.1. Existence of Whittaker Models 4
2.2. Bessel Functions 5
2.3. A Symmetry on Whittaker Models 5
3. Gamma Factors for $\mathrm{GL}_{n} \times \mathrm{GL}_{n}$ 6
3.1. A Multiplicity One Result 7
3.2. The Functional Equation 8
3.3. Computation for $n=2$ 10
4. Gamma Factors for $\mathrm{GL}_{2} \times \mathrm{GL}_{2} \times \mathrm{GL}_{2}$ 13
4.1. Review of Symplectic Spaces and Notation 14
4.2. Double Coset Computation 17
4.3. Multiplicity One 22
4.4. Normalizing the Intertwining Operator 26
4.5. The Zeta Function 37
4.6. The Functional Equation 39
5. Comparison with Local Field Scenario 40
5.1. Review of Level Zero Representations 41
5.2. Lifting the Zeta Sum 41
5.3. Lifting the Intertwining Operator 45
6. Gamma Factors from the Galois Side 53
6.1. Weil-Deligne Representations 53
6.2. Macdonald's Correspondence 55
6.3. Epsilon Factors for $\mathrm{GL}_{2} \times \mathrm{GL}_{2} \times \mathrm{GL}_{2}$ 56
6.4. Product of Gauss Sums as Norm Sum 56
Appendix A. Computation of $c\left(1, I_{6}, \psi\right)$ 58
[^0]Appendix B. Computation of the Symmetric Gauss Sum
B.1. Quadratic Twists of Gauss Sums 63
B.2. The Main Computation 65
B.3. A Gamma Matrix Computation 69
B.4. Combinatorics 73

References 78

1. Introduction

Let k be a finite field. This article is about representation theory of the group $\mathrm{GL}_{2}(k) \times$ $\mathrm{GL}_{2}(k) \times \mathrm{GL}_{2}(k)$. Representation theory as a subject studies groups G via their linear actions on vector spaces; we refer to [Pia83] for the relevant background on the representation theory discussed in this article. For finite-dimensional complex representations of a finite group G, such representations can always be decomposed into irreducible ones, so the goal of representation theory is to understand these irreducible representations as well as possible.

For example, [Pia83] fully classifies the irreducible representations of the group $\mathrm{GL}_{2}(k)$, and these ideas can approximately be extended to classify representations of $\mathrm{GL}_{n}(k)$ for $n \geq 1$. However, as the group becomes more complicated, explicit enumeration becomes unreasonable. Instead, one can hope to attach invariants to these representations and then hope to understand desirable properties of these invariants and perhaps show that the invariants are enough to classify the irreducible representations.

For this paper, we interest ourselves in the " γ-factor" attached to a representation. To explain the motivation, we note that the groups of interest to us, such as $\mathrm{GL}_{n}(k)$ or $\mathrm{GL}_{n}(k) \times \mathrm{GL}_{m}(k)$, have number-theoretic significance. Notably, understanding representations of these groups when k is replaced by a local field is the main content of the local Langlands correspondences, and it is in this context that we first find the γ-factor as a largely analytic normalizing factor attached to some representations.

In number theory, one frequently expects finite fields to have the most controlled structure, so with such strong conjectures on the local field situation, we might hope to gain some traction by finding finite-field analogues for these results. And indeed, in recent years, there has been work both to establish what the analogues are [Nie14; SZ23; YZ20] as well as to relate the two situations together [Ye19; YZ20].

This paper is a continuation of the work described in the previous paragraph. In short, our goal is to tell the relevant story for the group $\mathrm{GL}_{2}(k) \times \mathrm{GL}_{2}(k) \times \mathrm{GL}_{2}(k)$. Notably, a nontrivial part of our exposition closely follows the corresponding work over local fields as worked out by [Ike89; PR87].
1.1. Layout. We briefly explain the sections of this paper. In section 2, we review the relevant background on Whittaker models and Bessel functions needed in this article; we refer to, for example, [Pia83] for any other background on representation theory needed. In section 3, we review the theory for the group $\mathrm{GL}_{n}(k) \times \mathrm{GL}_{n}(k)$ with the goal of providing a direct proof of the γ-factor at $n=2$, which is achieved in Theorem 20. In section 4 , the main content of the article begins, where we define and prove the basic properties of the γ-factor for
$\mathrm{GL}_{2}(k) \times \mathrm{GL}_{2}(k) \times \mathrm{GL}_{2}(k)$. This discussion is then continued in section 5 where we compare the built theory with the story for local fields. Lastly, section 6 defines and computes these same γ-factors on the "Galois" side of the Langlands program; notably, the rest of the article lives on the "automorphic" side. The appendices contain some miscellaneous computations to supplement the content of section 4.
1.2. Acknowledgements. The authors would like to thank their advisors Elad Zelingher and Jialiang Zou for their eternal patience and invaluable guidance over the course of this research project. Without them, much of the content of this article could not exist. The authors would also like to thank the REU at the University of Michigan, during which time this research was conducted.
1.3. Notation. In this article, all representations are complex and finite-dimensional. Let q be a prime-power, and let k be the finite field with q elements. We fix now once and for all an additive character ψ of k.

For now, fix a positive integer n, and we will name some subgroups and elements of $\mathrm{GL}_{n}:=\mathrm{GL}_{n}(k)$ of interest. For any partition $\left(n_{1}, n_{2}, \ldots, n_{r}\right)$ of n into positive integers, we define the diagonal subgroup

$$
D_{n_{1}, n_{2}, \ldots, n_{r}}:=\left\{\left[\begin{array}{llll}
d_{1} & & & \\
& d_{2} & & \\
& & \ddots & \\
& & & d_{r}
\end{array}\right]: d_{i} \in \mathrm{GL}_{n_{i}}(k) \text { for each } i\right\}
$$

and the unipotent subgroup

$$
U_{n_{1}, n_{2}, \ldots, n_{r}}:=\left\{\left[\begin{array}{cccc}
I_{n_{1}} & * & \cdots & * \\
& I_{n_{2}} & \cdots & * \\
& & \ddots & \vdots \\
& & & I_{n_{r}}
\end{array}\right]: I_{n_{i}} \in \mathrm{GL}_{n_{i}}(k) \text { for each } i\right\}
$$

each sitting inside the parabolic subgroups $P_{n_{1}, n_{2}, \ldots, n_{r}}:=U_{n_{1}, n_{2}, \ldots, n_{r}} \rtimes D_{n_{1}, n_{2}, \ldots, n_{r}}$. (Here, * signifies an arbitrary submatrix.) Most notably, we set $D_{n}:=D_{1,1, \ldots, 1}$ and $U_{n}:=U_{1,1, \ldots, 1}$, and we let $P_{n}:=P_{n-1,1}$ be the mirabolic subgroup. Observe that P_{n} is the stabilizer of $e_{n}:=(0,0, \ldots, 0,1)$.

Continuing, we define the Weyl elements W_{n} to be the permutation matrices in GL_{n}. Particularly important are the elements

$$
w_{n_{1}, \ldots, n_{r}}:=\left[\begin{array}{lllll}
& & & I_{n_{r}} \\
& & . & . & \\
& I_{n_{2}} & & \\
I_{n_{1}} & & &
\end{array}\right] .
$$

Most notable is the long Weyl element $w_{n}:=w_{1,1, \ldots, 1}$.

Note that ψ extends naturally to a character ψ_{n} on U_{n} defined by

$$
\psi_{n}\left(\left[\begin{array}{ccccc}
1 & u_{1} & * & \cdots & * \\
& 1 & u_{2} & \cdots & * \\
& & \ddots & \ddots & \vdots \\
& & & 1 & u_{n-1} \\
& & & & 1
\end{array}\right]\right):=\psi\left(u_{1}+u_{2}+\cdots+u_{n-1}\right) .
$$

Later on, we will want to denote the symmetric $n \times n$ matrices by Sym_{n} and the invertible symmetric $n \times n$ matrices by $\operatorname{Sym}_{n}^{\times}$.

2. Whittaker Models

In this section, we review properties of Whittaker models.
2.1. Existence of Whittaker Models. Here is our definition.

Definition 1 (Whittaker type). A representation π of GL_{n} is of Whittaker type if and only if $\operatorname{Res}_{U_{n}} \pi$ has exactly one eigenvector (up to scalar) with eigenvalue ψ_{n}.

Remark 2. One can show that the definition above is independent of the chosen character ψ.

For example, it is known that any cuspidal irreducible representation is of Whittaker type. By definition, a representation π of Whittaker type has $\operatorname{dim} \operatorname{Hom}_{U_{n}}\left(\psi_{n}, \pi\right)=1$, which by reciprocity is equivalent to

$$
\operatorname{dim} \operatorname{Hom}_{\mathrm{GL}_{n}}\left(\pi, \operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n}\right)=1
$$

Thus, we see that any representation π of Whittaker type has unique image $\mathcal{W}(\pi, \psi)$ in $\operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n}$, which is called a Whittaker model. Throughout, we may choose to write a specific Whittaker model by $W_{v} \in \operatorname{Ind}_{U_{n}}^{G L_{n}} \psi_{n}$ for each $v \in V_{\pi}$. Note that this image $\left\{W_{v}: v \in V_{\pi}\right\}$ of π is only unique up to scalar.

While we are here, we provide a relatively explicit Whittaker model for a representation π of GL_{n} of Whittaker type.

Lemma 3. Fix an irreducible representation π of GL_{n} of Whittaker type. Further, let $\langle\cdot, \cdot\rangle$ be a G-form on V_{π}, and let $v_{\psi} \in V_{\pi}$ be an eigenvector with eigenvalue ψ_{n} with $\left\langle v_{\psi}, v_{\psi}\right\rangle$ (which exists and is unique by scaling). Now, for each $v \in V_{\pi}$ we define

$$
W_{v}(g):=\left\langle g v, v_{\psi}\right\rangle .
$$

Then $\mathcal{W}(\pi, \psi):=\left\{W_{v}: v \in V_{\pi}\right\}$ is a Whittaker model for π.
Proof. We run the checks directly. The map $W_{\bullet}: \pi \rightarrow \operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n}$ is well-defined because

$$
W_{v}(u g)=\left\langle u g v, v_{\psi}\right\rangle=\left\langle g v, u^{-1} v_{\psi}\right\rangle=\left\langle g v, \overline{\psi_{n}(u)} v_{\psi}\right\rangle=\psi_{n}(u)\left\langle g v, v_{\psi}\right\rangle .
$$

Continuing, the map is of course linear in v, and it is G-equivariant because

$$
W_{\pi(h) v}(g)=\left\langle g h v, v_{\psi}\right\rangle=W_{v}(g h) .
$$

Lastly, the map is injective because $v \neq 0$ implies that $\left\{g v: g \in \mathrm{GL}_{n}\right\}$ spans V_{π} because π is irreducible. Thus, $\left\langle g v, v_{\psi}\right\rangle \neq 0$ for some $g \in \mathrm{GL}_{n}$.
2.2. Bessel Functions. Fix an irreducible representation π of GL_{n} of Whittaker type. Here is our definition.

Definition 4 (Bessel function). Fix a Whittaker model $\mathcal{W}(\pi, \psi)$ for π. Then the Bessel function $\mathcal{J}_{\pi, \psi}$ is the unique eigenvector in $\mathcal{W}(\pi, \psi)$ with eigenvalue ψ_{n} and with $\mathcal{J}_{\pi, \psi}\left(I_{n}\right)=1$.

Certainly if $\mathcal{J}_{\pi, \psi}$ exists, then it is unique because the eigenvectors with eigenvalue ψ_{n} are unique up to scalar. To see that $\mathcal{J}_{\pi, \psi}$ exists, we have the following lemma.
Lemma 5. Fix an irreducible representation π of GL_{n} of Whittaker type. Then the Bessel function exists.

Proof. Use the notation of Lemma 3 to set

$$
\mathcal{J}_{\pi, \psi}(g):=W_{v_{\psi}}(g)=\left\langle g v_{\psi}, v_{\psi}\right\rangle .
$$

Because v_{ψ} is an eigenvector with eigenvalue ψ_{n}, the same is true for $\mathcal{J}_{\pi, \psi}$, and further, we see $\mathcal{J}_{\pi, \psi}\left(I_{n}\right)=\left\langle v_{\psi}, v_{\psi}\right\rangle=1$, as required.

We will want the following property of Bessel functions, whose proof we omit. Roughly speaking, the following result is useful when combined with the Bruhat decomposition $\mathrm{GL}_{n}=$ $U_{n} D_{n} W_{n} U_{n}$.

Proposition 6 ([Gel70, Proposition 4.9]). Fix an irreducible representation π of GL_{n} of Whittaker type. For $d \in D_{n}$ and $w \in W_{n}$, if $\mathcal{J}_{\pi, \psi}(d w) \neq 0$, then

$$
d w=\left[\begin{array}{llll}
& & & \lambda_{n_{r}} I_{n_{r}} \\
& & . & \\
& \lambda_{n_{2}} I_{n_{2}} & & \\
\lambda_{n_{1}} I_{n_{1}} & &
\end{array}\right]
$$

for some partition $\left(n_{1}, \ldots, n_{r}\right)$ of n and elements $\lambda_{n_{1}}, \ldots, \lambda_{n_{r}} \in k$.
2.3. A Symmetry on Whittaker Models. Whittaker models of irreducible representations have a special symmetry which will be important later. Given $g \in \mathrm{GL}_{n}$, we set $g^{\iota}:=g^{-\mathrm{T}}$. Then note $(\cdot)^{\iota}: \mathrm{GL}_{n} \rightarrow \mathrm{GL}_{n}$ is an automorphism of GL_{n}. This symmetry on GL_{n} can be upgraded to a symmetry on representations by taking a representation π of GL_{n} to π^{ι} defined by $\pi^{\iota}(g):=\pi\left(g^{\iota}\right)$. This π^{ι} is useful because of the following lemma.

Lemma 7. Let π be an irreducible representation of GL_{n} of Whittaker type. Then $\pi^{\iota} \cong \pi^{\vee}$.
Proof. It suffices to show that π^{\vee} and π^{ι} have the same character. Well, for any $g \in \mathrm{GL}_{n}$, we note g is conjugate to g^{\top}, so

$$
\operatorname{tr} \pi^{\iota}(g)=\operatorname{tr} \pi\left(\left(g^{-1}\right)^{\top}\right)=\operatorname{tr} \pi\left(g^{-1}\right)=\operatorname{tr} \pi^{\vee}(g)
$$

so we are done.
Namely, π^{ι} provides a way to talk about π^{\vee} without dual spaces. Observe, however, that $(\cdot)^{\vee}$ is a contravariant functor while $(\cdot)^{\iota}$ is covariant, so we should not think about these as the same functor.

Continuing, we may upgrade our symmetry on representations to a symmetry on Whittaker models.

Lemma 8. Let π be a representation of GL_{n} of Whittaker type, and let $W_{\bullet}: \pi \rightarrow \operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n}$ be a Whittaker model. Then the map $\widetilde{\lrcorner}: \mathcal{W}(\pi, \psi) \rightarrow \mathcal{W}\left(\pi^{\iota}, \psi^{-1}\right)$ defined by

$$
\widetilde{W}_{v}(g):=W_{v}\left(w_{n} g^{c}\right)
$$

provides a Whittaker model $\mathcal{W}\left(\pi, \psi^{-1}\right)$ of π^{ι}.
Proof. It suffices to show that $\widetilde{W}_{\bullet}: \pi^{\iota} \rightarrow \operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n}$ is a well-defined injective map of $\mathrm{GL}_{n^{-}}$ representations.

- Well-defined: for $v \in V_{\pi}$, we show that $\widetilde{W}_{v} \in \operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n}^{-1}$. The main computation here is that

$$
w_{n}\left[\begin{array}{ccccc}
1 & u_{1} & * & \cdots & * \\
& 1 & u_{2} & \cdots & * \\
& & \ddots & \ddots & \vdots \\
& & & 1 & u_{n-1} \\
& & & & 1
\end{array}\right]^{\iota} w_{n}^{-1}=\left[\begin{array}{ccccc}
1 & -u_{1} & * & \cdots & * \\
& 1 & -u_{2} & \cdots & * \\
& & \ddots & \ddots & \vdots \\
& & & 1 & -u_{n-1} \\
& & & & 1
\end{array}\right]
$$

Thus, for any $u \in U_{n}$, we see that $w_{n} u^{\iota} w_{n}^{-1} \in U_{n}$, and $\psi_{n}\left(w_{n} u^{\iota} w_{n}^{-1}\right)^{-1}=\psi_{n}(u)$. As such, we see

$$
\widetilde{W}_{v}(u g)=W_{v}\left(w_{n} u^{l} g^{l}\right)=\psi_{n}\left(w_{n} u^{l} w_{n}^{-1}\right) W_{v}\left(w_{n} g^{l}\right)=\psi_{n}^{-1}(u) \widetilde{W}_{v}(g)
$$

- Homomorphism: of course the map $v \mapsto \widetilde{W}_{v}$ is linear in v. This is G-equivariant because

$$
\widetilde{W}_{\pi^{\iota}(h) v}(g)=W_{\pi\left(h^{\iota}\right) v}\left(w_{n} g^{\iota}\right)=W_{v}\left(w_{n}(g h)^{\iota}\right)=\widetilde{W}_{v}(g h) .
$$

- Injective: note that if $v \in V_{\pi}$ has $\widetilde{W}_{v}=0$, then $W_{v}\left(w_{n} g^{l}\right)=0$ for any $g \in \mathrm{GL}_{n}$, so $W_{v}=0$, so $v=0$ because $\mathcal{W}(\pi, \psi)$ is already a Whittaker model.

To properly view the map $W \mapsto \widetilde{W}$ as a symmetry, we note that we have the following lemma.

Lemma 9. For any $g \in \mathrm{GL}_{n}$, the following diagram commutes.

Proof. This is a direct computation. Fix some $g \in \mathrm{GL}_{n}$. For any $W \in \operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n}$, we want to show that $\widetilde{g W}=g^{\iota} \widetilde{W}$. Well, for any $g_{0} \in \mathrm{GL}_{n}$, we compute

$$
\widetilde{g W}\left(g_{0}\right)=(g W)\left(w_{n} g_{0}^{\iota}\right)=W\left(w_{n} g_{0}^{\iota} g\right)=W\left(w_{n}\left(g_{0} g^{\iota}\right)^{\iota}\right)=\widetilde{W}\left(w_{n} g_{0} g^{\iota}\right) .
$$

This equals $\left(g^{\iota} \widehat{W}\right)\left(w_{n} g_{0}\right)$, as desired.

3. Gamma Factors for $\mathrm{GL}_{n} \times \mathrm{GL}_{n}$

In this section, we review the construction of the γ-factor attached to two cuspidal irreducible representations σ and τ of GL_{n}. We use the Rankin-Selberg method.
3.1. A Multiplicity One Result. The backbone of the approach is a multiplicity one result which we will prove in the present subsection. The correct statement requires test functions, which we introduce now.

Definition 10. Let $S\left(k^{n}\right)$ denote the space of functions $k^{n} \rightarrow \mathbb{C}$, and we make $S\left(k^{n}\right)$ into a GL_{n}-representation by defining

$$
(g \varphi)(v):=\varphi(v g)
$$

for any $g \in \mathrm{GL}_{n}$ and $\varphi \in S\left(k^{n}\right)$ and $v \in k^{n}$. Lastly, we let $S_{0}\left(k^{n}\right)$ denote the G subrepresentation of functions $\varphi: k^{n} \rightarrow \mathbb{C}$ vanishing at 0 .

And here is our result.
Proposition 11. Fix cuspidal representations σ and τ of GL_{n}. Further, let $S_{0}\left(k^{n}\right)$ denote the functions $k^{n} \rightarrow \mathbb{C}$ vanishing at 0 . Then

$$
\operatorname{dim} \operatorname{Hom}_{\mathrm{GL}_{n}}\left(\sigma \otimes \tau \otimes S_{0}\left(k^{n}\right), \mathbb{C}\right)=1
$$

Proof. Because σ and τ^{\vee} are cuspidal, we see $\operatorname{Res}_{P_{n}}^{\mathrm{GL}_{n}} \sigma \cong \operatorname{Res}_{P_{n}}^{\mathrm{GL}_{n}} \tau^{\vee} \cong \operatorname{Ind}_{U_{n}}^{P_{n}} \psi_{n}$ are isomorphic irreducible representations, so

$$
\operatorname{dim} \operatorname{Hom}_{P_{n}}\left(\mathbb{C}, \sigma^{\vee} \otimes \tau^{\vee}\right)=1
$$

The main result now follows from Frobenius reciprocity. Indeed, we claim that $S_{0}\left(k^{n}\right) \cong$ $\operatorname{Ind}_{P_{n}}^{G \mathrm{GL}_{n}} \mathbb{C}$. In one direction, send $\varphi \in S_{0}\left(k^{n}\right)$ to the function $f_{\varphi}(g):=\varphi\left(e_{1} g\right)$; in the other direction, send $f \in \operatorname{Ind}_{P_{n}}^{\mathrm{GL}_{n}} \mathbb{C}$ to the function $\varphi\left(e_{1} g\right):=f(g)$. One can check that these maps are G-equivariant and mutually inverse, which provides our isomorphism. Anyway, the point is that
$\operatorname{dim} \operatorname{Hom}_{\mathrm{GL}_{n}}\left(\sigma \otimes \tau \otimes S_{0}\left(k^{n}\right), \mathbb{C}\right)=\operatorname{dim} \operatorname{Hom}_{\mathrm{GL}_{n}}\left(S_{0}\left(k^{n}\right), \sigma^{\vee} \otimes \tau^{\vee}\right)=\operatorname{dim} \operatorname{Hom}_{P_{n}}\left(\mathbb{C}, \sigma^{\vee} \otimes \tau^{\vee}\right)$, which is 1 .

A multiplicity one result is not very useful without actually have elements in the needed vector space, so we go ahead and exhibit an element. Because σ and τ are cuspidal and hence of Whittaker type, we see that we may embed $\sigma \rightarrow \operatorname{Ind}_{U_{n}}^{G L_{n}} \psi_{n}$ and $\tau \rightarrow \operatorname{Ind}_{U_{n}}^{G L_{n}} \psi_{n}^{-1}$, so it suffices to exhibit a map

$$
\operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n} \otimes \operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n}^{-1} \otimes S_{0}\left(k^{n}\right) \rightarrow \mathbb{C} .
$$

Here is our definition.
Definition 12 (Z-function). For any $W \in \operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n}$ and $W^{\prime} \in \operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n}^{-1}$ and $\varphi \in S\left(k^{n}\right)$, we define

$$
Z\left(W, W^{\prime}, \varphi ; \psi\right):=\sum_{g \in U_{n} \backslash \mathrm{GL}_{n}} W(g) W^{\prime}(g) \varphi\left(e_{n} g\right),
$$

where $e_{n}=(0,0, \ldots, 0,1)$.
Let's run our checks.
Lemma 13. As defined above, Z provides a well-defined G-equivariant map $\operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n} \otimes$ $\operatorname{Ind}_{U_{n}}^{G \mathrm{GL}_{n}} \psi_{n}^{-1} \otimes S\left(k^{n}\right) \rightarrow \mathbb{C}$.

Proof. For now, fix $W \in \operatorname{Ind}_{U_{n}}^{G L_{n}} \psi_{n}$ and $W^{\prime} \in \operatorname{Ind}_{U_{n}}^{G L_{n}} \psi_{n}^{-1}$ and $\varphi \in S\left(k^{n}\right)$. Quickly, we check that each summand $W(g) W^{\prime}(g) \varphi\left(e_{n} g\right)$ is independent of the coset $U_{n} g$. Indeed, for any $u \in U_{n}$, we see that

$$
W(u g) W^{\prime}(u g)=\psi_{n}(u) W(g) \psi_{n}^{-1}(u) W^{\prime}(g)=W(g) W^{\prime}(g)
$$

by definition of W and W^{\prime}, and $\varphi\left(e_{n} u g\right)=\varphi\left(e_{n} g\right)$ because $u \in U_{n} \subseteq P_{n}$.
Additionally, we see that Z is linear in W and W^{\prime} and φ, so we have defined a linear map

$$
Z: \operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n} \otimes \operatorname{Ind}_{U_{n}}^{\mathrm{GL}} \psi_{n}^{-1} \otimes S\left(k^{n}\right) \rightarrow \mathbb{C}
$$

It remains to check that Z is G-equivariant. Well, for any $h \in \mathrm{GL}_{n}$, we compute

$$
Z\left(h W \otimes h W^{\prime} \otimes h \varphi\right)=\sum_{g \in U_{n} \backslash \mathrm{GL}_{n}} W(g h) W^{\prime}(g h) \varphi\left(e_{n} g h\right)=Z\left(W \otimes W^{\prime} \otimes \varphi\right),
$$

where the last equality has reindexed the sum.
With some effort, we can even show that $Z \neq 0$ in our cases of interest.
Lemma 14. Let σ and τ be cuspidal representations of GL_{n}. Let $\varphi_{n}: k^{n} \rightarrow \mathbb{C}$ denote the indicator function for $e_{n}:=(0,0, \ldots, 0,1)$. Then $Z\left(\mathcal{J}_{\sigma, \psi}, \mathcal{J}_{\tau, \psi^{-1}}, \varphi_{n} ; \psi\right)=1$. In particular, $Z \neq 0$ as an element of $\operatorname{Hom}_{\mathrm{GL}_{n}}\left(\sigma \otimes \tau \otimes S_{0}\left(k^{n}\right), \mathbb{C}\right)$.

Proof. By definition,

$$
Z\left(\mathcal{J}_{\sigma, \psi}, \mathcal{J}_{\tau, \psi^{-1}}, \varphi_{n} ; \psi\right)=\sum_{g \in U_{n} \backslash \mathrm{GL}_{n}} \mathcal{J}_{\sigma, \psi}(g) \mathcal{J}_{\tau, \psi^{-1}}(g) \varphi_{n}\left(e_{n} g\right)
$$

The main point is to use Proposition 6. Fix some $g \in \mathrm{GL}_{n}$, and suppose that the summand $\mathcal{J}_{\sigma, \psi}(g) \mathcal{J}_{\tau, \psi^{-1}}(g) \varphi_{n}\left(e_{n} g\right)$ is nonzero. We claim that $g \in U_{n}$, which will complete the proof.

Indeed, $\varphi_{n}\left(e_{n} g\right) \neq 0$ requires $e_{n} g=e_{n}$, so $g \in P_{n}$. Now, using the Bruhat decomposition, we may write $g=u d w u^{\prime}$ where $u, u^{\prime} \in U_{n}$ and $d \in D_{n}$ and $w^{\prime} \in W_{n}$. Now, $\mathcal{J}_{\sigma, \psi}(g) \neq 0$, so

$$
0 \neq \mathcal{J}_{\sigma, \psi}\left(u d w u^{\prime}\right)=\psi_{n}\left(u u^{\prime}\right) \mathcal{J}_{\sigma, \psi}(d w),
$$

so Proposition 6 forces $d w$ to have the form

$$
d w=\left[\begin{array}{llll}
& & & \lambda_{n_{r}} I_{n_{r}} \\
& & . & \\
& \lambda_{n_{2}} I_{n_{2}} & & \\
\lambda_{n_{1}} I_{n_{1}} & & &
\end{array}\right] .
$$

However, $e_{n} g=e_{n}$ requires $e_{n} d w=e_{n}$, so $d w \in P_{n}$ as well, and the only matrix of the above form which lives in P_{n} is $d w=I_{n}$, so $g=u u^{\prime} \in U_{n}$, as promised.
3.2. The Functional Equation. Thus far, we have provided an element Z which spans $\operatorname{Hom}_{\mathrm{GL}_{n}}\left(\sigma \otimes \tau \otimes S_{0}\left(k^{n}\right), \mathbb{C}\right)$. To produce our functional equation, we want to find another element in that space. For this, we will exhibit a map

$$
\sigma \otimes \tau \otimes S\left(k^{n}\right) \rightarrow \sigma^{\iota} \otimes \tau^{\iota} \otimes S\left(k^{n}\right)
$$

with good duality properties, and then we will pass Z through. In fact, this map will be found by restricting a map

$$
\mathcal{F}: \operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n} \otimes \operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n}^{-1} \otimes S\left(k^{n}\right) \rightarrow \operatorname{Ind}_{U_{n}}^{\mathrm{GL}} \psi_{n}^{-1} \otimes \operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n} \otimes S\left(k^{n}\right)
$$

with good duality properties, and then we will restrict it. Well, this last map will be found component-wise. The map $W \mapsto \widetilde{W}$ of section 2.3 provides maps $\operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n} \rightarrow \operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n}^{-1}$ and $\operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n}^{-1} \rightarrow \operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n}$. Lastly, we desire a map $S\left(k^{n}\right) \rightarrow S\left(k^{n}\right)$, for which we use the Fourier transform: for $\varphi \in S\left(k^{n}\right)$, set

$$
\widehat{\varphi}(x):=\sum_{y \in k^{n}} \varphi(y) \psi(\langle x, y\rangle),
$$

where $\langle\cdot, \cdot\rangle$ is the standard symmetric bilinear form on k^{n}. Each of the component maps we defined are linear, so they will glue into a linear map

$$
\mathcal{F}: \operatorname{Ind}_{U_{n}}^{\mathrm{GL}} \psi_{n} \otimes \operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n}^{-1} \otimes S\left(k^{n}\right) \rightarrow \operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n}^{-1} \otimes \operatorname{Ind}_{U_{n}}^{\mathrm{GL}_{n}} \psi_{n} \otimes S\left(k^{n}\right)
$$

defined by $\mathcal{F}\left(W \otimes W^{\prime} \otimes \varphi\right):=\widetilde{W} \otimes \widetilde{W^{\prime}} \otimes \widehat{\varphi}$. The aforementioned "good duality properties" are recorded in the following lemma.

Lemma 15. For any $g \in \mathrm{GL}_{n}$, the following diagram commutes.

Proof. We can check this on each component. The diagram commutes on the left two components by Lemma 9. Lastly, for any $\varphi \in S\left(k^{n}\right)$ and $x \in k^{n}$, we see

$$
\widehat{g \varphi}(x)=\sum_{y \in k^{n}} \varphi(y g) \psi(\langle x, y\rangle)=\sum_{y \in k^{n}} \varphi(y) \psi\left(\left\langle x, y g^{-1}\right\rangle\right)=\sum_{y \in k^{n}} \varphi(y) \psi\left(\left\langle x g^{\iota}, y\right\rangle\right)=\left(g^{\iota} \widehat{\varphi}\right)(x) .
$$

The claim follows.
We now restrict \mathcal{F} and extract our functional equation.
Lemma 16. The function \mathcal{F} restricts to a function $\sigma \otimes \tau \otimes S\left(k^{n}\right) \rightarrow \sigma^{\iota} \otimes \tau^{\iota} \otimes S\left(k^{n}\right)$.
Proof. We check this componentwise. We already know that the map $W \mapsto \widetilde{W}$ restricts to a map $\mathcal{W}(\sigma, \psi) \rightarrow \mathcal{W}\left(\sigma^{\iota}, \psi^{-1}\right)$ by Lemma 8 , and similar holds for τ.

Theorem 17. Fix cuspidal representations σ and τ of GL_{n}. There is a unique complex number $\gamma(\sigma \times \tau, \psi)$ such that

$$
Z\left(\widetilde{W}, \widetilde{W^{\prime}}, \widehat{\varphi} ; \psi\right)=\gamma(\sigma \times \tau, \psi) Z\left(W, W^{\prime}, \varphi ; \psi\right)
$$

for any $W \in \mathcal{W}(\sigma, \psi)$ and $W^{\prime} \in \mathcal{W}\left(\tau, \psi^{-1}\right)$ and $\varphi \in S_{0}\left(k^{n}\right)$.
Proof. Define $\mathcal{F} Z: \sigma \otimes \tau \otimes S_{0}\left(k^{n}\right) \rightarrow \mathbb{C}$ by $\mathcal{F} Z\left(W \otimes W^{\prime} \otimes \varphi\right):=Z\left(\widetilde{W}, \widetilde{W^{\prime}}, \widehat{\varphi} ; \psi\right)$. The square in Lemma 15 implies that $\mathcal{F} Z$ is GL_{n}-invariant because Z is, so the result follows from Proposition 11. Technically, we must know that $Z \neq 0$ to carry this argument out, which is established in Lemma 14.

Corollary 18. Fix cuspidal representations σ and τ of GL_{n}. Then

$$
\gamma(\sigma \times \tau, \psi)=\sum_{g \in U_{n} \backslash \mathrm{GL}_{n}} \mathcal{J}_{\sigma, \psi}(g) \mathcal{J}_{\tau, \psi^{-1}}(g) \psi\left(\left\langle e_{n} g^{-1}, e_{1}\right\rangle\right),
$$

where $e_{n}:=(0, \ldots, 0,1)$ and $e_{1}:=(1,0, \ldots, 0)$.

Proof. Combining Theorem 17 with the computation of Lemma 14, we see upon plugging everything in that

$$
\gamma(\sigma \times \tau, \psi)=\sum_{g \in U_{n} \backslash \mathrm{GL}_{n}} \mathcal{J}_{\sigma, \psi}\left(w_{n} g^{\iota}\right) \mathcal{J}_{\tau, \psi^{-1}}\left(w_{n} g^{\iota}\right) \widehat{\varphi_{n}}\left(e_{n} g\right) .
$$

Note that $g \mapsto w_{n} g^{l}$ is a well-defined involution $U_{n} \backslash \mathrm{GL}_{n} \rightarrow U_{n} \backslash \mathrm{GL}_{n}$ (this is included in the computation of Lemma 8), so we may reindex the sum as

$$
\gamma(\sigma \times \tau, \psi)=\sum_{g \in U_{n} \backslash \mathrm{GL}_{n}} \mathcal{J}_{\sigma, \psi}(g) \mathcal{J}_{\tau, \psi^{-1}}(g) \widehat{\varphi_{n}}\left(e_{1} g^{l}\right) .
$$

We must now compute the Fourier transform as

$$
\widehat{\varphi_{n}}\left(e_{1} g^{l}\right)=\sum_{y \in k^{n}} \varphi_{n}(y) \psi\left(\left\langle e_{1} g^{\iota}, y\right\rangle\right)=\psi\left(\left\langle e_{1} g^{l}, e_{n}\right\rangle\right)=\psi\left(\left\langle e_{n} g^{-1}, e_{1}\right\rangle\right) .
$$

Plugging this in completes the proof.
3.3. Computation for $n=2$. In this subsection, we compute $\gamma(\sigma \times \tau, \psi)$ as the product of two Gauss sums when σ and τ are cuspidal representations of GL_{2}. For brevity, let ω_{σ} and ω_{τ} denote the central characters of σ and τ, respectively. Because σ and τ are cuspidal, the characters ω_{σ} and ω_{τ} arise from non-decomposable characters on ℓ^{\times}, which we will continue to denote by ω_{σ} and ω_{τ} respectively.

Lemma 19. A set of representatives for $U_{2} \backslash \mathrm{GL}_{2}$ is given by $D_{2} \sqcup D_{2} w_{2} U_{2}$.

Proof. By the Bruhat decomposition, we may write $\mathrm{GL}_{2}=B_{2} \sqcup B_{2} w_{2} U_{2}$, but $U_{2} \backslash B_{2}$ is represented by D_{2} because any element of B_{2} takes the form

$$
\left[\begin{array}{ll}
a & b \\
& d
\end{array}\right]=\left[\begin{array}{cc}
1 & b / d \\
& 1
\end{array}\right]\left[\begin{array}{ll}
a & \\
& d
\end{array}\right] .
$$

Thus, we see that $D_{2} \sqcup D_{2} w_{2} U_{2}$ succeeds in representing $U_{2} \backslash \mathrm{GL}_{2}$. To see that each element of $D_{2} \sqcup D_{2} w_{2} U_{2}$ belongs to a unique equivalence class, note that there are $(q-1)^{2}+(q-1)^{2} q=$ $(q-1)^{2}(q+1)$ elements in $D_{2} \sqcup D_{2} w_{2} U_{2}$ and $\left(q^{2}-1\right)\left(q^{2}-q\right) / q=(q-1)^{2}(q+1)$ elements in $U_{2} \backslash \mathrm{GL}_{2}$.

Thus, Corollary 18 gives

$$
\gamma(\sigma \times \tau, \psi)=\underbrace{\sum_{d \in D_{2}} \mathcal{J}_{\sigma, \psi}(d) \mathcal{J}_{\tau, \psi^{-1}}(d)}_{S_{D}:=}+\underbrace{\sum_{\substack{d \in D_{2} \\ u \in U_{2}}} \mathcal{J}_{\sigma, \psi}\left(d w_{2} u\right) \mathcal{J}_{\sigma, \psi^{-1}}(d w u) \psi\left(\left\langle e_{2}(d w u)^{-1}, e_{1}\right\rangle\right)}_{10} .
$$

The sum over D_{2} can be evaluated to

$$
\begin{aligned}
S_{D} & =\sum_{a, d \in k^{\times}} \mathcal{J}_{\sigma, \psi}\left(\left[\begin{array}{ll}
a & \\
& d
\end{array}\right]\right) \mathcal{J}_{\tau, \psi^{-1}}\left(\left[\begin{array}{ll}
a & \\
& d
\end{array}\right]\right) \\
& \stackrel{*}{=} \sum_{a \in k^{\times}} \mathcal{J}_{\sigma, \psi}\left(\left[\begin{array}{ll}
a & \\
& a
\end{array}\right]\right) \mathcal{J}_{\tau, \psi^{-1}}\left(\left[\begin{array}{ll}
a & \\
& a
\end{array}\right]\right) \\
& =\sum_{a \in k^{\times}} \omega_{\sigma}(a) \omega_{\tau}(a) \\
& = \begin{cases}q-1 & \text { if }\left.\omega_{\sigma}\right|_{k}=\left.\omega_{\tau}^{-1}\right|_{k}, \\
0 & \text { else. }\end{cases}
\end{aligned}
$$

Importantly, $\stackrel{*}{=}$ has used Proposition 6. The sum over $D_{2} w_{2} U_{2}$ is harder to simplify. The $u \in U_{2}$ does not alter any summand, so we can begin by writing out

$$
\begin{aligned}
S_{D w U} & =q \sum_{a, d \in k^{\times}} \mathcal{J}_{\sigma, \psi}\left(\left[\begin{array}{ll}
d & a
\end{array}\right]\right) \mathcal{J}_{\tau, \psi^{-1}}\left(\left[\begin{array}{ll}
d & a
\end{array}\right]\right) \psi(1 / a) \\
& =q \sum_{a, d \in k^{\times}} \omega_{\sigma}(a) \omega_{\tau}(a) \mathcal{J}_{\sigma, \psi}\left(\left[\begin{array}{ll}
a^{-1} d & 1
\end{array}\right]\right) \mathcal{J}_{\tau, \psi^{-1}}\left(\left[\begin{array}{ll}
a^{-1} d & 1 \\
\hline
\end{array}\right]\right) \psi(1 / a) \\
& =q \sum_{a, d \in k^{\times}} \omega_{\sigma}(a)^{-1} \omega_{\tau}(a)^{-1} \mathcal{J}_{\sigma, \psi}\left(\left[\begin{array}{ll}
-d^{-1} & 1
\end{array}\right]\right) \mathcal{J}_{\tau, \psi^{-1}}\left(\left[\begin{array}{ll}
-d^{-1} & 1
\end{array}\right]\right) \psi(a) .
\end{aligned}
$$

Now, [Pia83, p. 63] computes

$$
\mathcal{J}_{\sigma, \psi}\left(\left[\begin{array}{ll}
-d^{-1} & 1
\end{array}\right]\right)=-\frac{\omega_{\sigma}(d)^{-1}}{q} \sum_{\substack{t_{\sigma} \in \ell^{\times} \\
\mathrm{N} t_{\sigma}=d}} \psi\left(\operatorname{tr} t_{\sigma}\right) \omega_{\sigma}\left(t_{\sigma}\right)=-\frac{1}{q} \sum_{\substack{t_{\sigma} \in \ell^{\times} \\
\mathrm{N} t_{\sigma}=d}} \psi\left(\operatorname{tr} t_{\sigma}\right) \omega_{\sigma}\left(t_{\sigma}\right)^{-1}
$$

where ℓ / k is the quadratic extension, and $\operatorname{tr}: \ell \rightarrow k$ and $\mathrm{N}: \ell \rightarrow k$ denote the trace and norm maps, respectively. A similar formula holds for τ, so we see

$$
\begin{aligned}
S_{D w U} & =\frac{1}{q} \sum_{a \in k^{\times}} \omega_{\sigma}(a)^{-1} \omega_{\tau}(a)^{-1} \psi(a) \sum_{\substack{t_{\sigma}, t_{\tau} \in \ell^{\times} \\
\mathrm{N} t_{\sigma}=\mathrm{N} t_{\tau}}} \psi\left(\operatorname{tr} t_{\sigma}-\operatorname{tr} t_{\tau}\right) \omega_{\sigma}\left(t_{\sigma}\right)^{-1} \omega_{\tau}\left(t_{\tau}\right)^{-1} \\
& =\frac{\omega_{\tau}(-1)}{q} \sum_{a \in k^{\times}} \omega_{\sigma}(a)^{-1} \omega_{\tau}(a)^{-1} \psi(a) \sum_{\substack{t_{\sigma}, t_{\tau} \in \ell^{\times} \\
\mathrm{N} t_{\sigma}=\mathrm{N} t_{\tau}}} \psi\left(\operatorname{tr} t_{\sigma}+\operatorname{tr} t_{\tau}\right) \omega_{\sigma}\left(t_{\sigma}\right)^{-1} \omega_{\tau}\left(t_{\tau}\right)^{-1} .
\end{aligned}
$$

To continue, we note that there is a group homomorphism $\ell^{\times} \times \ell^{\times} \rightarrow\left\{\left(t_{\sigma}, t_{\tau}\right): \mathrm{N} t_{\sigma}=\mathrm{N} t_{\tau}\right\}$ given by $(x, y) \mapsto\left(x y, x y^{q}\right)$. Observe that this homomorphism is surjective: for any $\left(t_{\sigma}, t_{\tau}\right)$ with $\mathrm{N} t_{\sigma}=\mathrm{N} t_{\tau}$, we have $\mathrm{N}\left(t_{\sigma} / t_{\tau}\right)=1$, so Hilbert's theorem 90 promises some $z \in \ell^{\times}$ such that $t_{\sigma} / t_{\tau}=y / y^{q}$, so $x:=t_{\sigma} / y$ yields $\left(t_{\sigma}, t_{\tau}\right)=\left(x y, x y^{q}\right)$. Now, the kernel of this homomorphism requires $x y=x y^{q}=1$, or $x=y^{-1}=y^{-q}$, meaning $x=y^{-1} \in k^{\times}$. Thus, the
kernel has $q-1$ elements, implying

$$
\begin{aligned}
S_{D w U} & =\frac{\omega_{\tau}(-1)}{q(q-1)} \sum_{\substack{a \in k^{\times} \\
x, y \in \ell^{\times}}} \psi\left(\operatorname{tr}(x y)+\operatorname{tr}\left(x y^{q}\right)+a\right) \omega_{\sigma}(a x y)^{-1} \omega_{\tau}\left(a x y^{q}\right)^{-1} \\
& =\frac{\omega_{\tau}(-1)}{q(q-1)} \sum_{\substack{a \in k^{\times} \\
x, y \in \ell^{\times}}} \psi(\operatorname{tr}(x) \operatorname{tr}(y)+a) \omega_{\sigma}(a x y)^{-1} \omega_{\tau}\left(a x y^{q}\right)^{-1} \\
& =\frac{\omega_{\tau}(-1)}{q(q-1)} \sum_{\substack{a \in k^{\times} \\
x, y \in \ell^{\times}}} \psi\left(\frac{\operatorname{tr}(x) \operatorname{tr}(y)}{a}+a\right) \omega_{\sigma}(x y)^{-1} \omega_{\tau}\left(x y^{q}\right)^{-1} .
\end{aligned}
$$

At this point, we would like to send $a \mapsto \operatorname{tr}(y) / a$, but this is only legal when $\operatorname{tr}(y) \neq 0$. Thus, we go ahead and isolate the $\operatorname{tr}(y) \neq 0$ terms now: over these terms, the summation is

$$
\frac{\omega_{\tau}(-1)}{q(q-1)} \sum_{a \in k^{\times}} \psi(a) \sum_{x \in \ell^{\times}} \omega_{\sigma}(x)^{-1} \omega_{\tau}(x)^{-1} \sum_{\substack{y \in \ell^{\times} \\ \operatorname{tr}(y)=0}} \omega_{\sigma}(y)^{-1} \omega_{\tau}\left(y^{q}\right)^{-1}
$$

If $\omega_{\sigma} \neq \omega_{\tau}^{-1}$, then the second sum vanishes. Otherwise, we can collapse the sum down to

$$
-\frac{q^{2}-1}{q(q-1)} \sum_{\substack{y \in \ell^{\times} \\ \operatorname{tr}(y)=0}} \underbrace{\omega_{\sigma}(y)^{-1} \omega_{\tau}\left(-y^{q}\right)^{-1}}_{1}=-\frac{q^{2}-1}{q} .
$$

Thus,

$$
\begin{aligned}
S_{D w U} & =\frac{\omega_{\tau}(-1)}{q(q-1)} \sum_{\substack{a \in k^{\times} \\
x, y \in \ell^{\times} \\
\operatorname{tr}(y) \neq 0}} \psi(\operatorname{tr}(a x)+\operatorname{tr}(y / a)) \omega_{\sigma}(x y)^{-1} \omega_{\tau}\left(x y^{q}\right)^{-1}-\frac{q^{2}-1}{q} 1_{\omega_{\sigma}=\omega_{\tau}^{-1}} \\
& =\frac{\omega_{\tau}(-1)}{q} \sum_{\substack{x, y \in \ell^{\times} \\
\operatorname{tr}(y) \neq 0}} \psi(\operatorname{tr}(x)+\operatorname{tr}(y)) \omega_{\sigma}(x y)^{-1} \omega_{\tau}\left(x y^{q}\right)^{-1}-\frac{q^{2}-1}{q} 1_{\omega_{\sigma}=\omega_{\tau}^{-1}} .
\end{aligned}
$$

We would now like to re-add the $y \in \ell^{\times}$with $\operatorname{tr}(y)=0$, where the summation looks like

$$
S_{0}:=\frac{\omega_{\tau}(-1)}{q} \sum_{x \in \ell^{x}} \psi(\operatorname{tr}(x)) \omega_{\sigma}(x)^{-1} \omega_{\tau}(x)^{-1} \sum_{\substack{y \in \ell^{\times} \\ \operatorname{tr}(y)=0}} \omega_{\sigma}(y)^{-1} \omega_{\tau}\left(y^{q}\right)^{-1} .
$$

If $\left.\omega_{\sigma}\right|_{k} \neq\left.\omega_{\tau}^{-1}\right|_{k}$, then the right sum will vanish because we can send $y \mapsto c y$ where $c \in k^{\times}$ to pick up a factor of $\omega_{\sigma}(c)^{-1} \omega_{\tau}(c)^{-1} \neq 1$; thus, $S_{0}=0$ in this case. If $\omega_{\sigma} \cong \omega_{\tau}^{-1}$, then the summation collapses to

$$
S_{0}=-\frac{1}{q} \sum_{\substack{y \in \ell^{\times} \\ \operatorname{tr}(y)=0}} \underbrace{\omega_{\sigma}(y)^{-1} \omega_{\tau}\left(-y^{q}\right)^{-1}}_{1}=-\frac{q-1}{q}=(q-1)-\frac{q^{2}-1}{q} .
$$

Lastly, suppose $\left.\omega_{\sigma}\right|_{k}=\left.\omega_{\tau}^{-1}\right|_{k}$ but $\omega_{\sigma} \neq \omega_{\tau}^{-1}$. This case is harder because we must evaluate the Gauss sum. For brevity, set $\chi:=\omega_{\sigma}^{-1} \omega_{\tau}^{-1}$, which we know is nontrivial but trivial on k^{\times}.

The right-hand sum is

$$
\omega_{\tau}(-1) \sum_{\substack{y \in \ell^{\times} \\ \operatorname{tr}(y)=0}} \omega_{\sigma}(y)^{-1} \omega_{\tau}\left(y^{q}\right)^{-1}=\sum_{\substack{y \in \ell^{\times} \\ \operatorname{tr}(y)=0}} \chi(y) .
$$

There are $q-1$ elements $y \in \ell^{\times}$such that $\operatorname{tr}(y)=0$, and multiplying by an element of k^{\times} preserves this property. Thus, fixing some $y_{0} \in \ell^{\times}$such that $\operatorname{tr}\left(y_{0}\right)=0$, we see that the above summation is $(q-1) \chi\left(y_{0}\right)$.

It remains to evaluate the Gauss sum. To begin, we use the fact that χ is trivial on k^{\times}to write

$$
\sum_{x \in \ell^{\times}} \psi(\operatorname{tr}(x)) \chi(x)=\sum_{x \in \ell^{\times} / k^{\times}} \chi(x) \sum_{c \in k^{\times}} \psi(c \operatorname{tr}(x)) .
$$

If $\operatorname{tr}(x) \neq 0$ (of which the above class shows is true for all but $x=y_{0} \in \ell^{\times} / k^{\times}$), then the inner sum is a sum of ψ on k^{\times}and so evaluates to -1 . However, $\sum_{x \in \ell^{\times} / k^{\times}} \chi(x)=0$ because χ is nontrivial, so we have

$$
\sum_{x \in \ell^{\times} / k^{\times}} \chi(x) \sum_{c \in k^{\times}}(c \operatorname{tr}(x))=(q-1) \chi\left(y_{0}\right)+\sum_{\substack{x \in \ell^{\times} / k^{\times} \\ x \neq y_{0}}}-\chi(x)=q \chi\left(y_{0}\right) .
$$

Bringing everything together, we see that $S_{0}=(q-1) \chi\left(y_{0}\right)^{2}$, but $y_{0}^{2}=-\mathrm{N} y_{0} \in k^{\times}$, so actually $S_{0}=(q-1)$.

Combining all cases of S_{0}, we see

$$
S_{D w U}=\frac{\omega_{\tau}(-1)}{q} \sum_{x, y \in \ell^{x}} \psi(\operatorname{tr}(x)+\operatorname{tr}(y)) \omega_{\sigma}(x y)^{-1} \omega\left(x y^{q}\right)^{-1}-(q-1) 1_{\left.\omega_{\sigma}\right|_{k}=\left.\omega_{\tau}\right|_{k}}
$$

Adding back in S_{D}, we have proven the following result.
Theorem 20. Let σ and τ be cuspidal representations of GL_{2} with central characters ω_{σ} and ω_{τ}, respectively. Then

$$
\gamma(\sigma \times \tau, \psi)=\frac{\omega_{\tau}(-1)}{q} \sum_{x \in \ell^{\times}} \psi(\operatorname{tr} x) \omega_{\sigma}(x)^{-1} \omega_{\tau}(x)^{-1} \sum_{y \in \ell^{\times}} \psi(\operatorname{tr} y) \omega_{\sigma}(y)^{-1} \omega_{\tau}\left(y^{q}\right)^{-1}
$$

Remark 21. The above work has also shown the following: let ℓ / k be a quadratic extension of finite fields, where k has order q. Let ψ be a nontrivial character on k, and let χ be a nontrivial character on ℓ^{\times}with is trivial on k^{\times}. Then

$$
\sum_{x \in \ell^{\times}} \psi(\operatorname{tr} x) \chi(x)=\chi\left(x_{0}\right) q,
$$

where $x_{0} \in \ell^{\times} \backslash k^{\times}$satisfies $x_{0}^{2} \in k^{\times} .{ }^{1}$

4. Gamma Factors for $\mathrm{GL}_{2} \times \mathrm{GL}_{2} \times \mathrm{GL}_{2}$

In this section, we define and prove some basic properties of γ-factors of $\mathrm{GL}_{2} \times \mathrm{GL}_{2} \times \mathrm{GL}_{2}$. Throughout this section, k is a finite field with q elements, where q is odd.

[^1]4.1. Review of Symplectic Spaces and Notation. We review basic properties of symplectic spaces and define some subgroups. In this subsection, k is a field of characteristic not equal to 2 .
Definition 22 (symplectic). Fix a k-vector space V. A form $\langle\cdot, \cdot\rangle: V \times V \rightarrow k$ on V is symplectic if and only if $\langle\cdot, \cdot\rangle$ is bilinear, non-degenerate, and skew-symmetric. Once equipped with the symplectic form, V is called a symplectic space.

Note that any $v \in V$ has $\langle v, v\rangle=-\langle v, v\rangle$ and hence $\langle v, v\rangle=0$ because char $k \neq 2$. Just to make the point that we can, we define the group $\operatorname{GSp}(V)$ now.
Definition 23 (symplectic group of similitudes). Fix a symplectic k-vector space V. Then the symplectic group of similitudes $\operatorname{GSp}(V)$ is given by
$\operatorname{GSp}(V):=\left\{g \in \mathrm{GL}(V):\right.$ there is $\lambda(g) \in k^{\times}$with $\left\langle g v, g v^{\prime}\right\rangle=\lambda(g)\left\langle v, v^{\prime}\right\rangle$ for $\left.v, v^{\prime} \in V\right\}$.
Here, $\lambda(g)$ is called the multiplier of g.
This definition is perfectly adequate, but it will be helpful to have access to explicit models of symplectic spaces in the sequel. The following lemma explains how to explicitly think about symplectic spaces.

Lemma 24. Let V be a symplectic space of finite dimension d. Then d is even, and there is a basis $\left\{x_{1}, \ldots, x_{d / 2}, y_{1}, \ldots, y_{d / 2}\right\}$ of V such that

$$
\left\langle x_{i}, x_{j}\right\rangle=\left\langle y_{i}, y_{j}\right\rangle=0 \quad \text { and } \quad\left\langle x_{i}, y_{j}\right\rangle=1_{i=j}
$$

for any indices i and j.
Proof. For this, we use a modified Gram-Schmidt process. Pick up any basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V, and begin with $x_{1}:=v_{1}$. Because $\langle\cdot, \cdot\rangle$ is non-degenerate, we can find some basis vector v_{i} such that $\left\langle x_{1}, v_{i}\right\rangle \neq 0$. Note $v_{i} \neq x_{1}$, so without loss of generality, we say $\left\langle x_{1}, v_{2}\right\rangle \neq 0$, and by scaling v_{2}, we may assume $\left\langle x_{1}, v_{2}\right\rangle=1$, so we set $y_{1}:=v_{2}$. Now, for each v_{i} with $i \geq 3$, we replace v_{i} with

$$
v_{i}^{\prime}:=v_{i}-\left\langle v_{i}, y_{1}\right\rangle x_{1}+\left\langle v_{i}, x_{1}\right\rangle y_{1} .
$$

A direct computation shows that $\left\langle v_{i}^{\prime}, x_{1}\right\rangle=\left\langle v_{i}^{\prime}, y_{1}\right\rangle=0$ for each v_{i}^{\prime}, so we can repeat the above process (namely, set $x_{2}:=v_{3}$ and extract y_{2} so that $\left\langle x_{2}, y_{2}\right\rangle \neq 0$ and scale) inductively.

Because the dimension of a finite-dimensional symplectic space is always even, we set the convention to say that V has dimension $2 n$ for a positive integer n. Lemma 24 allows us to express each symplectic space in some standard way. In particular, writing vectors $v, v^{\prime} \in V$ in terms of our basis as $v:=a_{1} x_{1}+\cdots+a_{n} x_{n}+b_{1} y_{1}+\cdots+b_{n} y_{n}$ and similarly for v^{\prime}, we see

$$
\left\langle v, v^{\prime}\right\rangle=\left[\begin{array}{ll}
a^{\top} & b^{\top}
\end{array}\right] \widehat{w}_{2 n}\left[\begin{array}{l}
a^{\prime} \\
b^{\prime}
\end{array}\right],
$$

where

$$
\widehat{w}_{2 n}:=\left[\begin{array}{ll}
& -I_{n} \\
I_{n} &
\end{array}\right] .
$$

Using the above as an explicit basis for $k^{2 n}$, we can write the condition $\left\langle g v, g v^{\prime}\right\rangle=\lambda(g)\left\langle v, v^{\prime}\right\rangle$ for all $v, v^{\prime} \in V$ as $v^{\top} g^{\top} \widehat{w}_{2 n} g v^{\prime}=\lambda(g) v^{\top} \widehat{w}_{2 n} v^{\prime}$ for all $v \in v^{\prime} \in V$. Equivalently, we are asking for $g^{\top} \widehat{w}_{2 n} g=\lambda(g) \widehat{w}_{2 n}$, so we may explicitly define

$$
\operatorname{GSp}_{2 n}(k):=\operatorname{GSp}\left(k^{2 n}\right)=\left\{g \in \operatorname{GL}_{n}(k): \widehat{w}_{n} g \widehat{w}_{n}^{-1}=\lambda(g) g^{\iota}\right\}
$$

Our next point of discussion is of isotropic subspaces.
Definition 25 (isotropic). Fix a symplectic k-vector space V. Then a subspace $W \subseteq V$ is isotropic if and only if $\left\langle w, w^{\prime}\right\rangle=0$ for any $w, w^{\prime} \in W$.

Example 26. Given the symplectic space V a basis as in Lemma 24. Then we see that $X:=\operatorname{span}\left\{x_{1}, x_{2}, x_{3}\right\}$ is an isotropic subspace.

Lemma 27. Fix a symplectic k-vector space V of finite dimension. Then an isotropic subspace $X \subseteq V$ is a maximal isotropic subpsace if and only if $\operatorname{dim} X=\frac{1}{2} \operatorname{dim} V$.

Proof. Given any isotropic subspace $X \subseteq V$, we can extract any basis of X, extend it to a basis of V, and then use a modified version of the Gram-Schmidt process akin to the argument of Lemma 24 to show that X is contained in an isotropic subspace of dimension $\frac{1}{2} \operatorname{dim} V$, so $\operatorname{dim} W \leq \frac{1}{2} \operatorname{dim} V$. On the other hand, if X is maximal, we see equality must hold, so we conclude.

Remark 28. The proof of Lemma 27 shows that any maximal isotropic subspace X of V has a "dual" maximal isotropic subspace Y such that $V=X \oplus Y$. Indeed, this follows from letting the "rest" of the n basis vectors extracted via Lemma 24 be a basis for Y. Note that this choice of Y is not unique because extending the basis was not unique.

Thus, we will want to let $P^{\mathrm{sp}}(V) \subseteq \operatorname{GSp}(V)$ denote the subgroup fixing some given maximal isotropic subspace. In our concrete situation, we define $P_{2 n}^{\mathrm{sp}}(k) \subseteq \mathrm{GSp}_{2 n}(k)$ as fixing the subspace $\left\{x_{1}, \ldots, x_{n}\right\}$, so

$$
P_{2 n}^{\mathrm{sp}}(k)=\left\{\left[\begin{array}{cc}
A & B \\
& D
\end{array}\right] \in \operatorname{GSp}_{2 n}(k)\right\} .
$$

Now, to be in $\operatorname{GSp}_{2 n}(k)$, we are asking for

$$
\left[\begin{array}{cc}
A^{\top} & \\
B^{\top} & D^{\top}
\end{array}\right] \widehat{w}_{2 n}\left[\begin{array}{cc}
A & B \\
& D
\end{array}\right]=\left[\begin{array}{cc}
-D^{\top} A \\
A^{\top} D & -B^{\top} D+D^{\top} B
\end{array}\right]
$$

to be a multiple of $\widehat{w}_{2 n}$. As such, we see that we require $D=\lambda A^{\iota}$ for some $\lambda \in k^{\times}$and $A^{-1} B$ to be a symmetric matrix. Thus, any matrix in $P_{2 n}^{\mathrm{sp}}(k)$ can be uniquely written as

$$
\left[\begin{array}{cc}
\lambda A & \\
& A^{\iota}
\end{array}\right]\left[\begin{array}{cc}
I_{n} & Z \\
& I_{n}
\end{array}\right]=\left[\begin{array}{cc}
\lambda A & \lambda A Z \\
& A^{\iota}
\end{array}\right]
$$

where $A \in \mathrm{GL}_{n}(k)$ and $\lambda \in k^{\times}$and $Z \in M_{n}(k)$ is symmetric. This motivates us to define the subgroups

$$
\begin{aligned}
D_{2 n}^{\mathrm{sp}}(k) & :=D_{n, n} \cap \mathrm{GSp}_{2 n}(k) \\
& =\left\{\left[\begin{array}{cc}
\lambda A & \\
& A^{\iota}
\end{array}\right]: A \in \mathrm{GL}_{n}(k)\right\} \\
U_{2 n}^{\mathrm{sp}}(k) & :=U_{n, n} \cap \mathrm{GSp}_{2 n}(k) \\
& =\left\{\left[\begin{array}{ll}
I_{n} & Z \\
& I_{n}
\end{array}\right]: Z \in k^{n \times n} \text { is symmetric }\right\}
\end{aligned}
$$

so that $P_{2 n}^{\mathrm{sp}}(k)=D_{2 n}^{\mathrm{sp}}(k) U_{2 n}^{\mathrm{sp}}(k)$. For completeness, we note that the corresponding Borel subgroup contained in $P_{2 n}^{\text {sp }}(k)$ is

$$
B_{2 n}^{\mathrm{sp}}(k):=\left\{\left[\begin{array}{ll}
\lambda A & \\
& A^{\iota}
\end{array}\right]: A \in \mathrm{GL}_{n}(k) \text { is upper-triangular }\right\} \cdot U_{2 n}^{\mathrm{sp}}(k)
$$

For example, the diagonal matrices of $\operatorname{GSp}_{2 n}(k)$ make up a maximal torus $T_{2 n}^{\mathrm{sp}}$ of $B_{2 n}^{\mathrm{sp}}(k)$, and the unipotent radical in $B_{2 n}^{\mathrm{sp}}(k)$ is

$$
U_{2 n}^{+}:=\left\{\left[\begin{array}{cc}
A & \\
& A^{\iota}
\end{array}\right]: A \in \mathrm{GL}_{n}(k) \text { is upper-triangular and unipotent }\right\} \cdot U_{2 n}^{\mathrm{sp}}
$$

We let $U_{2 n}^{-}$denote the analogous family of lower-triangular matrices, namely

$$
U_{2 n}^{-}:=\left\{\left[\begin{array}{cc}
A & \\
& A^{\iota}
\end{array}\right]: A \in \mathrm{GL}_{n}(k) \text { is lower-triangular and unipotent }\right\} \cdot\left\{u: u^{\top} \in U_{2 n}^{\mathrm{sp}}\right\} .
$$

Continuing, we for brevity let $W\left(\operatorname{GSp}_{2 n}(k)\right)$, and for each $w \in W$, we define the subgroups

$$
U_{w}^{-}:=U_{2 n}^{+} \cap w U_{2 n}^{-} w^{-1} \quad \text { and } \quad U_{w}^{+}:=U_{2 n}^{-} \cap w U_{2 n}^{+} w^{-1}
$$

This allows us to define the standard intertwining operator attached to a Weyl group element $w \in W\left(\operatorname{GSp}_{2 n}(k)\right)$: fix a character χ of $T_{2 n}^{\mathrm{sp}}$, and extend it to $B_{2 n}^{\mathrm{sp}}$ using $B_{2 n}^{\mathrm{sp}}=T_{2 n}^{\mathrm{sp}} \ltimes U_{2 n}^{\mathrm{sp}}$. Then we define the operator $M_{w}: \operatorname{Ind}_{B_{2 n}^{s p}}^{\mathrm{GSp}_{2 n}} \chi \rightarrow \operatorname{Ind}_{B_{2 n}^{s p}}^{\mathrm{GSp}_{2 n} w} \chi$ by

$$
\left(M_{w} f\right)(g):=\sum_{u \in U_{w}^{-}} f\left(w^{-1} u g\right) .
$$

Most notable is

$$
\left(M_{w_{2 n}} f\right)(g)=\sum_{u \in U_{2 n}^{\mathrm{sp}}} f\left(w_{2 n} u g\right) .
$$

One can check that M_{w} is well-defined and G-invariant. Furthermore, it is a general fact about root systems and the Weyl groups attached to them that the multiplication map $U_{w}^{+} \times U_{w}^{-} \rightarrow U_{2 n}^{+}$is a bijection. Thus, if $\ell: W\left(\mathrm{GSp}_{2 n}\right) \rightarrow \mathbb{Z}$ denotes the length function, then $\ell\left(w_{1}\right)+\ell\left(w_{2}\right)=\ell\left(w_{1} w_{2}\right)$ implies that $M_{w_{1}} \circ M_{w_{2}}=M_{w_{1} w_{2}}$.

The whole point of investigating $\mathrm{GSp}_{2 n}(k)$ is that we will be able to approximately embed $\mathrm{GL}_{2}(k)^{n}$ into $\mathrm{GSp}_{2 n}(k)$. Indeed, using the basis provided by Lemma 24, we embed $\mathrm{GL}_{2}(k)^{n} \hookrightarrow \mathrm{GL}_{2 n}(k)$ by having the g_{i} in the tuple $\left(g_{1}, \ldots, g_{n}\right) \in \mathrm{GL}_{2}(k)^{n}$ permute $\operatorname{span}\left\{x_{i}, y_{i}\right\}$. Concretely, this looks like

$$
\left(\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right], \ldots,\left[\begin{array}{ll}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right]\right) \mapsto\left[\begin{array}{cccccc}
a_{1} & & & b_{1} & & \\
& \ddots & & & \ddots & \\
& & a_{n} & & & b_{n} \\
c_{1} & & & d_{1} & & \\
& \ddots & & & \ddots & \\
& & c_{n} & & & d_{n}
\end{array}\right]
$$

Using the above as out notation for g_{i}, we see that $\left\langle g_{i} x_{i}, g_{i} y_{i}\right\rangle=\left\langle a_{i} x_{i}+c_{i} y_{i}, b_{i} x_{i}+d_{i} y_{i}\right\rangle=$ $a_{i} d_{i}-b_{i} c_{i}=\operatorname{det} g_{i}$, so $\left\langle g_{i} v, g_{i} v^{\prime}\right\rangle=\left(\operatorname{det} g_{i}\right)\left\langle v, v^{\prime}\right\rangle$ for any $v, v^{\prime} \in \operatorname{span}\left\{x_{i}, y_{i}\right\}$. It follows that
we want to define the subgroup

$$
\begin{aligned}
\mathrm{GL}_{2}^{(n)}(k) & :=\mathrm{GL}_{2}^{n}(k) \cap \mathrm{GSp}_{2 n}(k) \\
& =\left\{\left(g_{1}, \ldots, g_{n}\right) \in \mathrm{GL}_{2}^{n}(k): \operatorname{det} g_{1}=\cdots=\operatorname{det} g_{n}\right\}
\end{aligned}
$$

4.2. Double Coset Computation. In this subsection, we use the notation and conventions of the previous subsection. Because no confusion will arise, we will omit the field k when notating our groups. We will compute $\mathrm{GL}_{2}^{(n)} \backslash \mathrm{GSp}_{2 n} / P_{2 n}^{\mathrm{sp}}$ for $2 n=6$. We start with $\mathrm{GSp}_{2 n} / P_{2 n}^{\mathrm{sp}}$.

Lemma 29. Fix a symplectic vector space V of finite dimension. Then $\operatorname{GSp}(V)$ has a transitive left action on the set $\mathcal{X}(V)$ of maximal isotropic subspaces of V by left multiplication. In particular, if $P^{\mathrm{sp}}(V)$ is the subgroup fixing some maximal isotropic subspace X, then $\operatorname{GSp}(V) / P^{\mathrm{sp}}(V)$ is in natural bijection with $\mathcal{X}(V)$.

Proof. Set $n:=\operatorname{dim} V$. Lemma 27 tells us that $\mathcal{X}(V)$ consists of isotropic subspaces of dimension $n / 2$. Now, our left action is defined simply by translation: for $g \in \operatorname{GSp}(V)$ and $X \in \mathcal{X}(V)$, we set $g \cdot X:=g X$. Here are the checks on this action.

- Well-defined: note that $g X$ is indeed an isotropic subspace because $g \in \operatorname{GSp}(V)$. Indeed, for any $x, x^{\prime} \in X$, we see that $\left\langle g x, g x^{\prime}\right\rangle=\lambda(g)\left\langle x, x^{\prime}\right\rangle=0$ for some given constant $\lambda(g) \in k$. Further, $\operatorname{dim} g X=\operatorname{dim} X=\frac{1}{2} \operatorname{dim} V$ verifies that $g X$ is maximal.
- Transitive: given $X, X^{\prime} \in \mathcal{X}(V)$, we want $g \in \operatorname{GSp}(V)$ such that $X^{\prime}=g X$. Well, via the modified Gram-Schmidt process of Lemma 24, we obtain can extend a basis of X to a basis $\left\{x_{1}, \ldots, x_{n / 2}, y_{1}, \ldots, y_{n / 2}\right\}$ of V satisfying the conclusion of Lemma 24 and such that $X=\operatorname{span}\left\{x_{1}, \ldots, x_{n / 2}\right\}$. The same process for X^{\prime} produces another basis $\left\{x_{1}^{\prime}, \ldots, x_{n / 2}^{\prime}, y_{1}^{\prime}, \ldots, y_{n / 2}^{\prime}\right\}$ of V with the analogous conclusions.

We now define $g: V \rightarrow V$ by $g: x_{i} \mapsto x_{i}^{\prime}$ and $g: y_{i} \mapsto y_{i}^{\prime}$. By construction, $g X=X^{\prime}$, and we see that $g \in \operatorname{GSp}(V)$ by checking on the basis coming from X : note

$$
\left\langle g x_{i}, g x_{j}\right\rangle=\left\langle x_{i}^{\prime}, x_{j}^{\prime}\right\rangle=0=\left\langle x_{i}, x_{j}\right\rangle, \quad\left\langle g y_{i}, g y_{j}\right\rangle=\left\langle y_{i}^{\prime}, y_{j}^{\prime}\right\rangle=0=\left\langle y_{i}, y_{j}\right\rangle
$$

and

$$
\left\langle g x_{i}, g y_{j}\right\rangle=\left\langle x_{i}^{\prime}, y_{j}^{\prime}\right\rangle=1_{i=j}=\left\langle x_{i}, y_{j}\right\rangle
$$

for any indices i and j.
The above checks establish the second sentence of the lemma. The last sentence follows quickly from the Orbit-Stabilizer theorem: the bijection $\operatorname{GSp}(V) / P^{\mathrm{sp}}(V) \rightarrow \mathcal{X}(V)$ is given by $g P^{\mathrm{sp}}(V) \mapsto g X$.

For the remainder of the subsection, even though it is not totally necessary, we will set $V:=$ $k^{2 n}$ to be a symplectic space with basis $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$ extracted by Lemma 24. This allows us to identify $\mathrm{GL}_{2}^{(n)}$ with a subgroup of GSp_{n}. For brevity, we set $V_{i}:=\operatorname{span}\left\{x_{i}, y_{i}\right\}$ so that $V=V_{1} \oplus \cdots \oplus V_{n}$; we also set $\mathcal{X}_{2 n}:=\mathcal{X}\left(k^{2 n}\right)$.

In light of Lemma 29, we are interested in studying $\mathrm{GL}_{2}^{(n)} \backslash \mathcal{X}_{2 n}$. The approach is to attach invariants to various isotropic subspaces in $\mathcal{X}_{2 n}$ and use those to classify the orbits. Here are the relevant invariants.

Lemma 30. Fix notation as above.
(a) For any $g \in \mathrm{GL}_{2}^{(n)}$ and $X \in \mathcal{X}(V)$, we have $\operatorname{dim}\left(g X \cap V_{i}\right)=\operatorname{dim}\left(X \cap V_{i}\right)$.
(b) For any $X \in \mathcal{X}(V)$, we have $\operatorname{dim}\left(X \cap V_{i}\right) \in\{0,1\}$.

Thus, $X \mapsto \operatorname{dim}\left(X \cap V_{i}\right)$ defines a function $\mathrm{GL}_{2}^{(n)} \backslash \mathcal{X}_{n} \rightarrow\{0,1\}$.
Proof. To see (a), expand $g=\left(g_{1}, \ldots, g_{n}\right)$, and we compute

$$
\operatorname{dim}\left(X \cap V_{i}\right)=\operatorname{dim}\left(g X \cap g V_{i}\right)=\operatorname{dim}\left(g X \cap \operatorname{span}\left\{g_{i} x_{i}, g_{i} y_{i}\right\}\right)=\operatorname{dim}\left(g X \cap V_{i}\right)
$$

To see (b), we of course have $\operatorname{dim}\left(X \cap V_{i}\right) \geq 0$. On the other hand, note $\operatorname{dim}\left(X \cap V_{i}\right) \geq 2$ would imply that $V_{i}=\left(X \cap V_{i}\right) \subseteq X$, but this cannot occur because $\left\langle x_{i}, y_{i}\right\rangle=1$ and X is isotropic.

In light of Lemma 30, we define

$$
\mathcal{X}_{\left(d_{1}, \ldots, d_{n}\right)}:=\left\{X \in \mathcal{X}_{n}: \operatorname{dim}\left(X \cap V_{i}\right)=d_{i} \text { for each } i\right\} .
$$

Each $\mathcal{X}_{\left(d_{1}, \ldots, d_{n}\right)}$ provides a good candidate for an orbit when nonempty. Now, these invariants d_{i} are pleasant to work with because they allow an inductive process. Here is our "base case."

Lemma 31. Fix notation as above with $2 n=2$. Then $\mathcal{X}_{2}=\mathcal{X}_{(1)}$, and $\mathcal{X}_{(1)}$ is a $\mathrm{GL}_{2}^{(1)}$-orbit.
Proof. Here, $V=V_{1}=k^{2}$, so any maximal isotropic subspace $X \in \mathcal{X}_{2}$ will have $\operatorname{dim}(X \cap$ $\left.V_{1}\right)=\operatorname{dim} X=1$, so $X \in \mathcal{X}_{(1)}$. It follows $\mathcal{X}_{2}=\mathcal{X}_{(1)}$. Lastly, note that $\mathrm{GL}_{2}^{(1)}=\mathrm{GL}_{2}=\mathrm{GSp}_{2}$, so the $\mathrm{GL}_{2}^{(1)}$-action on \mathcal{X}_{2} is transitive by Lemma 29 , so $\mathcal{X}_{(1)}$ is indeed a single orbit.

Here is our "inductive step."
Lemma 32. Let V be a symplectic space, and let $V=W \oplus W^{\prime}$ be a decomposition of V into symplectic spaces. For any maximal isotropic subspace X of V, if $X \cap W$ is a maximal isotropic subspace of W, then

$$
X=(X \cap W) \oplus\left(X \cap W^{\prime}\right),
$$

and $X \cap W^{\prime}$ is a maximal isotropic subspace of W^{\prime}.
Proof. To see that $X=(X \cap W) \oplus\left(X \cap W^{\prime}\right)$, we must show that any $x \in X$ allows us to write $x=w+w^{\prime}$ where $w \in X \cap W$ and $w^{\prime} \in X \cap W^{\prime}$. Well, we may at least write $x=w+w^{\prime}$ for $w \in W$ and $w^{\prime} \in W^{\prime}$, and it remains to show $w, w^{\prime} \in X$. Well, any $x_{0} \in X \cap W$ has

$$
\left\langle x_{0}, w\right\rangle=\left\langle x_{0}, w+w^{\prime}\right\rangle=\left\langle x_{0}, x\right\rangle=0
$$

where $\left\langle x_{0}, w^{\prime}\right\rangle=0$ because $V=W \oplus W^{\prime}$ is a decomposition of symplectic spaces. Thus, $(X \cap W) \cup \operatorname{span}\{w\}$ is an isotropic subspace of W, so maximality assures us that $w \in X \cap W$. To finish off, we see $w^{\prime}=x-w \in X$ as well.

It remains to show that $X \cap W^{\prime}$ is a maximal isotropic subspace. If V is finite dimensional, one can see this by counting dimensions, but we will avoid this. Suppose $w_{0}^{\prime} \in W^{\prime}$ satisfies $\left\langle w^{\prime}, w_{0}^{\prime}\right\rangle=0$ for any $w^{\prime} \in X \cap W^{\prime}$; we must show $w_{0}^{\prime} \in X$. Well, for any $x \in X$, decompose $x=w+w^{\prime}$ where $w \in W$ and $w^{\prime} \in W^{\prime}$. As above, we know $w \in X$, so $w^{\prime} \in X$, so

$$
\left\langle x, w_{0}^{\prime}\right\rangle=\left\langle w, w_{0}^{\prime}\right\rangle+\left\langle w^{\prime}, w_{0}^{\prime}\right\rangle=0
$$

Thus, maximality of X implies $w_{0}^{\prime} \in X$, completing the proof.
Lemma 33. Fix notation as above with $n \geq 2$. Given some $X \in \mathcal{X}_{\left(d_{1}, \ldots, d_{n}\right)}$, if $d_{n}=1$, then $X=\left(X \cap k^{n-2}\right) \oplus\left(X \cap V_{n}\right)$. Thus, in this case, $\mathcal{X}_{\left(d_{1}, \ldots, d_{n}\right)} \cong \mathcal{X}_{\left(d_{1}, \ldots, d_{n-1}\right)} \times \mathcal{X}_{(1)}$ as $\mathrm{GL}_{2}^{(n)}$-sets.

Proof. The second sentence follows from Lemma 32, where we are decomposing $k^{2 n}$ into $k^{2 n-2} \oplus V_{n}$. The point is that $d_{n}=1$ implies that $X \cap V_{n}$ is a maximal isotropic subspace of V_{n}.

It remains to prove the last sentence. Well, our bijection is given as follows.

$$
\begin{aligned}
\mathcal{X}_{\left(d_{1}, \ldots, d_{n}\right)} & \cong \mathcal{X}_{\left(d_{1}, \ldots, d_{n-1}\right)} \times \mathcal{X}_{(1)} \\
X & \mapsto\left(X \cap k^{2 n-2}, X \cap V_{n}\right) \\
X_{1} \oplus X_{2} & \leftarrow \quad\left(X_{1}, X_{2}\right)
\end{aligned}
$$

The rightward map is well-defined by Lemma 32. Checking that the leftward map is welldefined and that the maps are inverse is direct from what we've already established.

Lastly, we must check that the bijection is an isomorphism of $\mathrm{GL}_{2}^{(n)}$-sets. It's enough to show that the leftward map is $\mathrm{GL}_{2}^{(n)}$-equivariant, for which we note

$$
\left(g_{1}, \ldots, g_{n}\right)\left(X_{1}, X_{2}\right)=\left(\left(g_{1}, \ldots, g_{n-1} X_{1}, g_{n} X_{2}\right)\right.
$$

gets taken to $\left(g_{1}, \ldots, g_{n-1}\right) X_{1} \oplus g_{n} X_{n}$, which is indeed $\left(g_{1}, \ldots, g_{n}\right)\left(X_{1} \oplus X_{2}\right)$.
Corollary 34. Fix notation as above. If $\mathcal{X}_{\left(d_{1}, \ldots, d_{n}\right)} \subseteq \mathcal{X}_{2 n}$ is a nonempty $\mathrm{GL}_{2}^{(n)}$-orbit, then $\mathcal{X}_{\left(d_{1}, \ldots, d_{n}, 1\right)} \subseteq \mathcal{X}_{2 n+2}$ is a nonempty $\mathrm{GL}_{2}^{(n+1)}$-orbit.

Proof. Lemma 33 grants us that

$$
\mathcal{X}_{\left(d_{1}, \ldots, d_{n}, 1\right)} \cong \mathcal{X}_{\left(d_{1}, \ldots, d_{n}\right)} \times \mathcal{X}_{(1)}
$$

so we will show that the right-hand side is a transitive $\mathrm{GL}_{2}^{(n+1)}$-set. (Note the right-hand side is nonempty by hypothesis.) Well, for any two pairs $\left(X_{1}, X_{2}\right)$ and ($\left.X_{1}^{\prime}, X_{2}^{\prime}\right)$ in $\mathcal{X}_{\left(d_{1}, \ldots, d_{n}\right)} \times \mathcal{X}_{(1)}$, we may find $g_{1} \in \mathrm{GL}_{2}^{(n)}$ and $g_{2} \in \mathrm{GL}_{2}$ so that $X_{1}^{\prime}=g_{1} X_{1}$ and $X_{2}^{\prime}=g_{2} X_{2}$. But now

$$
g:=\left(\left(\operatorname{det} g_{2}\right) g_{1},\left(\operatorname{det} g_{1}\right) g_{2}\right) \in \mathrm{GL}_{2}^{(n+1)}
$$

has $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)=g\left(X_{1}, X_{2}\right)$.
As a starting step, we address $2 n=4$.
Proposition 35. Fix notation as above with $2 n=4$. Then $\mathcal{X}_{4}=\mathcal{X}_{(0,0)} \sqcup \mathcal{X}_{(1,1)}$, and these are $\mathrm{GL}_{2}^{(2)}$-orbits.

Proof. Fix some $X \in \mathcal{X}_{\left(d_{1}, d_{2}\right)}$. We have two cases. Quickly, if $d_{1}=1$ or $d_{2}=1$, without loss of generality take $d_{2}=1$. Then Lemma 33 lets us decompose

$$
\mathcal{X}_{\left(d_{1}, 1\right)} \cong \mathcal{X}_{\left(d_{1}\right)} \times \mathcal{X}_{(1)}
$$

but $\mathcal{X}_{\left(d_{1}\right)}$ must be $\mathcal{X}_{(1)}$ by Lemma 31. It follows that we are looking at $\mathcal{X}_{(1,1)}$, and $\mathcal{X}_{(1,1)}$ is an orbit by Corollary 34.

Lastly, we must deal with $\mathcal{X}_{(0,0)}$. Observe that this collection is nonempty because it contains $X_{(0,0)}:=\operatorname{span}\left\{x_{1}-x_{2}, y_{1}+y_{2}\right\}$, so it remains to show that it is an orbit. We will show that any $X \in \mathcal{X}_{(0,0,0)}$ is in the same orbit as $X_{(0,0)}$.

Because $X \in \mathcal{X}_{(0,0)}$, a nonzero element takes the form $v_{1}+v_{2}$ where $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$ are nonzero. Using an element of $\mathrm{GL}_{2}^{(2)}$ to move the lines $\operatorname{span}\left\{v_{1}\right\} \subseteq V_{1}$ and $\operatorname{span}\left\{v_{2}\right\} \subseteq V_{2}$ around, we may assume $c_{1} x_{1}-c_{2} x_{2} \in X$ for some nonzero $c_{1}, c_{2} \in k$. Adjusting X by the element $\left(\left[\begin{array}{ll}1 / c_{1} & \\ & c_{1}\end{array}\right],\left[\begin{array}{lll}1 / c_{2} & \\ & & c_{2}\end{array}\right]\right)$, we may assume that $x_{1}-x_{2} \in X$.

Now, let $\left\{x_{1}-x_{2},\left(a_{1} x_{1}+b_{1} y_{1}\right)+\left(a_{2} x_{2}+b_{2} y_{2}\right)\right\}$ be a basis of X. Adjusting the second basis element by $x_{1}-x_{2}$, we may assume that $a_{2}=0$. Checking that X is isotropic, we see that $b:=b_{1}=b_{2}$, which we see must be nonzero, so without loss of generality our basis looks like $\left\{x_{1}-x_{2}, y_{1}+y_{2}-a x_{2}\right\}$. Adjusting X by $\left(\left[\begin{array}{c}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ 1\end{array}\right]\right)$ turns out basis into $\left\{x_{1}-x_{2}, y_{1}+y_{2}\right\}$, so X is in the same orbit as $X_{(0,0)}$.

We are now ready for $2 n=6$.
Proposition 36. Fix notation as above with $2 n=6$. Then $\mathcal{X}_{4}=\mathcal{X}_{(0,0,0)} \sqcup \mathcal{X}_{(1,0,0)} \sqcup \mathcal{X}_{(0,1,0)} \sqcup$ $\mathcal{X}_{(0,0,1)} \sqcup \mathcal{X}_{(0,0,0)}$, and these are $\mathrm{GL}_{2}^{(2)}$-orbits.

Proof. The argument is the same as in Proposition 35 but a little harder. Fix some $X \in$ $\mathcal{X}_{\left(d_{1}, d_{2}, d_{3}\right)}$, and we have two cases. Quickly, if any of the d_{i} are 1 , take $d_{3}=1$ without loss of generality. Then Lemma 33 lets us decompose into the $n=4$ case, where we see

$$
\mathcal{X}_{\left(d_{1}, d_{2}\right)} \in\left\{\mathcal{X}_{(0,0)}, \mathcal{X}_{(1,1)}\right\}
$$

by Proposition 35. Thus, we either have $\mathcal{X}_{(0,0,1)}$ or $\mathcal{X}_{(1,1,1)}$, and each of these are orbits by Corollary 34.

It remains to deal with $\mathcal{X}_{(0,0,0)}$. Again, this is nonempty because it contains $X_{(0,0,0)}:=$ $\operatorname{span}\left\{x_{1}-x_{2}, x_{2}-x_{3}, y_{1}+y_{2}+y_{3}\right\}$, so it remains to show that it is an orbit. We will show that any $X \in \mathcal{X}_{(0,0,0)}$ is in the same orbit as $X_{(0,0,0)}$.

The key claim is that $\operatorname{dim}\left(X \cap\left(V_{1} \oplus V_{2}\right)\right) \geq 1$. To see that the dimension is at least 1 , let $\pi_{3}: V \rightarrow V_{3}$ denote the projection. But then, $\operatorname{dim} X>\operatorname{dim} V_{3}$, so $\operatorname{ker}\left(\left.\pi_{3}\right|_{X}\right)=X \cap\left(V_{1} \oplus V_{2}\right)$ must be nonempty.

Thus, we may let $v_{1}+v_{2}$ be a nonzero vector in $X \cap\left(V_{1} \oplus V_{2}\right)$. Adjusting X by an element of $\mathrm{GL}_{2}^{(3)}$ as in Proposition 35, we may assume $x_{1}-x_{2} \in X$. A symmetric argument to the previous paragraph also allows us to let $w_{2}+w_{3}$ be a nonzero vector in $X \cap\left(V_{2} \oplus V_{3}\right)$. Adjusting X by an element of $\mathrm{GL}_{2}^{(3)}$ again to move v_{3} around, we may assume our element has the form $\left(a_{2} x_{2}+b_{2} y_{2}\right)-x_{3}$. However, we must have

$$
\left\langle x_{1}-x_{2},\left(a_{2} x_{2}+b_{2} y_{2}\right)-x_{3}\right\rangle=0
$$

so $b_{2}=0$ follows. Now, adjusting X by $\left(I_{2},\left[\begin{array}{ll}1 / a_{2} & \\ & a_{2}\end{array}\right], I_{2}\right)$ grants $x_{2}-x_{3} \in X$.
Now, let a third basis vector of X be given by $v_{1}+v_{2}+v_{3}$. Adjusting this vector by $x_{1}-x_{2}$ and $x_{2}-x_{3}$ allows us to assume that it takes the form $c_{3} x_{3}+d_{1} y_{1}+d_{2} y_{2}+d_{3} y_{3}$. Testing

$$
\left\langle x_{1}-x_{2}, c_{3} x_{3}+d_{1} y_{1}+d_{2} y_{2}+d_{3} y_{3}\right\rangle=\left\langle x_{2}-x_{3}, c_{3} x_{3}+d_{1} y_{1}+d_{2} y_{2}+d_{3} y_{3}\right\rangle=0
$$

implies that $d:=d_{1}=d_{2}=d_{3}$, and we must have $d \neq 0$ because $X \cap V_{3}=\{0\}$. Thus, by scaling, we may take our vector to have the form $y_{1}+y_{2}+y_{3}-c_{3} x_{3}$, whereupon adjusting X by $\left(I_{2}, I_{2},\left[\begin{array}{cc}1 & c_{3} \\ 1\end{array}\right]\right)$ grants $y_{1}+y_{3}+y_{3} \in X$. It follows that $X=X_{(0,0,0)}$.

In the sequel, it will be helpful to have explicit representatives for $P_{6}^{\mathrm{sp}} \backslash \mathrm{GSp}_{6} / \mathrm{GL}_{2}^{(3)}$. We follow [Ike89, Lemma 1.1].

Corollary 37. We have the following representatives of $P_{6}^{\mathrm{sp}} \backslash \mathrm{GSp}_{6} / \mathrm{GL}_{2}^{(3)}$.
(a) The element

$$
\eta_{0}:=\left[\begin{array}{cccccc}
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

has $\eta_{0}^{-1} X \in \mathcal{X}_{(0,0,0)}$. Further, the "stabilizer" $\mathrm{GL}_{2}^{(3)} \cap \eta_{0}^{-1} P_{6}^{\mathrm{sp}} \eta_{0}$ is the subgroup

$$
S\left(\eta_{0}\right):=\left\{\left(\left[\begin{array}{cc}
a & b_{1} \\
& d
\end{array}\right],\left[\begin{array}{cc}
a & b_{2} \\
& d
\end{array}\right],\left[\begin{array}{cc}
a & b_{3} \\
& d
\end{array}\right]\right) \in \mathrm{GL}_{2}^{(3)}: b_{1}+b_{2}+b_{3}=0\right\} .
$$

(b) The element

$$
\eta_{1}:=\left[\begin{array}{cccccc}
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

has $\eta_{1}^{-1} X \in \mathcal{X}_{(0,0,1)}$. Further, the "stabilizer" $\mathrm{GL}_{2}^{(3)} \cap \eta_{1}^{-1} P_{6}^{\mathrm{sp}} \eta_{1}$ is the subgroup

$$
S\left(\eta_{1}\right):=\left\{\left(\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right],\left[\begin{array}{cc}
a_{1} & -b_{1} \\
-c_{1} & d_{1}
\end{array}\right],\left[\begin{array}{cc}
a_{3} & b_{3} \\
& d_{3}
\end{array}\right]\right) \in \mathrm{GL}_{2}^{(3)}\right\} .
$$

Rearranging the rows and columns appropriately produces elements η_{2} and η_{3} with $\eta_{2}^{-1} X \in \mathcal{X}_{(0,1,0)}$ and $\eta_{3}^{-1} X \in \mathcal{X}_{(1,0,0)}$.
(c) The element $\eta_{5}:=I_{6}$ has $\eta_{5}^{-1} X \in \mathcal{X}_{(1,1,1)}$. Further, the "stabilizer" $\mathrm{GL}_{2}^{(3)} \cap \eta_{5}^{-1} P_{6}^{\mathrm{sp}} \eta_{5}$ is the subgroup

$$
S\left(\eta_{5}\right):=\left\{\left(\left[\begin{array}{cc}
a_{1} & b_{1} \\
& d_{1}
\end{array}\right],\left[\begin{array}{cc}
a_{2} & b_{2} \\
& d_{2}
\end{array}\right],\left[\begin{array}{ll}
a_{3} & b_{3} \\
& d_{3}
\end{array}\right]\right) \in \mathrm{GL}_{2}^{(3)}\right\} .
$$

Proof. We work with each class one at a time. We omit the checks that each η_{i} lives in GSp_{6}.
(a) Note

$$
\eta_{0}^{-1}=\left[\begin{array}{cccccc}
0 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & -1 & 1
\end{array}\right]
$$

so $\eta_{0}^{-1} X$ is spanned by $\left\{-y_{1}-y_{2}+y_{3}, x_{2}-x_{1}, x_{3}+x_{2}\right\}$. Adjusting η_{0}^{-1} by $\left(I_{2}, I_{2},-I_{2}\right)$ produces the element $X_{(0,0,0)}$ constructed in Proposition 36, so the first assertion follows.

For the stabilizer computation, we set $g:=\left(\left[\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right],\left[\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right],\left[\begin{array}{lll}a_{3} & b_{3} \\ c_{3} & d_{3}\end{array}\right]\right)$ and compute

$$
\eta_{0} g \eta_{0}^{-1}=\left[\begin{array}{cccccc}
d_{1} & c_{1} & 0 & -c_{1} & 0 & 0 \tag{4.2.1}\\
-b_{2}-b_{3} & a_{2} & a_{2}-a_{3} & 0 & b_{2}+b_{3} & -b_{3} \\
b_{3} & 0 & a_{3} & 0 & -b_{3} & b_{3} \\
-b_{1}-b_{2}-b_{3} & a_{2}-a_{1} & a_{2}-a_{3} & a_{1} & b_{2}+b_{3} & -b_{3} \\
d_{1}-d_{2} & c_{1}+c_{2} & c_{2} & -c_{1} & d_{2} & 0 \\
d_{3}-d_{2} & c_{2} & c_{2}+c_{3} & 0 & d_{2}-d_{3} & d_{3}
\end{array}\right] .
$$

Thus, $\eta_{0} g \eta_{0}^{-1} \in P_{6}^{\mathrm{sp}}$ if and only if $g \in S\left(\eta_{0}\right)$.
(b) We will only prove the assertions involving η_{1}; the proofs of the others follow by rearranging the basis. Note

$$
\eta_{1}^{-1}=\left[\begin{array}{cccccc}
0 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right],
$$

so $\eta_{1}^{-1} X$ is spanned by $\left\{-y_{1}-y_{2},-x_{1}+x_{2}, x_{3}\right\}$, which we can see is $\operatorname{span}\left\{x_{1}-\right.$ $\left.x_{2}, y_{1}+y_{2}\right\} \oplus \operatorname{span}\left\{x_{3}\right\}$ and thus in $\mathcal{X}_{(0,0,1)}$. (Note $\operatorname{span}\left\{x_{1}-x_{2}, y_{1}+y_{2}\right\} \in \mathcal{X}_{(0,0)}$ as in Proposition 35.)

For the stabilizer computation, we we set $g:=\left(\left[\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right],\left[\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right],\left[\begin{array}{ll}a_{3} & b_{3} \\ c_{3} & d_{3}\end{array}\right]\right)$ and compute

$$
\eta_{1} g \eta_{1}^{-1}=\left[\begin{array}{cccccc}
d_{1} & c_{1} & 0 & -c_{1} & 0 & 0 \tag{4.2.2}\\
-b_{2} & a_{2} & 0 & 0 & b_{2} & 0 \\
0 & 0 & a_{3} & 0 & 0 & b_{3} \\
-b_{1}-b_{2} & -a_{1}+a_{2} & 0 & a_{1} & b_{2} & 0 \\
d_{1}-d_{2} & c_{1}+c_{2} & 0 & -c_{1} & d_{2} & 0 \\
0 & 0 & c_{3} & 0 & 0 & d_{3}
\end{array}\right] .
$$

Thus, $\eta_{1} g \eta_{1}^{-1} \in P_{6}^{\mathrm{sp}}$ if and only if $g \in S\left(\eta_{1}\right)$.
(c) All assertions follow directly from the fact that η_{5} is the identity.

Remark 38. Though it is not clear from the computation, we use the term "stabilizer" for $S\left(\eta_{i}\right)$ because $S\left(\eta_{i}\right)$ consists of the elements of $\mathrm{GL}_{2}^{(3)}$ fixing some isotropic subspace in the corresponding class of $\mathrm{GL}_{2}^{(3)} \backslash \mathcal{X}_{6}$. We have chosen a more explicit exposition because it will be helpful to have explicit matrices computed later on.
4.3. Multiplicity One. In this subsection, we prove a multiplicity one result which will become the functional equation. For the rest of this section, k will be a finite field, and $\pi_{1}, \pi_{2}, \pi_{3}$ are irreducible representations of GL_{2}; note that $\pi_{1} \otimes \pi_{2} \otimes \pi_{3}$ is a representation of GL_{2}^{3} and hence of $\mathrm{GL}_{2}^{(3)}$ by restriction. For each i, we let ω_{i} denote the central character of π_{i}, and we set $\omega:=\omega_{1} \omega_{2} \omega_{3}$. Using the decomposition $P_{6}^{\mathrm{sp}}=D_{6}^{\mathrm{sp}} U_{6}^{\mathrm{sp}}$, we define the characters χ_{0} and χ_{1} on $P_{6}^{\text {sp }}$ by

$$
\chi_{0}:\left[\begin{array}{cc}
\lambda A & * \\
& A^{\iota}
\end{array}\right] \mapsto \lambda \quad \text { and } \quad \chi_{1}:\left[\begin{array}{cc}
\lambda A & * \\
& A^{\iota}
\end{array}\right] \mapsto \operatorname{det} A .
$$

(Notably, χ_{0} is the restriction of the multiplier character $m: \mathrm{GSp}_{6} \rightarrow \mathbb{C}^{\times}$.) We now set $\widetilde{\omega}:=\omega \circ \chi_{0} \chi_{1}$ and $I(\omega):=\operatorname{Ind}_{P_{6}^{\mathrm{sp}}}^{\mathrm{GSp}_{6}}(\widetilde{\omega})$.

Example 39. The definition of $\widetilde{\omega}$ is perhaps a little strange. As an example computation, we note any $c \in k^{\times}$yields

$$
\widetilde{\omega}\left(c I_{6}\right)=\widetilde{\omega}\left(\left[\begin{array}{cc}
c^{2}\left(1 / c \cdot I_{3}\right) & \\
& \left(1 / c \cdot I_{3}\right)^{\iota}
\end{array}\right]\right)=\omega\left(c^{2} \operatorname{det}\left(1 / c \cdot I_{3}\right)\right)=\omega(c)^{-1} .
$$

Computations of $\widetilde{\omega}$ (of which we will do many below) tend to look like this.
The goal of the present subsection is to prove the following result.
Theorem 40. Fix notation as above. Suppose one of the following holds.

- Permutations of the following condition: π_{1} is cuspidal, and $\pi_{1} \not \not \pi_{2}^{\vee}$, and $\pi_{1} \not \neq \pi_{3}^{\vee}$.
- Permutations of the following condition: π_{1} and π_{2} are cuspidal, and $\pi_{1} \not \not \pi_{2}^{\vee}$.
- Each π_{i} is cuspidal.

Then

$$
\operatorname{dim} \operatorname{Hom}_{\mathrm{GL}_{2}^{(3)}}\left(I(\omega) \otimes \pi_{1} \otimes \pi_{2} \otimes \pi_{3}, \mathbb{C}\right) \leq 1
$$

To begin, we make the following observation to allow us to use Frobenius reciprocity.
Lemma 41. For any group G with subgroups H_{1} and H_{2}, any representation ρ of H_{1} has the decomposition

$$
\operatorname{Res}_{H_{2}}^{G} \operatorname{Ind}_{H_{1}}^{G} \rho \cong \bigoplus_{\eta \in H_{1} \backslash G / H_{2}} \operatorname{Ind}_{H_{2} \cap \eta^{-1} H_{1} \eta}^{H_{2}} \rho_{\eta}
$$

where $\rho_{\eta}(g):=\rho\left(\eta g \eta^{-1}\right)$.

Proof. The forward map sends $f \in \operatorname{Ind}_{H_{1}}^{G} \rho$ to $\left(f_{\eta}\right)_{\eta}$ where $f_{\eta}\left(h_{2}\right):=f\left(\eta h_{2}\right)$ for any $h_{2} \in H_{2}$. To see that this map is well-defined, note any $h \in H_{2} \cap \eta^{-1} H_{1} \eta$ has $f_{\eta}\left(h h_{2}\right)=f\left(\eta h h_{2}\right)=$ $\rho\left(\eta h \eta^{-1}\right) f\left(\eta h_{2}\right)=\rho_{\eta}(h) f_{\eta}\left(h_{2}\right)$. All group actions are translation on the right, so this map is H_{2}-invariant as well.

Continuing, the backward map send $\left(f_{\eta}\right)_{\eta}$ to f defined by

$$
f\left(h_{1} \eta h_{2}\right):=\rho\left(h_{1}\right) f_{\eta}\left(h_{2}\right)
$$

for any $h_{1} \in H_{1}$ and $h_{2} \in H_{2}$. To see that this is well-defined, note $h_{1} \eta h_{2}=h_{1}^{\prime} \eta h_{2}^{\prime}$ implies $\eta^{-1} h_{1}^{-1} h_{1}^{\prime} \eta=h_{2}\left(h_{2}^{\prime}\right)^{-1}$, so this element is in $H_{2} \cap \eta^{-1} H_{1} \eta$, so we see

$$
\rho\left(h_{1}\right) f_{\eta}\left(h_{2}\right)=\rho\left(h_{1}\right) \rho_{\eta}\left(h_{2}\left(h_{2}^{\prime}\right)^{-1}\right) f_{\eta}\left(h_{2}^{\prime}\right)=\rho\left(h_{1}^{\prime}\right) f_{\eta}\left(h_{2}^{\prime}\right) .
$$

Continuing, by construction, we see that $f \in \operatorname{Ind}_{H_{1}}^{G} \rho$, and this map is in fact inverse to the forward map, so we have exhibited the needed isomorphism.

The above lemma allows us to use Frobenius reciprocity to write

$$
\begin{aligned}
& \operatorname{Hom}_{\mathrm{GL}_{2}^{(3)}}\left(I(\omega) \otimes \pi_{1} \otimes \pi_{2} \otimes \pi_{3}, \mathbb{C}\right) \\
\cong & \bigoplus_{\eta \in P_{6}^{\mathrm{sp}} \backslash \operatorname{GSP}_{6} / \mathrm{GL}_{2}^{(3)}} \operatorname{Hom}_{\mathrm{GL}_{2}^{(3)}}\left(\operatorname{Ind}_{\mathrm{GL}_{2}^{(3)} \cap \eta^{-1} P_{6}^{\mathrm{sp}} \eta} \widetilde{\omega}_{\eta}^{(3)} \otimes \pi_{1} \otimes \pi_{2} \otimes \pi_{3}, \mathbb{C}\right) \\
\cong & \bigoplus_{\eta \in P_{6}^{\mathrm{sp}} \backslash \operatorname{GSP}_{6} / \mathrm{GL}_{2}^{(3)}} \operatorname{Hom}_{\mathrm{GL}_{2}^{(3)} \cap \eta^{-1} P_{6}^{\mathrm{sp}} \eta}\left(\widetilde{\omega}_{\eta} \otimes \pi_{1} \otimes \pi_{2} \otimes \pi_{3}, \mathbb{C}\right) \\
\cong & \bigoplus_{\eta \in P_{6}^{\mathrm{sp}} \backslash \operatorname{GSP}_{6} / \mathrm{GL}_{2}^{(3)}} \operatorname{Hom}_{\mathrm{GL}_{2}^{(3)} \cap \eta^{-1} P_{6}^{\mathrm{sp}} \eta}\left(\pi_{1} \otimes \pi_{2} \otimes \pi_{3}, \widetilde{\omega}_{\eta}^{-1}\right) \\
\cong & \bigoplus_{i=1}^{5} \operatorname{Hom}_{S\left(\eta_{i}\right)}\left(\pi_{1} \otimes \pi_{2} \otimes \pi_{3}, \widetilde{\omega}_{\eta_{i}}^{-1}\right) .
\end{aligned}
$$

We now go through and examine $\operatorname{Hom}_{S\left(\eta_{i}\right)}\left(\pi_{1} \otimes \pi_{2} \otimes \pi_{3}, \widetilde{\omega}_{\eta_{i}}^{-1}\right)$ for each η_{i}.
Lemma 42. The representation $\pi:=\operatorname{Ind}_{U_{2}}^{P_{2}} \psi_{2}$ is naturally isomorphic to the vector space of functions $f: k^{\times} \rightarrow \mathbb{C}$ with P_{2}-action given by

$$
\left(\left[\begin{array}{ll}
a & b \\
& 1
\end{array}\right] f\right)(x)=\psi(b x) f(a x)
$$

Proof. By definition of π, a function $f \in \pi$ is uniquely determined by its values $f\left(\left[{ }^{x}{ }_{1}\right]\right)$ for $x \in k^{\times}$because $f\left(\left[\begin{array}{cc}a & b \\ 1\end{array}\right]\right)=\psi(b) f\left(\left[\begin{array}{cc}a \\ 1\end{array}\right]\right)$, so we may regard each $f \in \pi$ as a function on k^{\times}. To finish, we track through the P_{2}-action as

$$
\left(\left[\begin{array}{ll}
a & b \\
& 1
\end{array}\right] f\right)(x)=f\left(\left[\begin{array}{ll}
x & \\
& 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
& 1
\end{array}\right]\right)=f\left(\left[\begin{array}{cc}
1 & b x \\
& 1
\end{array}\right]\left[\begin{array}{cc}
a x & \\
& 1
\end{array}\right]\right)=\psi(b x) f(a x)
$$

which completes the proof.
Lemma 43. Fix everything as above. Assume that at least one of the π_{i} is cuspidal. Then

$$
\operatorname{dim} \operatorname{Hom}_{S\left(\eta_{0}\right)}\left(\pi_{1} \otimes \pi_{2} \otimes \pi_{3}, \widetilde{\omega}_{\eta_{0}}^{-1}\right) \leq 1
$$

Proof. Without loss of generality, say that π_{1} is cuspidal. It will make no difference in the argument, so immediately restrict our attention to the subgroup

$$
P:=\left\{\left(\left[\begin{array}{cc}
a & b_{1} \\
& 1
\end{array}\right],\left[\begin{array}{cc}
a & b_{2} \\
& 1
\end{array}\right],\left[\begin{array}{cc}
a & b_{3} \\
& 1
\end{array}\right]\right): b_{1}+b_{2}+b_{3}=0\right\} \subseteq S\left(\eta_{0}\right)
$$

and in fact for much of the argument we will use

$$
N:=\left\{\left(\left[\begin{array}{cc}
1 & b_{1} \\
& 1
\end{array}\right],\left[\begin{array}{cc}
1 & b_{2} \\
& 1
\end{array}\right],\left[\begin{array}{cc}
1 & b_{3} \\
& 1
\end{array}\right]\right): b_{1}+b_{2}+b_{3}=0\right\} \subseteq P
$$

Using (4.2.1), we can compute that $\widetilde{\omega}_{\eta_{0}}$ vanishes on N. Now, because our representations π_{i} are higher-dimensional, we may write $\operatorname{Res}_{P_{2}} \pi_{i}=\pi \oplus J\left(\pi_{i}\right)$ where $\pi:=\operatorname{Ind}_{U_{2}}^{P_{2}} \psi_{2}$ and $J\left(\pi_{i}\right)$ is the Jacquet module of U_{2}-invariants; notably, $J\left(\pi_{1}\right)=0$. Thus, by expanding out the tensor product, we have the following cases.

- We show $\operatorname{dim} \operatorname{Hom}_{P}(\pi \otimes \pi \otimes \pi, \mathbb{C}) \leq 1$. We argue explicitly; namely, we claim that a P-linear map $T: \pi \otimes \pi \otimes \pi \rightarrow \mathbb{C}$ is uniquely determined by $T\left(1_{1}, 1_{1}, 1_{1}\right) \in \mathbb{C}$, where 1_{1} denotes the 1 -indicator. Here, we are using Lemma 42's description of π.

By linearity, T is determined by its values on indicators $T\left(1_{a_{1}}, 1_{a_{2}}, 1_{a_{3}}\right)$. Now, we see

$$
\left(\left[\begin{array}{ll}
a & b \\
& 1
\end{array}\right] 1_{a_{i}}\right)(x)=\psi(b x) 1_{a_{i}}(a x)=\psi(b x) 1_{a_{i} / a}(x)=\psi\left(b a_{i} / a\right) 1_{a_{i} / a}(x) .
$$

Thus, for example, if $a_{1} \neq a_{2}$, we may find $\left(b_{1}, b_{2}, b_{3}\right)$ such that $b_{1}+b_{2}+b_{3}=0$ while $\psi\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right) \neq 0$; explicitly, set $b_{3}=0$ and $b_{2}=-a_{1} b_{1} / a_{2}$ while letting b_{1} vary. Then the element $\left(\left[\begin{array}{cc}1 & b_{1} \\ 1\end{array}\right],\left[\begin{array}{cc}1 & b_{2} \\ 1 & 1\end{array}\right],\left[\begin{array}{cc}1 & b_{3} \\ 1\end{array}\right]\right)$ implies that $T\left(1_{a_{1}}, 1_{a_{2}}, 1_{a_{3}}\right)=0$. An analogous argument shows that $a_{2} \neq a_{3}$ forces $T\left(1_{a_{1}}, 1_{a_{2}}, 1_{a_{3}}\right)=0$.

Thus, T is determined by its values on $T\left(1_{a}, 1_{a}, 1_{a}\right)$. But the above work shows that

$$
T\left(1_{a}, 1_{a}, 1_{a}\right)=T\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] 1_{a},\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] 1_{a},\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] 1_{a}\right)=T\left(1_{1}, 1_{1}, 1_{1}\right)
$$

so T is indeed uniquely determined by $T\left(1_{1}, 1_{1}, 1_{1}\right)$.

- We show $\operatorname{dim} \operatorname{Hom}_{N}\left(\pi \otimes \pi \otimes J\left(\pi_{3}\right), \mathbb{C}\right)=0$. Well, fix some N-linear map $T: \pi \otimes \pi \otimes$ $J\left(\pi_{3}\right) \rightarrow \mathbb{C}$. Because $J\left(\pi_{3}\right)$ is U_{2}-invariant, we find
$T\left(\left[\begin{array}{cc}1 & b_{1} \\ & 1\end{array}\right] v_{1},\left[\begin{array}{cc}1 & b_{2} \\ & 1\end{array}\right] v_{2}, v_{3}\right)=T\left(\left[\begin{array}{cc}1 & b_{1} \\ & 1\end{array}\right] v_{1},\left[\begin{array}{cc}1 & b_{2} \\ & 1\end{array}\right] v_{2},\left[\begin{array}{cc}1 & -b_{1}-b_{2} \\ 1\end{array}\right] v_{3}\right)=T\left(v_{1}, v_{2}, v_{3}\right)$
for any $\left(v_{1}, v_{2}, v_{3}\right)$ and $b_{1}, b_{2} \in k$. Thus, we can view T as a function $J\left(\pi_{3}\right) \rightarrow$ $\operatorname{Hom}_{U_{2} \times U_{2}}(\pi \otimes \pi, \mathbb{C})$. But this target is zero-dimensional: note

$$
\operatorname{Res}_{U_{2} \times U_{2}}^{P_{2} \times P_{2}}(\pi \otimes \pi)=\operatorname{Res}_{U_{2}}^{P_{2}} \pi \otimes \operatorname{Res}_{U_{2}}^{P_{2}} \pi=\underset{\substack{\psi^{\prime}, \psi^{\prime \prime} \in \widehat{k^{\star}} \\ \psi^{\prime}, \psi^{\prime \prime} \neq 1}}{\bigoplus}\left(\psi^{\prime} \otimes \psi^{\prime \prime}\right)
$$

by expanding out the tensor product. Thus, we see that there are no $\left(U_{2} \times U_{2}\right)$ eigenvectors with eigenvalue 1 , so $\operatorname{dim} \operatorname{Hom}_{U_{2} \times U_{2}}(\mathbb{C}, \pi \otimes \pi)=0$.

- We show $\operatorname{dim} \operatorname{Hom}_{N}\left(\pi \otimes J\left(\pi_{2}\right) \otimes J\left(\pi_{3}\right)\right)=0$. Arguing as above, an N-linear map $T: \pi \otimes J\left(\pi_{2}\right) \otimes J\left(\pi_{3}\right) \rightarrow \mathbb{C}$ can be thought of as a map $J\left(\pi_{1}\right) \otimes J\left(\pi_{2}\right) \rightarrow \operatorname{Hom}_{U_{2}}(\pi, \mathbb{C})$. However, we see $\operatorname{dim} \operatorname{Hom}_{U_{2}}(\pi, \mathbb{C})=0$ from decomposing $\operatorname{Res}_{U_{2}}^{P_{2}} \pi=\bigoplus_{\psi^{\prime} \in \widehat{k^{㐅}, \psi^{\prime} \neq 1}} \psi^{\prime}$.
Summing the above cases (and their permutations) completes the proof.
Lemma 44. Fix everything as above. Assume that one of the following conditions holds.
- π_{3} is cuspidal.
- $\pi_{1} \neq \pi_{2}^{\vee}$.

Then $\operatorname{dim} \operatorname{Hom}_{S\left(\eta_{1}\right)}\left(\pi_{1} \otimes \pi_{2} \otimes \pi_{3}, \widetilde{\omega}_{\eta_{1}}^{-1}\right)=0$.
Proof. Quickly, we use (4.2.2) to compute $\widetilde{\omega}_{\eta_{1}}^{-1}$ on $S\left(\eta_{1}\right)$ to see that the symmetry condition on $T \in \operatorname{Hom}_{S\left(\eta_{1}\right)}\left(\pi_{1} \otimes \pi_{2} \otimes \pi_{3}, \widetilde{\omega}_{\eta_{1}}^{-1}\right)$ is

$$
T\left(\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right] v_{1},\left[\begin{array}{cc}
a_{1} & -b_{1} \\
-c_{1} & d_{1}
\end{array}\right] v_{2},\left[\begin{array}{cc}
a_{3} & b_{3} \\
& d_{3}
\end{array}\right] v_{3}\right)=\omega\left(d_{3}\right) T\left(v_{1}, v_{2}, v_{3}\right) .
$$

We now argue each case independently.

- Suppose π_{3} is cuspidal so that $\operatorname{Res}_{P_{2}}^{\mathrm{GL}} \pi_{3}=\pi$. As above, any $S\left(\eta_{1}\right)$-linear map $T: \pi_{1} \otimes \pi_{2} \otimes \pi_{3} \rightarrow \widetilde{\omega}_{\eta_{1}}^{-1}$ can be thought of as a map $\pi_{1} \otimes \pi_{2} \rightarrow \operatorname{Hom}_{B_{2}}\left(\pi_{3},(1, \omega)\right)$, where $(1, \omega): B_{2} \rightarrow \mathbb{C}$ is given by $(1, \omega)\left[\begin{array}{ccc}a_{3} & b_{3} \\ & d_{3}\end{array}\right]=\omega\left(d_{3}\right)$.

However, $\operatorname{Hom}_{B_{2}}\left(\pi_{3},(1, \pi)\right) \subseteq \operatorname{Hom}_{P_{2}}\left(\pi_{3}, \mathbb{C}\right)=\operatorname{Hom}_{P_{2}}(\pi, \mathbb{C})$ is zero-dimensional because of the decomposition $\operatorname{Res}_{U_{2}}^{P_{2}} \pi=\bigoplus_{\psi^{\prime} \in \widehat{k^{㐅}}, \psi^{\prime} \neq 1} \psi^{\prime}$.

- Suppose $\pi_{1} \not \neq \pi_{2}^{\vee}$. As above, any $S\left(\eta_{1}\right)$-linear map $T: \pi_{1} \otimes \pi_{2} \otimes \pi_{3} \rightarrow \widetilde{\omega}_{\eta_{1}}^{-1}$ can be thought of as a map $\pi_{3} \rightarrow \operatorname{Hom}_{\mathrm{GL}_{2}}\left(\pi_{1} \otimes \pi_{2}, \mathbb{C}\right)$ where GL_{2} acts on $\pi_{1} \otimes \pi_{2}$ by

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left(v_{1} \otimes v_{2}\right)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] v_{1} \otimes\left[\begin{array}{cc}
a & -b \\
-c & d
\end{array}\right] v_{2} .
$$

Now, we claim $\operatorname{Hom}_{\mathrm{GL}_{2}}\left(\pi_{1} \otimes \pi_{2}, \mathbb{C}\right)=0$, which will complete the argument. Well, set $w:=\left[{ }^{-1}{ }_{1}\right]$, and the isomorphism $\pi_{2} \rightarrow \pi_{2}$ by $\pi_{2}(g) \mapsto \pi_{2}(w g w)$ sends the above GL_{2}-action on $\pi_{1} \otimes \pi_{2}$ to the diagonal action

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left(v_{1} \otimes v_{2}\right)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] v_{1} \otimes\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] v_{2} .
$$

Thus, $\operatorname{Hom}_{\mathrm{GL}_{2}}\left(\pi_{1} \otimes \pi_{2}, \mathbb{C}\right) \cong \operatorname{Hom}_{\mathrm{GL}_{2}}\left(\pi_{1}, \pi_{2}^{\vee}\right)$, where everything has the standard $\mathrm{GL}_{2}{ }^{-}$ action. Because $\pi_{1} \neq \pi_{2}^{\vee}$, we see that $\operatorname{Hom}_{\mathrm{GL}_{2}}\left(\pi_{1}, \pi_{2}^{\vee}\right)$ vanishes, so we are done.
Lemma 45. Fix everything as above. Assume that at least one of the π_{i} is cuspidal. Then

$$
\operatorname{dim} \operatorname{Hom}_{S\left(\eta_{5}\right)}\left(\pi_{1} \otimes \pi_{2} \otimes \pi_{3}, \widetilde{\omega}_{\eta_{5}}^{-1}\right)=0
$$

Proof. Without loss of generality, suppose π_{1} is cuspidal. We immediately restrict to the subgroup $U_{2} \times U_{2} \times U_{2} \subseteq S\left(\eta_{5}\right)$, upon which $\widetilde{\omega}_{\eta_{5}}^{-1}$ is trivial. Now, a $\left(U_{2} \times U_{2} \times U_{2}\right)$-linear map $T: \pi_{1} \otimes \pi_{2} \otimes \pi_{3} \rightarrow \mathbb{C}$ can be thought of as a map $T: \pi_{2} \otimes \pi_{3} \rightarrow \operatorname{Hom}_{U_{2}}\left(\pi_{1}, \mathbb{C}\right)$. However, $\operatorname{Hom}_{U_{2}}\left(\pi_{1}, \mathbb{C}\right)=0$ because of the decomposition $\operatorname{Res}_{U_{2}}^{\mathrm{GL}_{2}} \pi_{1} \cong \operatorname{Res}_{U_{2}}^{P_{2}} \pi \cong \bigoplus_{\psi^{\prime} \in \widehat{k^{㐅}}, \psi^{\prime} \neq 1} \psi^{\prime}$.

Combining Lemmas 43 to 45 (and their natural permutations) proves Theorem 40.
4.4. Normalizing the Intertwining Operator. Let $2 n$ be a positive even integer. At this point, we recognize that $\left(M_{w_{2 n}} \circ M_{w_{2 n}}\right): I(\omega) \rightarrow I(\omega)$, so one might hope that this composite is a scalar and then to compute this scalar. However, there are cases (which we will discuss later on) where $I(\omega)$ fails to be irreducible, so we cannot expect $M_{w_{2 n}} \circ M_{w_{2 n}}$ to be a scalar. With that said, there is a reasonably large subrepresentation of $I(\omega)$ upon which $M_{w_{2 n}} \circ M_{w_{2 n}}$ is behaved.

Before going into the following statements and proofs, we define some notation. Given some finite-dimensional k-vector space V and operator $T \in \mathrm{GL}(V)$, we define the character $\psi_{T}: \operatorname{End}(V) \rightarrow k^{\times}$by

$$
\psi_{T}(A):=\psi(\operatorname{tr}(A T))
$$

In our application, T will be an inverible symmetric matrix in GL_{n}, and we will view ψ_{T} as a character of $U_{2 n}^{\mathrm{sp}}$ by mapping $U_{2 n}^{\mathrm{sp}} \rightarrow k^{n \times n}$ by $\left[\begin{array}{cc}I_{n} & A \\ I_{n}\end{array}\right] \mapsto A$. Now, the main point of introducting ψ_{T} is to achieve a multiplicity-one result of eigenvectors with eigenvalue ψ_{T}. Before stating our multiplicity one result, it will be helpful to understand characters on $P_{2 n}^{\mathrm{sp}}$.
Lemma 46. Let $\chi: P_{2 n}^{\mathrm{sp}} \rightarrow \mathbb{C}^{\times}$be a character. Then χ is trivial on the subgroup

$$
\left\{\left[\begin{array}{ll}
A & \\
& A^{\iota}
\end{array}\right]\left[\begin{array}{cc}
1 & Z \\
& 1
\end{array}\right]: \operatorname{det} A=1, Z \in \operatorname{Sym}_{n}(k)\right\} .
$$

Proof. We will show that the subgroup above is contained in the commutator subgroup. We proceed in steps.
(1) We show that χ is trivial on $U_{2 n}^{\mathrm{sp}}$. Well, for any $u:=\left[\begin{array}{cc}1 & Z \\ 1 & 1\end{array}\right]$ in $U_{2 n}^{\mathrm{sp}}$ where $Z \in \operatorname{Sym}_{n}(k)$, we use the fact that $2 \in k^{\times}$to note that

$$
\left[\begin{array}{ll}
2 & \\
& 1
\end{array}\right]\left[\begin{array}{ll}
1 & Z \\
& 1
\end{array}\right]\left[\begin{array}{ll}
2 & \\
& 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
1 & Z \\
& 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
2 & 2 Z \\
1
\end{array}\right]\left[\begin{array}{cc}
1 / 2 & -(1 / 2) Z \\
1
\end{array}\right]=\left[\begin{array}{cc}
1 & Z \\
& 1
\end{array}\right],
$$

so u is a commutator.
(2) We show that χ is trivial on the subgroup of matrices of the form [${ }^{A}{ }_{A^{\prime}}$] for $A \in$ $\mathrm{SL}_{n}(k)$. Well, it is well-known that the commutator subgroup of $\mathrm{GL}_{n}(k)$ is $\mathrm{SL}_{n}(k)$ (in the case that, say, k has odd characteristic), so we can find $B, C \in \mathrm{GL}_{n}(k)$ such that $A=B C B^{-1} C^{-1}$. It follows that

$$
\left[\begin{array}{ll}
A & \\
& A^{\iota}
\end{array}\right]=\left[\begin{array}{ll}
B & \\
& B^{\iota}
\end{array}\right]\left[\begin{array}{ll}
C & \\
& C^{\iota}
\end{array}\right]\left[\begin{array}{ll}
B & \\
& B^{\iota}
\end{array}\right]^{-1}\left[\begin{array}{ll}
C & \\
& C^{\iota}
\end{array}\right]^{-1},
$$

so $\left[\begin{array}{cc}A & A^{\iota}\end{array}\right]$ is a commutator.
The above two cases complete the proof.
Remark 47. Another way to state Lemma 46 is that any character $\chi: P_{2 n}^{\mathrm{sp}} \rightarrow \mathbb{C}^{\times}$factors through $\left(m, \chi_{\text {det }}\right): P_{2 n}^{\text {sp }} \rightarrow \mathbb{F}_{q}^{\times} \times \mathbb{F}_{q}^{\times}$, where m is the multiplier character, and $\chi_{\text {det }}$ is the "Siegel determinant" defined by

$$
\chi_{\operatorname{det}}\left(\left[\begin{array}{ll}
\lambda A & \\
& A^{\iota}
\end{array}\right]\left[\begin{array}{ll}
1 & Z \\
& 1
\end{array}\right]\right):=\operatorname{det} A .
$$

In other words, there are characters $\alpha_{\chi}, \beta_{\chi}: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$such that $\chi=\left(\alpha_{\chi} \circ m\right)\left(\beta_{\chi} \circ \chi_{\text {det }}\right)$.
Example 48. Let $\chi: P_{2 n}^{\mathrm{sp}} \rightarrow \mathbb{C}^{\times}$be a character of the form $\chi=\left(\alpha_{\chi} \circ m\right)\left(\beta_{\chi} \circ \chi_{\text {det }}\right)$ where $\alpha_{\chi}, \beta_{\chi}: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$are characters. Then we compute

$$
\begin{aligned}
{ }^{\left(w_{2 n}\right)} \chi\left(\left[\begin{array}{cc}
\lambda A & \\
& A^{\iota}
\end{array}\right]\left[\begin{array}{cc}
1 & Z \\
& 1
\end{array}\right]\right) & =\chi\left(w_{2 n}\left[\begin{array}{ll}
\lambda A & \\
& A^{\iota}
\end{array}\right] w_{2 n}\right) \\
& =\chi\left(\left[\begin{array}{ll}
w_{n} A^{\iota} w_{n} & \\
& \lambda w_{n} A w_{n}
\end{array}\right]\right) \\
& =\alpha_{\chi}(\lambda) \beta_{\chi}(\lambda)^{-n} \beta_{\chi}(\operatorname{det} A)^{-1} .
\end{aligned}
$$

Thus, ${ }^{\left(w_{2 n}\right)} \chi=\left(\alpha_{\chi} \beta_{\chi}^{-n} \circ m\right)\left(\beta_{\chi}^{-1} \circ \chi_{\text {det }}\right)$.
We now state our multiplicity one result.
Proposition 49. Fix notation as above. For any invertible symmetric matrix $T \in \mathrm{GL}_{n}$ and character $\chi: P_{2 n}^{\mathrm{sp}} \rightarrow \mathbb{C}^{\times}$, we have

$$
\operatorname{dim} \operatorname{Hom}_{U_{2 n}^{\mathrm{sp}}}\left(\operatorname{Ind}_{P_{2 n}^{\mathrm{sp}}}^{\mathrm{GSp}_{2 n}} \chi, \psi_{T}\right)=1,
$$

where ψ_{T} is a character on $U_{2 n}^{\mathrm{sp}}$ as described above.

Proof. We use Mackey theory. To begin, we use Frobenius reciprocity and Lemma 41 to note

$$
\begin{align*}
\operatorname{Hom}_{U_{2 n}^{\mathrm{sp}}}\left(\operatorname{Ind}_{P_{2 n}^{\mathrm{s}}}^{\mathrm{GSp}_{2 n}} \chi, \psi_{T}\right) & \cong \bigoplus_{\eta \in P_{2 n}^{\mathrm{sp}} \backslash \bigoplus_{\mathrm{GSp}_{2 n}} / U_{2 n}^{\mathrm{sp}}} \operatorname{Hom}_{U_{2 n}^{\mathrm{sp}}}\left(\operatorname{Ind}_{U_{2 n}^{\mathrm{sp}} \cap \eta^{-1} P_{2 n}^{\mathrm{sp}} \eta} \chi_{\eta}, \psi_{T}\right) \\
& \cong \bigoplus_{\eta \in P_{2 n}^{\mathrm{sp}} \backslash \operatorname{GSP}_{2 n} / U_{2 n}^{\mathrm{sp}}} \operatorname{Hom}_{U_{2 n}^{\mathrm{sp}} \cap \eta^{-1} P_{2 n}^{\mathrm{sp}} \eta}\left(\chi_{\eta}, \psi_{T}\right) . \tag{4.4.1}
\end{align*}
$$

To continue this argument, we need a rough idea what $P_{2 n}^{\mathrm{sp}} \backslash \mathrm{GSp}_{2 n} / U_{2 n}^{\mathrm{sp}}$ is, for which we use the Bruhat decomposition

$$
\mathrm{GSp}_{2 n}=\bigsqcup_{w \in W\left(\mathrm{GSp}_{2 n}\right)} B_{2 n}^{\mathrm{sp}} w B_{2 n}^{\mathrm{sp}}
$$

where $W\left(\mathrm{GSp}_{2 n}\right)$ is the Weyl group. In particular, we want to understand the Weyl group.
Lemma 50. Let $2 n$ be an even positive integer. Let $\Sigma_{2 n}$ be the set of permutations $\sigma \in S_{2 n}$ such that $\sigma(i+n) \equiv \sigma(i)+n(\bmod 2 n)$ for each i.
(a) For each w representing a class in $W\left(\mathrm{GSp}_{2 n}\right)$, there exists a unique permutation $\sigma \in \Sigma_{2 n}$ such that $w=d \sigma$ for some diagonal matrix d.
(b) For each $\sigma \in \Sigma_{2 n}$, there exists some diagonal matrix d with entries in $\{ \pm 1\}$ such that $d \sigma \in \operatorname{GSp}_{n}$. In fact, $d=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{2 n}\right)$ is uniquely determined by the values $\left\{d_{\sigma(1)}, \ldots, d_{\sigma(n)}\right\}$.

Proof. We will show the parts independently.
(a) Recalling that the diagonal matrices of $\mathrm{GSp}_{2 n}$ make up a maximal torus in $B_{2 n}^{\mathrm{sp}}$, we note that diagonal matrices are normalized by the semidirect product of permutation matrices and diagonal matrices (this is even true in $\mathrm{GL}_{2 n}$), so we can view elements of $W\left(\mathrm{GSp}_{2 n}\right)$ as permutation matrices with elements adjusted by a diagonal element to lie in $\mathrm{GSp}_{2 n}$.

In particular, we may write $w=d \sigma$ for some diagonal matrix d, and this σ is unique. It remains to show $\sigma \in \Sigma_{2 n}$. Well, the main point is that $d \sigma \in \mathrm{GSp}_{2 n}$ requires

$$
d \sigma \widehat{w}_{2 n} \sigma^{\top} d^{\top}=\widehat{w}_{2 n}
$$

Setting $d:=\operatorname{diag}\left(d_{1}, \ldots, d_{2 n}\right)$, we now pass through a basis vector $e_{\sigma(i)}$ to compute

$$
\begin{equation*}
(-1)^{1_{i>n}} d_{\sigma(i+n)} d_{\sigma(i)} e_{\sigma(i+n)}=(-1)^{1_{\sigma(i)>n}} e_{\sigma(i)+n} \tag{4.4.2}
\end{equation*}
$$

where indices live in $\{1,2, \ldots, 2 n\}$ but are considered $(\bmod 2 n)$. Because the diagonal elements of d are nonzero, we must have $\sigma(i+n) \equiv \sigma(i)+n(\bmod 2 n)$, meaning $\sigma \in \Sigma_{2 n}$.
(b) We need a diagonal matrix $d=\operatorname{diag}\left(d_{1}, \ldots, d_{2 n}\right)$ such that $d \sigma \in \operatorname{GSp}_{2 n}$, meaning $d \sigma \widehat{w}_{2 n} \sigma^{\top} d^{\top}=\widehat{w}_{2 n}$. Well, it suffices to check this on basis vectors $e_{\sigma(i)}$, for which we see it is enough (4.4.2). But because $\sigma \in \Sigma_{2 n}$, it is equivalent to require

$$
(-1)^{1_{i>n}} d_{\sigma(i)+n} d_{\sigma(i)}=(-1)^{1_{i>n}} d_{\sigma(i+n)} d_{\sigma(i)}=(-1)^{1_{\sigma(i)>n}}
$$

for each index i. Observe $(-1)^{1_{(i+n)>n}}=-(-1)^{1_{i>n}}$ and $(-1)^{1_{\sigma(i+n)>n}}=-(-1)^{1_{\sigma(i)>n}}$ (indices are still taken $(\bmod 2 n)$), so if the above equation is satisfied at index i, then it is satisfied at index $i+n$.

As such, given signs $\left\{d_{\sigma(1)}, \ldots, d_{\sigma(n)}\right\}$, we must set $d_{\sigma(i)+n}:=(-1)^{1_{\sigma(i)>n}} d_{\sigma(i)}$ for each $i \in\{1,2, \ldots, 2\}$ to satisfy the equation at the indices $i \in\{1,2, \ldots, n\}$, and this choice of signs will work.

In light of Lemma 50, we represent each $w \in W\left(\mathrm{GSp}_{2 n}\right)$ by $d_{w} \sigma_{w}$ where d_{w} is a diagonal matrix with entries in $\{ \pm 1\}$ and $\sigma_{w} \in \Sigma_{2 n}$; the permutation σ_{w} is determined by w.

The Weyl elements $W\left(\mathrm{GSp}_{2 n}\right)$ provide representatives for double cosets $B_{2 n}^{\mathrm{sp}} \backslash \mathrm{GSp}_{2 n} / B_{2 n}^{\mathrm{sp}}$. It follows that each $g \in \mathrm{GSp}_{2 n}$ can be expressed as $p \sigma_{w} d_{w} d u$ where $p \in P_{2 n}^{\mathrm{sp}}$ and $w \in$ $W\left(\mathrm{GSp}_{2 n}\right)$ and $d \in D_{2 n}^{\mathrm{sp}}$ and $u \in U_{2 n}^{\mathrm{sp}}$. In other words, we have found that elements of $W\left(\mathrm{GSp}_{2 n}\right) D_{2 n}^{\mathrm{sp}}$ succeed in representing all double cosets in $P_{2 n}^{\mathrm{sp}} \backslash \mathrm{GSp}_{2 n} / U_{2 n}^{\mathrm{sp}}$. It will be helpful later to have the following "normal" form for elements in $\Sigma_{2 n}$.

Lemma 51. Fix notation as above, and suppose $\sigma \in \Sigma_{2 n}$.
(a) There exists $\sigma^{\prime} \in D_{2 n}^{\mathrm{sp}} \cap \Sigma_{2 n}$ such that $\sigma^{\prime} \sigma(i) \equiv i(\bmod n)$ for each $i \in\{1,2, \ldots, 2 n\}$.
(b) For any $\sigma^{\prime} \in D_{2 n}^{\mathrm{sp}} \cap \Sigma_{2 n}$,

$$
\{i \in\{1,2, \ldots, n\}: \sigma(i) \leq n\}=\left\{i \in\{1,2, \ldots, n\}: \sigma^{\prime} \sigma(i) \leq n\right\}
$$

Proof. We show the parts independently.
(a) The point is to "rearrange" the outputs of σ on $\{1,2, \ldots, n\}$. Indeed, we define $\sigma^{\prime}(\sigma(i))$ for $i \in\{1,2, \ldots, n\}$ by

$$
\sigma^{\prime}(\sigma(i)):= \begin{cases}i & \text { if } \sigma(i) \leq n \\ i+n & \text { if } \sigma(i)>n\end{cases}
$$

Then, to have $\sigma^{\prime} \in \Sigma_{2 n}$, we must have $\sigma^{\prime}(\sigma(i+n))=\sigma^{\prime}(\sigma(i)+n)=\sigma^{\prime}(i)+n$ for each $i \in\{1,2, \ldots, n\}$, so the above values have uniquely determined an element $\sigma^{\prime} \in \Sigma_{2 n}$.

Now, by construction, we have $\sigma^{\prime} \sigma(i) \equiv i(\bmod n)$ for $i \in\{1,2, \ldots, n\}$, and this extends to all $i \in\{1,2, \ldots, 2 n\}$ because $\sigma^{\prime} \sigma \in \Sigma_{2 n}$. Lastly, we see σ^{\prime} maps $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, n\}$ and maps $\{n+1, n+2, \ldots, 2 n\}$ to $\{n+1, n+2, \ldots, 2 n\}$, so as a matrix σ^{\prime} looks like

$$
\sigma^{\prime}=\left[\begin{array}{ll}
A & \\
& D
\end{array}\right] .
$$

Here, A and D are permutation matrices, and $\sigma^{\prime}(i+n)=\sigma^{\prime}(i)+n$ implies $A=D=$ D^{ι}, so $\sigma^{\prime} \in D_{2 n}^{\mathrm{sp}}$.
(b) By hypothesis, σ^{\prime} sends $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, n\}$ and sends $\{n+1, n+2, \ldots, 2 n\}$ to $\{n+1, n+2, \ldots, 2 n\}$, so $\sigma(i) \leq n$ if and only if $\sigma^{\prime} \sigma(i) \leq n$. The equality follows.

Now, according to (4.4.1), we would like to understand χ_{η} and ψ_{T} on $H_{\eta}:=U_{2 n}^{\mathrm{sp}} \cap \eta^{-1} P_{2 n}^{\mathrm{sp}} \eta$ for representatives η of our double cosets. We begin with χ_{η}.

Lemma 52. Fix notation as above. Fix some $w \in W\left(\mathrm{GSp}_{2 n}\right)$, and set $\eta:=\sigma_{w} d_{w} d$ where $d \in D_{2 n}^{\mathrm{sp}}$. Then χ_{η} is trivial on $H_{\eta}:=U_{2 n}^{\mathrm{sp}} \cap \eta^{-1} P_{2 n}^{\mathrm{sp}} \eta$.

Proof. For any $u \in U_{\eta}$, we compute

$$
\chi_{\eta}(u)=\chi\left(\eta u \eta^{-1}\right)=\chi\left(\sigma_{w} d_{w}\left(d u d^{-1}\right) d_{w}^{-1} \sigma_{w}^{-1}\right)=\chi_{\sigma_{w} d_{w}}\left(d u d^{-1}\right),
$$

so it is enough to show that $\chi_{\sigma_{w} d_{w}}$ is trivial on $H_{\sigma_{w} d_{w}}$. (Notably, $d u d^{-1} \in U_{2 n}^{\mathrm{sp}}$ still.) In other words, we may assume that $d=I_{2 n}$.

Now, fix any $u \in H_{\eta}$; we want to show $\chi\left(\sigma_{w} d_{w} u d_{w}^{-1} \sigma_{w}^{-1}\right)=1$. By Lemma 46, it suffices to show that $\sigma_{w} d_{w} u d_{w}^{-1} \sigma_{w}^{-1}$ has multiplier 1 and has top-left quadrant with determinant 1. To begin, we recall $m: \mathrm{GSp}_{2 n} \rightarrow \mathbb{F}_{q}^{\times}$denotes the multiplier character and compute

$$
m\left(\sigma_{w} d_{w} u d_{w}^{-1} \sigma_{w}^{-1}\right)=m\left(\sigma_{w} d_{w}\right) m(u) m\left(\sigma_{w} d_{w}\right)^{-1}=1
$$

so we now want to show $\chi_{1}\left(\sigma_{w} d_{w} u d_{w}^{-1} \sigma_{w}^{-1}\right)=1$. We will show this by Gaussian elimination. The following lemma will be useful.

Lemma 53. Let k be a field, and let $z \in M_{n}(k)$ be called "sparse" if and only if $z v=0$ or $v^{\top} z=0$ for each $v \in k^{n}$. If z is sparse, then $g z g^{-1}$ is sparse for any $g \in \mathrm{GL}_{n}(k)$ satisfying $g^{-1}=g^{\top}$.

Proof. For any $v \in k^{n}$, we note either $z g^{-1} v=0$ or $v^{\top} g z=\left(g^{-1} v\right)^{\top} z=0$, which is what we wanted.

To use Lemma 53, we note that $d_{w} u d_{w}^{-1}-I_{2 n}$ is sparse: indeed, we may check being sparse on a basis, for which we note that any basis vector e_{i} has $d_{w} u d_{w}^{-1} e_{i}=e_{i}$. Thus, $\sigma_{w} d_{w} u d_{w}^{-1} \sigma_{w}^{-1}-I_{2 n}$ is still sparse, so we write

$$
\sigma_{w} d_{w} u d_{w}^{-1} \sigma_{w}^{-1}=\left[\begin{array}{cc}
A+I_{n} & B \\
0 & D+I_{n}
\end{array}\right] .
$$

Recall our end goal is to show $\chi_{1}\left(\sigma_{w} d_{w} u d_{w}^{-1} \sigma_{w}^{-1}\right)=1$, so we want to $\operatorname{show} \operatorname{det}\left(A+I_{n}\right)=1$, which we now do Gaussian elimination to establish.

For each basis vector e_{i} with $1 \leq i \leq n$, we know that either $A e_{i}=0$ or $e_{i}^{\top} A=0$, meaning that for each i, either the i th column of $A+I_{n}$ is e_{i} or the i th row of $A+I_{n}$ is e_{i}^{\top}. For example, if the i th column is e_{i}, then Gaussian elimination allows us to subtract this column from each other column, thus zeroing out the entire row while leaving the rest of the matrix unchanged. A similar process works for columns, from which we find $\operatorname{det}\left(A+I_{n}\right)=\operatorname{det}\left(I_{n}\right)=1$, which is what we wanted.

Combining Lemma 52 with (4.4.1), we want to count classes $\eta \in P_{2 n}^{\mathrm{sp}} \backslash \mathrm{GSp}_{2 n} / U_{2 n}^{\mathrm{sp}}$ so that ψ_{T} is trivial on U_{η}. To complete the proof of the proposition, we thus must show that ψ_{T} is trivial on U_{η} for precisely one class η. To begin, we explain which class that is.

Lemma 54. Fix notation as above.
(a) ψ_{T} is trivial on $H_{\widehat{w}_{2 n}}=U_{2 n}^{\mathrm{sp}} \cap \widehat{w}_{2 n}^{-1} P_{2 n}^{\mathrm{sp}} \widehat{w}_{2 n}$.
(b) Fix some $w \in W\left(\mathrm{GSp}_{2 n}\right)$, and set $\eta=\sigma_{w} d_{w} d$ where $d \in D_{2 n}^{\mathrm{sp}}$. If $\sigma_{w}(i)>n$ for each $i \in\{1,2, \ldots, n\}$, then $P_{2 n}^{\mathrm{sp}} \eta U_{2 n}^{\mathrm{sp}}=P_{2 n}^{\mathrm{sp}} \widehat{w}_{2 n} U_{2 n}^{\mathrm{sp}}$.

Proof. We show the parts independently.
(a) Suppose $u:=\left[\begin{array}{cc}I_{n} & Z \\ I_{n}\end{array}\right]$ lives in $H_{\widehat{w}_{2 n}}$. Then $\widehat{w}_{2 n} u \widehat{w}_{2 n}^{-1}=u^{\iota}=\left[\begin{array}{cc}I_{n} & \\ -Z & I_{n}\end{array}\right]$ lives in $P_{2 n}^{\mathrm{sp}}$, so we must have $Z=0$. Thus, $u=I_{2 n}$, and it follows $\psi_{T}(u)=1$.
(b) We use Lemma 51 , which provides $\sigma \in D_{2 n}^{\mathrm{sp}} \cap \Sigma_{2 n}$ such that $\sigma \sigma_{w}(i) \equiv i(\bmod n)$ for each $i \in\{1,2, \ldots, n\}$. However, $\sigma_{w}(i)>n$ for each $i \in\{1,2, \ldots, n\}$, so Lemma 51 enforces

$$
\sigma \sigma_{w}(i)=i+n
$$

for each $i \in\{1,2, \ldots, n\}$. Because $\sigma \sigma_{w} \in \Sigma_{2 n}$, this extends to $\sigma \sigma_{w}(i)=i+n$ for each $i \in\{1,2, \ldots, 2 n\}$, where indices are taken $(\bmod n)$ as usual.

Continuing, we define the diagonal matrix d_{σ} so that $\sigma d_{\sigma} \sigma_{w} d_{w}=\widehat{w}_{2 n}$; more precisely, we may do this by the uniqueness of (b) in Lemma 50. Now, we see that $\sigma d_{\sigma} \in \mathrm{GSp}_{2 n}$, but σ maps $\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ and $\{n+1, n+2, \ldots, 2 n\} \rightarrow$ $\{n+1, n+2, \ldots, 2 n\}$, so $\sigma d_{\sigma} \in D_{2 n}^{\mathrm{sp}}$.

All that remains is computation. We see

$$
P_{2 n}^{\mathrm{sp}} \eta U_{2 n}^{\mathrm{sp}}=P_{2 n}^{\mathrm{sp}} \sigma d_{\sigma} \sigma_{w} d_{w} d U_{2 n}^{\mathrm{sp}}=P_{2 n}^{\mathrm{sp}} \widehat{w}_{2 n} d U_{2 n}^{\mathrm{sp}}=P_{2 n}^{\mathrm{sp}} d^{\iota} \widehat{w}_{2 n} U_{2 n}^{\mathrm{sp}}=P_{2 n}^{\mathrm{sp}} \widehat{w}_{2 n} U_{2 n}^{\mathrm{sp}},
$$

which completes the proof.
Thus, to complete the proof, we want to show that ψ_{T} is nontrivial for each double coset $\eta \in P_{2 n}^{\mathrm{sp}} \eta U_{2 n}^{\mathrm{sp}}$ distinct from $P_{2 n}^{\mathrm{sp}} \widehat{w}_{2 n} U_{2 n}^{\mathrm{sp}}$.

Lemma 55. Fix notation as above. Fix some $w \in W\left(\mathrm{GSp}_{2 n}\right)$, and set $\eta:=\sigma_{w} d_{w} d$ where $d \in D_{2 n}^{\mathrm{sp}}$. If $P_{2 n}^{\mathrm{sp}} \eta U_{2 n}^{\mathrm{sp}} \neq P_{2 n}^{\mathrm{sp}} \widehat{w}_{2 n} U_{n}^{\mathrm{sp}}$, then ψ_{T} is nontrivial on $H_{\eta}=U_{2 n}^{\mathrm{sp}} \cap \eta^{-1} P_{2 n}^{\mathrm{sp}} \eta$.

Proof. Quickly, we claim that $H_{\eta}=H_{\sigma_{w} d_{w}}$. Indeed, if $u \in H_{\eta}$, then $d^{-1}\left(\sigma_{w} d_{w}\right)^{-1} u\left(\sigma_{w} d_{w}\right) d \in$ P_{n}^{sp}, but $d \in P_{n}^{\mathrm{sp}}$ implies $\left(\sigma_{w} d_{w}\right)^{-1} u\left(\sigma_{w} d_{w}\right) \in P_{n}^{\mathrm{sp}}$, so $u \in H_{\sigma_{w} d_{w}}$. A symmetric argument establishes the other inclusion.

Thus, we may assume that $d=I_{2 n}$. Now, by Lemma 54, $P_{2 n}^{\mathrm{sp}} \eta U_{n}^{\mathrm{sp}} \neq P_{2 n}^{\mathrm{sp}} \widehat{w}_{2 n} U_{2 n}^{\mathrm{sp}}$ implies that $\sigma_{w}(i) \leq n$ for some $i \in\{1,2, \ldots, n\}$; without loss of generality, assume $\sigma_{w}(1) \leq n$. Now, by adjusting σ_{w} by a permutation in $D_{2 n}^{\mathrm{sp}} \cap \Sigma_{2 n}$ via Lemma 51 , we may assume that $\sigma_{w}(i) \equiv i(\bmod n)$ for each $i \in\{1,2, \ldots, 2 n\}$. In particular, $\sigma_{w}(1)=1$.

We are now ready to compute H_{η}. Fix $u:=\left[\begin{array}{cc}I_{n} & Z \\ I_{n}\end{array}\right]$ for $Z \in \operatorname{Sym}_{n}$, and we test for $\eta^{-1} u \eta \in P_{2 n}^{\mathrm{sp}}$. Fix indices $i, j \in\{1,2, \ldots, n\}$, and we want to compute

$$
e_{i+n}^{\top} d_{w}^{-1} \sigma_{w}^{-1} u \sigma_{w} d_{w} e_{j}= \pm\left(\sigma_{w} e_{i+n}\right)^{\top} u\left(\sigma_{w} e_{j}\right)= \pm e_{\sigma_{w}(i)+n}^{\top} u e_{\sigma_{w}(j)} .
$$

We have the following cases.

- If $\sigma_{w}(i)=i$ and $\sigma_{w}(j)=j$, then we are looking at $\pm e_{i+n}^{\top} u e_{j}= \pm e_{i+n}^{\top} e_{j}=0$ because $j \leq n<i+n$.
- If $\sigma_{w}(i)=i$ and $\sigma_{w}(j)=j+n$, then we are looking at $\pm e_{i+n}^{\top} u e_{j+n}= \pm 1_{i=j}=0$, where $i \neq j$ because $\sigma_{w}(i)=i$ while $\sigma_{w}(j) \neq j$.
- If $\sigma_{w}(i)=i+n$ and $\sigma_{w}(j)=j$, then we are looking at $\pm e_{i}^{\top} u e_{j}= \pm 1_{i=j}=0$, where $i \neq j$ as in the previous case.
- Lastly, if $\sigma_{w}(i)=i+n$ and $\sigma_{w}(j)=j+n$, then we are looking at $\pm e_{i+n}^{\top} u e_{j}= \pm u_{j, i+n}$. Thus, we see

$$
H_{\eta}=\left\{u \in U_{2 n}^{\mathrm{sp}}: u_{i+n, j}=0 \text { if } \sigma_{w}(i)=i+n \text { and } \sigma_{w}(j)=j+n\right\} .
$$

Because $\sigma_{w}(1)=1$, we thus see that

$$
\left\{\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 n} \\
u_{12} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
u_{1 n} & 0 & \cdots & 0
\end{array}\right]: u_{11}, u_{12}, \ldots, u_{1 n} \in k\right\} \subseteq H_{\eta},
$$

where we have identified Sym_{n} with $U_{2 n}^{\mathrm{sp}}$ in the usual way. However, for any invertible symmetric $T \in \operatorname{Sym}_{n}^{\times}$, we see that ψ_{T} is nontrivial on the above subgroup, so we are done.

The above lemma completes the proof of Proposition 49.

Now, one way to think about Proposition 49 is that we have shown $\operatorname{Ind}_{P_{2 n}^{\mathrm{s}}}^{\mathrm{GSp}_{2 n}} \chi$ has a single $U_{2 n}^{\mathrm{sp}}$-eigenvector with eigenvalue ψ_{T}. However, it is not so difficult to write one down. The following is a finite-field analogue of a "spherical vector."

Lemma 56. Fix notation as above, and fix some $T \in \operatorname{Sym}_{n}^{\times}$and character $\chi: P_{2 n}^{\mathrm{sp}} \rightarrow \mathbb{C}^{\times}$. Define $f_{T, \chi}: \mathrm{GSp}_{2 n} \rightarrow \mathbb{C}$ by

$$
f_{T, \chi}(g):= \begin{cases}\chi(p) \psi_{T}(u) & \text { if } g=p \widehat{w}_{2 n} u \text { for } p \in P_{n}^{\mathrm{sp}}, u \in U_{n}^{\mathrm{sp}} \\ 0 & \text { else } .\end{cases}
$$

Then $f_{T, \chi}$ is well-defined, nonzero, and lives in $\operatorname{Ind}_{P_{2 n}^{\mathrm{sp}}}^{\mathrm{GSp}_{2 n}} \chi$. Further, $f_{T, \omega}$ is a $U_{2 n}^{\mathrm{sp}}$-eigenvector with eigenvalue ψ_{T}.

Proof. We begin by checking that f is well-defined; note $f_{T, \chi} \neq 0$ follows quickly because $f_{T, \chi}\left(\widehat{w}_{n}\right)=1$. Well, suppose we have $p_{1}, p_{2} \in P_{2 n}^{\mathrm{sp}}$ and $u_{1}, u_{2} \in U_{2 n}^{\mathrm{sp}}$ such that $p_{1} \widehat{w}_{2 n} u_{1}=$ $p_{2} \widehat{w}_{2 n} u_{2}$; we claim $p_{1}=p_{2}$ and $u_{2}=u_{2}$, from which $\widetilde{\omega}\left(p_{1}\right) \psi_{T}\left(u_{1}\right)=\widetilde{\omega}\left(p_{2}\right) \psi_{T}\left(u_{2}\right)$ follows immediately. Well, set $p:=p_{2}^{-1} p_{1}$ and $u:=u_{2} u_{1}^{-1}$, and we want to show that $p=u=1$. For this, we observe

$$
p=\widehat{w}_{2 n} u \widehat{w}_{2 n}^{-1}=u^{\iota} .
$$

Setting $u:=\left[\begin{array}{cc}1 & Z \\ 1\end{array}\right]$, we note $u^{\iota}=\left[\begin{array}{cc}1 & \\ -Z & 1\end{array}\right]$ lives in $P_{2 n}^{\mathrm{sp}}$ if and only if $Z=0$, which means $u=p=I_{2 n}$.

Next up, we show $f_{T, \chi} \in \operatorname{Ind}_{P_{2 n}^{s p}}^{\mathrm{GSp}_{2 n}} \chi$. Well, fix $g_{0} \in \mathrm{GSp}_{6}$ and $p \in P_{2 n}^{\mathrm{sp}}$, and we want to show $f_{T, \chi}\left(p g_{0}\right)=\chi(p) f_{T, \chi}\left(g_{0}\right)$. This follows directly from the definitions. For example, if g_{0} does take the form $p_{0} \widehat{w}_{2 n} u_{0}$, then $p g_{0}=p p_{0} \widehat{w}_{2 n} u_{0}$, and

$$
f_{T, \chi}\left(p g_{0}\right)=\chi\left(p p_{0}\right) \psi_{T}\left(u_{0}\right)=\chi(p) f_{T, \chi}\left(g_{0}\right)
$$

Otherwise, g_{0} does not take the form $p_{0} w_{2 n} u_{0}$, so $p g_{0}$ also does not live in the double coset $P_{2 n}^{\mathrm{sp}} \widehat{w}_{2 n} U_{2 n}^{\mathrm{sp}}$, so $f_{T, \chi}\left(p g_{0}\right)=0=\chi(p) f_{T, \chi}\left(g_{0}\right)$.

Lastly, we show that $f_{T, \chi}$ is a $U_{2 n}^{\mathrm{sp}}$-eigenvector with eigenvalue ψ_{T}. This again follows directly from the definitions. Fix $g_{0} \in \mathrm{GSp}_{2 n}$ and $u \in U_{2 n}^{\mathrm{sp}}$, and we want to show that $f_{T, \chi}\left(g_{0} u\right)=\psi_{T}(u) f_{T, \chi}\left(g_{0}\right)$. Indeed, an identical argument to the above but switching $p \mathrm{~s}$ with $u s$ (and direction of multiplication) establishes the claim.

Now, using $f_{T, \chi}$ written above as a concrete $U_{2 n}^{\mathrm{sp}}$-eignvector of $\operatorname{Ind}_{P_{2 n}^{s p}}^{\mathrm{GSp}_{2 n}} \chi$, we can use the multiplicity-one result of Proposition 49 to achieve the following result.

Proposition 57. Fix notation as above, and let $\chi: P_{2 n}^{\mathrm{sp}} \rightarrow \mathbb{C}^{\times}$be a character of the form $\chi=\left(\alpha_{\chi} \circ m\right)\left(\beta_{\chi} \circ \chi_{\mathrm{det}}\right)$ where $\alpha_{\chi}, \beta_{\chi}: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$are characters. Then

$$
M_{w_{2 n}} f_{T, \chi}=\alpha_{\chi}(-1) \beta_{\chi}(-1)^{n(n-1) / 2} \cdot g_{n}\left(\beta_{\chi}, \psi, T\right) f_{T,\left(w_{2 n}\right)}
$$

Here, ${ }^{\left(w_{n}\right)} \chi$ is a character on $P_{2 n}^{\mathrm{sp}}$ given by ${ }^{\left(w_{2 n}\right)} \chi(d u)=\chi\left(w_{2 n} d w_{2 n}\right)$ for any $d \in D_{2 n}^{\mathrm{sp}}$ and $u \in U_{2 n}^{\mathrm{sp}}$. Additionally, $g_{n}\left(\beta_{\chi}, \psi, T\right)$ is the Gauss sum considered in Appendix B.

Proof. Quickly, we check that ${ }^{\left(w_{2 n}\right)} \chi$ is in fact a character: for any $d_{1}, d_{2} \in D_{2 n}^{\mathrm{sp}}$ and $u_{1}, u_{2} \in$ $U_{2 n}^{\mathrm{sp}}$, we see

$$
\begin{aligned}
{ }^{\left(w_{2 n}\right)} \chi\left(d_{1} u_{1} d_{2} u_{2}\right) & ={ }^{\left(w_{2 n}\right)} \chi\left(d_{1} d_{2} \cdot d_{2}^{-1} u_{1} d_{2} u_{2}\right) \\
& =\chi\left(w_{2 n} d_{1} d_{2} w_{2 n}\right) \\
& =\chi\left(w_{2 n} d_{1} w_{2 n}\right) \chi\left(w_{2 n} d_{2} w_{2 n}\right) \\
& ={ }^{\left(w_{2 n}\right)} \chi\left(d_{1} u_{1}\right){ }^{\left(w_{2 n}\right)} \chi\left(d_{2} u_{2}\right) .
\end{aligned}
$$

Now, we note that $M_{w_{2 n}}$ is a G-invariant operator, so because $f_{T, \chi}$ is an $U_{2 n}^{\mathrm{sp}}$-eigenvector with eigenvalue ψ_{T}, we see

$$
u \cdot M_{w_{2 n}} f_{T, \chi}=M_{w_{2 n}}\left(u \cdot f_{T, \chi}\right)=\psi_{T}(u) \cdot M_{w_{2 n}} f_{T, \chi},
$$

so $M_{w_{2 n}} f_{T, \chi}$ continues to be a $U_{2 n}^{\mathrm{sp}}$-eigenvector with eigenvalue ψ_{T} but in the space $\operatorname{Ind}_{P_{2 n}^{\mathrm{s}}}^{\mathrm{GSp}_{2 n}\left(w_{2 n}\right)} \chi$. By Proposition 49, the space of such eigenvectors is one-dimensional, and Lemma 56 grants us a nonzero eigenvector $f_{T,\left(w_{2 n}\right)}$. Thus, there is a (unique) constant c such that

$$
M_{w_{2 n}} f_{T, \chi}=c f_{T,\left(w_{2 n}\right)} .
$$

It remains to compute the constant c. Well, plugging in $\widehat{w}_{2 n}$, we see that

$$
\begin{aligned}
c & =c f_{T,\left(w_{2 n}\right)}\left(\widehat{w}_{n}\right) \\
& =M_{w_{2 n}} f_{T, \chi}\left(\widehat{w}_{2 n}\right) \\
& =\sum_{u \in U_{2 n}^{\mathrm{sp}}} f_{T, \chi}\left(w_{2 n} u \widehat{w}_{2 n}\right) .
\end{aligned}
$$

Now, $f_{T, \chi}$ is supported on $P_{2 n}^{\mathrm{sp}} \widehat{w}_{2 n} U_{2 n}^{\mathrm{sp}}$, so to have $f_{T, \chi}\left(w_{2 n} u \widehat{w}_{2 n}\right) \neq 0$, there must exist $v \in U_{2 n}^{\mathrm{sp}}$ such that $w_{2 n} u \widehat{w}_{2 n} v^{-1} \widehat{w}_{2 n}^{-1} \in P_{2 n}^{\mathrm{sp}}$. Writing $u:=\left[\begin{array}{cc}1 & X \\ 1\end{array}\right]$ and $v:=\left[\begin{array}{cc}1 & Y \\ & 1\end{array}\right]$, we compute

$$
w_{2 n} u \widehat{w}_{2 n} v^{-1} \widehat{w}_{2 n}^{-1}=w_{2 n} u v^{\top}=\left[\begin{array}{ll}
& w_{n} \\
w_{n} &
\end{array}\right]\left[\begin{array}{cc}
1 & X \\
& 1
\end{array}\right]\left[\begin{array}{cc}
1 & \\
Y & 1
\end{array}\right]=\left[\begin{array}{cc}
w_{n} Y & w_{n} \\
w_{n}(1+X Y) & w_{n} X
\end{array}\right] .
$$

This lives in $P_{2 n}^{\mathrm{sp}}$ if and only if X is invertible and $Y=-X^{-1}$. So in the case where X is invertible, we note that the above work gives the decomposition

$$
w_{2 n}\left[\begin{array}{cc}
1 & X \\
& 1
\end{array}\right] \widehat{w}_{2 n}=\left[\begin{array}{cc}
-w_{n} X^{-1} & w_{n} \\
& w_{n} X
\end{array}\right] \widehat{w}_{n}\left[\begin{array}{cc}
1 & -X^{-1} \\
1
\end{array}\right] .
$$

It follows that

$$
\begin{aligned}
c & =\sum_{X \in \operatorname{Sym}_{n}^{\times}(k)} f_{T, \chi}\left(\left[\begin{array}{cc}
-w_{n} X^{-1} & w_{n} \\
& w_{n} X
\end{array}\right] \widehat{w}_{n}\left[\begin{array}{cc}
1 & -X^{-1} \\
1
\end{array}\right]\right) \\
& =\sum_{A \in \operatorname{Sym}_{n}^{\times}(k)} \chi\left(\left[\begin{array}{cc}
w_{n} A & w_{n} \\
& -w_{n} A^{-1}
\end{array}\right]\right) \psi_{T}(A) \\
& =\alpha_{\chi}(-1) \beta_{\chi}(-1)^{n(n-1) / 2} \sum_{A \in \operatorname{Sym}_{n}^{\times}(k)} \beta_{\chi}(\operatorname{det} A) \psi_{T}(A),
\end{aligned}
$$

as desired. Notably, $\operatorname{det} w_{n}=(-1)^{n(n-1) / 2}$.

Corollary 58. Fix notation as above, and let $\chi: P_{2 n}^{\mathrm{sp}} \rightarrow \mathbb{C}^{\times}$be a character of the form $\chi=\left(\alpha_{\chi} \circ m\right)\left(\beta_{\chi} \circ \chi_{\text {det }}\right)$ where $\alpha_{\chi}, \beta_{\chi}: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$are characters. Then

$$
\left(M_{w_{2 n}} \circ M_{w_{2 n}}\right)\left(f_{T, \chi}\right)=g_{n}\left(\beta_{\chi}, \psi, T\right) g_{n}\left(\beta_{\chi}^{-1}, \psi^{-1}, T\right) f_{T, \chi}
$$

Proof. The main point is that plugging Example 48 into Proposition 57 implies

$$
\begin{aligned}
M_{w_{2 n}} f_{T,\left(w_{2 n}\right)} & =\alpha_{\chi}(-1) \beta_{\chi}(-1)^{n(n-1) / 2} \beta_{\chi}(-1)^{n} \sum_{A \in \operatorname{Sym}_{n}^{\times}(k)} \beta_{\chi}(\operatorname{det} A)^{-1} \psi_{T}(A) \\
& =\alpha_{\chi}(-1) \beta_{\chi}(-1)^{n(n-1) / 2} \sum_{A \in \operatorname{Sym}_{n}^{\times}(k)} \beta_{\chi}(\operatorname{det} A)^{-1} \psi_{T}(A)^{-1} \\
& =\alpha_{\chi}(-1) \beta_{\chi}(-1)^{n(n-1) / 2} g_{n}\left(\beta_{\chi}^{-1}, \psi^{-1}, T\right) .
\end{aligned}
$$

Combining with Proposition 57 completes the proof.
Example 59. Take $\chi=\widetilde{\omega}$ so that $\alpha_{\chi}=\beta_{\chi}=\omega$. If $\omega^{2} \neq 1$, then Theorem 89 implies that

$$
g_{n}\left(\beta_{\chi}, \psi, T\right) g_{n}\left(\beta_{\chi}^{-1}, \psi^{-1}, T\right)=q^{\frac{1}{2}\binom{n+1}{2}} .
$$

Corollary 58 tells us that $M_{w_{2 n}} \circ M_{w_{2 n}}$ behaves as a scalar on the particular vector $f_{T, \chi}$. To extend this to all of $\operatorname{Ind}_{P_{2 n}^{s p}}^{\mathrm{GSp}_{2 n}} \chi$, we check when $\operatorname{Ind}_{P_{2 n}^{s p}}^{\mathrm{Gsp}_{2 n}} \chi$ is irreducible.
Proposition 60. Fix notation as above, and let $\chi: P_{2 n}^{\mathrm{sp}} \rightarrow \mathbb{C}^{\times}$be a character of the form $\chi=\left(\alpha_{\chi} \circ m\right)\left(\beta_{\chi} \circ \chi_{\mathrm{det}}\right)$ where $\alpha_{\chi}, \beta_{\chi}: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$are characters. Then

$$
\operatorname{dim} \operatorname{End}_{\mathrm{GSp}_{2 n}} \operatorname{Ind}_{P_{2 n}^{\mathrm{s}}}^{\mathrm{GSp}_{2 n}} \chi= \begin{cases}n+1 & \text { if } \beta_{\chi}=1, \\ \lfloor(n+1) / 2\rfloor & \text { if } \beta_{\chi} \neq 1 \text { and } \beta_{\chi}^{2}=1, \\ 1 & \text { if } \beta_{\chi}^{2} \neq 1 .\end{cases}
$$

In particular, if $\omega^{2} \neq 1$, then $I(\omega)$ is irreducible.
Proof. We compute dim $\operatorname{End}_{\mathrm{GSp}_{2 n}} \operatorname{Ind}_{P_{2 n}^{\mathrm{sp}}}^{\mathrm{GSp}_{2 n}} \chi$ using Mackey theory. The proof uses many of the same tools as Proposition 49. Using Frobenius reciprocity and Lemma 41, we see

$$
\begin{aligned}
\operatorname{End}_{\mathrm{GSp}_{2 n}} \operatorname{Ind}_{P_{2 n}^{\mathrm{sp}}}^{\mathrm{GSp}_{2 n}} \chi & \cong \operatorname{Hom}_{P_{2 n}^{\mathrm{sp}}}\left(\operatorname{Ind}_{P_{2 n}^{\mathrm{sp}}}^{\mathrm{GSp}_{2 n}} \chi, \omega\right) \\
& \cong \bigoplus_{\eta \in P_{2 n}^{\mathrm{sp}} \backslash \operatorname{GSp}_{2 n} / P_{2 n}^{\mathrm{sp}}} \operatorname{Hom}_{P_{2 n}^{\mathrm{sp}} \cap \eta^{-1} P_{2 n}^{\mathrm{sp}} \eta}\left(\chi_{\eta}, \chi\right) .
\end{aligned}
$$

Thus, we are interested in studying double cosets $P_{2 n}^{\mathrm{sp}} \backslash \mathrm{GSp}_{2 n} / P_{2 n}^{\mathrm{sp}}$. As in Proposition 49, we use the Bruhat decomposition, which tells us that double cosets in $B_{2 n}^{\mathrm{sp}} \backslash \mathrm{GSp}_{2 n} / B_{2 n}^{\mathrm{sp}}$ are uniquely represented by the Weyl elements $\left\{\sigma_{w} d_{w}: w \in W\left(\mathrm{GSp}_{6}\right)\right\}$, so these Weyl elements also provide representatives of the double cosets in $P_{2 n}^{\mathrm{sp}} \backslash \mathrm{GSp}_{2 n} / P_{2 n}^{\mathrm{sp}}$. As in Lemma 51, we want to provide a "normal form" for our Weyl elements.

Lemma 61. Fix notation as above, and fix $\sigma_{1} d_{1}, \sigma_{2} d_{2}$ representing Weyl elements $w_{1}, w_{2} \in$ $W\left(\mathrm{GSp}_{2 n}\right)$. Then

$$
\#\left\{i \in\{1,2, \ldots, n\}: \sigma_{1}(i)>n\right\}=\#\left\{i \in\{1,2, \ldots, n\}: \sigma_{2}(i)>n\right\}
$$

if and only if $P_{2 n}^{\mathrm{sp}} w_{1} P_{2 n}^{\mathrm{sp}}=P_{2 n}^{\mathrm{sp}} w_{2} P_{2 n}^{\mathrm{sp}}$.

Proof. For brevity, define

$$
r(w):=\#\left\{i \in\{1,2, \ldots, n\}: \sigma_{w}(i)>n\right\} .
$$

We want to show that r descends to an injective map $P_{2 n}^{\mathrm{sp}} \backslash \mathrm{GSp}_{2 n} / P_{2 n}^{\mathrm{sp}} \rightarrow \mathbb{Z}$.
To begin, we show that the map is well-defined. Let X be the maximal isotropic subspace of $k^{2 n}$ spanned by $\left\{e_{1}, \ldots, e_{n}\right\}$, and we let Y be the maximal isotropic subspace spanned by $\left\{e_{n+1}, \ldots, e_{2 n}\right\}$; we then let $\pi_{Y}: k^{2 n} \rightarrow Y$ denote the projection. Now, we begin by claiming

$$
r(w) \stackrel{?}{=} \operatorname{dim} \pi_{Y}(w X)
$$

Indeed, $\pi_{Y}(w X)$ is spanned by the vectors $\pi_{Y}\left(w e_{i}\right)$ for $i \in\{1,2, \ldots, n\}$ and hence by the vectors $e_{\sigma_{w}(i)}$ where $w(i)>n$. The equality follows.

Now, we thus see that $\pi_{Y}(w p X)=\pi_{Y}(w X)$ for any $p \in P_{2 n}^{\mathrm{sp}}$, so r is well-defined on $\mathrm{GSp}_{2 n} / P_{2 n}^{\mathrm{sp}}$. Furthermore, we note that $\operatorname{dim} \pi_{Y}(p W)=\operatorname{dim} p \pi_{Y}(W)=\operatorname{dim} \pi_{Y}(W)$ for any subspace $W \subseteq k^{2 n}$, so it follows that r further descends to a function on $P_{2 n}^{\mathrm{sp}} \backslash \mathrm{GSp}_{2 n} / P_{2 n}^{\mathrm{sp}}$.

Lastly, we must show that r is injective. Well, fix some $r \in\{0,1, \ldots, n\}$, and we will show that any $w \in W\left(\mathrm{GSp}_{6}\right)$ with $r(w)=r$ is in the same double coset as some fixed Weyl element. To begin, we may choose a permutation σ of $\{1,2, \ldots, n\}$ so that

$$
\left\{i \in\{1,2, \ldots, n\}: \sigma_{w} \sigma(i)>n\right\}=\{1,2, \ldots, r\}
$$

Then σ may be extended to a permutation in $\Sigma_{2 n}$ as in Lemma 51, and we can see that $\sigma \in D_{2 n}^{\mathrm{sp}}$. Thus, replacing σ_{1} with σ and doing similarly for w_{2}, we may assume that

$$
\left\{i \in\{1,2, \ldots, n\}: \sigma_{w}(i)>n\right\}=\{1,2, \ldots, r\}
$$

on the nose. From here, Lemma 51 grants us another $\sigma^{\prime} \in D_{2 n}^{\mathrm{sp}} \cap \Sigma_{2 n}$ so that $\sigma^{\prime} \sigma(i) \equiv i$ $(\bmod n)$ while also preserving $\left\{i \in\{1,2, \ldots, n\}: \sigma_{w}(i)>n\right\}$, so by adjusting σ_{w} by this σ^{\prime}, we may assume that

$$
\sigma_{w}(i)= \begin{cases}i & \text { if } 1 \leq i \leq r \\ i+n & \text { if } r<i \leq n\end{cases}
$$

These data uniquely determine $\sigma_{w} \in \Sigma_{2 n}$ and hence the Weyl element w. This completes the proof of injectivity.

The proof of Lemma 61 implies that there are $n+1$ double cosets in $P_{2 n}^{\mathrm{sp}} \backslash \mathrm{GSp}_{2 n} / P_{2 n}^{\mathrm{sp}}$, which we can compute are given by

$$
\eta_{r}:=\left[\begin{array}{llll}
I_{n-r} & & & \\
& & & -I_{r} \\
& & I_{n-r} & \\
& I_{r} & &
\end{array}\right]
$$

where $0 \leq r \leq n$. Notably, $\eta_{r}^{-1}=\eta_{r}^{\top}$. Now, for each $\eta \in P_{6}^{\mathrm{sp}} \backslash \mathrm{GSp}_{6} / P_{6}^{\mathrm{sp}}$, we set $P_{\eta}:=$ $P_{2 n}^{\mathrm{sp}} \cap \eta^{-1} P_{2 n}^{\mathrm{sp}} \eta$. We want to check when $\chi_{\eta_{r}}=\chi$. To begin, we compute $P_{\eta_{r}}$: writing out
some $g \in P_{2 n}^{\mathrm{sp}}$ as a block matrix, we compute

$$
\begin{aligned}
\eta_{r} g \eta_{r}^{-1} & =\left[\begin{array}{cccc}
I_{n-r} & & & \\
& & I_{n-r} & \\
& I_{r} & &
\end{array}\right]\left[\begin{array}{llll}
A_{1} & A_{2} & B_{1} & B_{2} \\
A_{3} & A_{4} & B_{3} & B_{4} \\
& & D_{1} & D_{2} \\
& & D_{3} & D_{4}
\end{array}\right]\left[\begin{array}{llll}
I_{n-r} & & \\
& & & \\
& & I_{n-r} & \\
& I_{r} & &
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cccc}
A_{1} & -B_{2} & B_{1} & A_{2} \\
& D_{4} & -D_{3} & \\
& -D_{2} & D_{1} & \\
A_{3} & -B_{4} & B_{3} & A_{4}
\end{array}\right],
\end{aligned}
$$

which live in $P_{2 n}^{\mathrm{sp}}$ if and only if $A_{3}=B_{4}=D_{2}=0$. Thus, $\chi_{\eta_{r}}=\chi$ if and only if we always have

$$
\chi\left(\left[\begin{array}{cccc}
A_{1} & -B_{2} & B_{1} & A_{2} \\
& D_{4} & -D_{3} & \\
& & D_{1} & \\
& & B_{3} & A_{4}
\end{array}\right]\right)=\chi\left(\left[\begin{array}{cccc}
A_{1} & A_{2} & B_{1} & B_{2} \\
& A_{4} & B_{3} & \\
& & D_{1} & \\
& & D_{3} & D_{4}
\end{array}\right]\right)
$$

The multiplier of the left-hand side is $m\left(\eta_{r} g \eta_{r}^{-1}\right)=m(g)$, which is also the multiplier of the right-hand side. Thus, we no longer care about α_{χ}. It remains to look at β_{χ}, where we see we require

$$
\beta_{\chi}\left(\operatorname{det} D_{1} \cdot \operatorname{det} A_{4}\right)^{-1}=\beta_{\chi}\left(\operatorname{det} D_{1} \cdot \operatorname{det} D_{4}\right)^{-1}
$$

where we take the convention that the "empty" matrix has determinant 1. Equivalently, we are asking to always have $\beta_{\chi}\left(\operatorname{det} A_{4}\right)=\beta_{\chi}\left(\operatorname{det} D_{4}\right)$. Now, for $g \in P_{2 n}^{\mathrm{sp}}$, we see that $A_{4}=m(g) D_{4}^{\iota}$, so we are asking for

$$
\beta_{\chi}\left(\operatorname{det} A_{4}\right)^{2}=\beta_{\chi}(m(g))^{r} .
$$

We have the following cases.

- If $\beta_{\chi}^{2}=1$ and r is even, then both sides are 1 .
- If $r=0$, then A_{4} is the empty matrix, so both sides are 1 .
- Suppose r is odd and in particular nonzero; we claim $\chi_{\eta_{r}}=\chi$ if and only if $\beta_{\chi}=1$. Here, A_{4} is an arbitrary nonempty invertible $r \times r$ matrix, so $\operatorname{det} A_{4}$ is an arbitrary element of \mathbb{F}_{q}^{\times}; the same holds for $m(g)$. Thus, we are basically asking for

$$
\beta_{\chi}(x)^{2}=\beta_{\chi}(y)^{r}
$$

for any $x, y \in \mathbb{F}_{q}^{\times}$. Setting $y=1$ forces $\beta_{\chi}^{2}=1$, and setting $x=1$ forces $\beta_{\chi}^{r}=1$. Because r is odd, this is equivalent to $\beta_{\chi}=1$.
Synthesizing the above cases completes the proof.
Remark 62. Adjusting the tallying portion of the above argument correctly, we find that

$$
\operatorname{dim} \operatorname{End}_{\mathrm{Sp}_{2 n}} \operatorname{Ind}_{P}^{\mathrm{Sp}_{2 n}} \chi= \begin{cases}n+1 & \text { if } \chi^{2}=1 \\ 1 & \text { if } \chi^{2} \neq 1\end{cases}
$$

Here, $P \subseteq \mathrm{Sp}_{2 n}$ is the Siegel parabolic $\mathrm{Sp}_{2 n} \cap P_{2 n}^{\mathrm{sp}}$.
Proposition 60 now assures us that in the case where $\chi^{2} \neq 1$, the composite $\left(M_{w_{6}} \circ\right.$ $\left.M_{w_{6}}\right): I(\omega) \rightarrow I(\omega)$ must be a scalar, and in fact this scalar is q^{3} by Example 59. When
$\chi^{2}=1$, the composite no longer need to be a scalar, but we can understand it. The idea is to build a reasonably nice basis.

Lemma 63. Fix notation as above, and let $\chi: P_{2 n}^{\mathrm{sp}} \rightarrow \mathbb{C}^{\times}$be a character. For each irreducible subrepresentation $\pi \subseteq \operatorname{Ind}_{P_{2 n}^{s p}}^{\mathrm{Gs}_{2 n}} \chi$, there is a vector $v \in \pi$ which is a χ-eigenvector.

Proof. Observe that

$$
\operatorname{Hom}_{P_{2 n}}^{\text {sp }}(\operatorname{Res} \pi, \chi)=\operatorname{Hom}_{\mathrm{GSp}_{2 n}}\left(\pi, \operatorname{Ind}_{P_{2 n}^{\mathrm{s}}}^{\mathrm{GSp}_{2 n}} \chi\right) \geq 1
$$

so we are done.
Thus, if we want to understand how $M_{w_{6}}$ acts on its various irreducible subrepresentations, we are allowed to only look at the χ-eigenvectors. The computation of Proposition 60 explains that $\chi=\left(\alpha_{\chi} \circ m\right)\left(\beta_{\chi} \circ \chi_{\text {det }}\right)$ with $\beta_{\chi}=1$ makes this space four-dimensional, and $\beta_{\chi}^{2}=1$ while $\beta_{\chi} \neq 1$ makes this space two-dimensional. Explicitly, such an eigenvector can be reduced to a function on $P_{6}^{\mathrm{sp}} \backslash \mathrm{GSp}_{6} / P_{6}^{\mathrm{sp}}$, which a prior has four representatives $\eta_{0}, \eta_{1}, \eta_{2}, \eta_{3}$, but η_{1} and η_{3} do not contribute in the quadratic case. Letting $f_{0}, f_{1}, f_{2}, f_{3}$ denote the corresponding basis of eigenvectors (with $f_{1}=f_{3}=0$ in the quadratic case), we are able to write $M_{w_{6}}$ as a 4×4 matrix.

Example 64. In the case of $\chi=1$ and $n=3$, we have $M_{w_{6}}: I(1) \rightarrow I(1)$ can be written as the matrix

$$
\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 / q & (q-1) / q \\
0 & 1 / q^{3} & \left(q^{2}-1\right) / q^{3} & (q-1) / q \\
1 / q^{6} & \left(q^{3}-1\right) / q^{6} & \left(q^{3}-1\right) / q^{4} & \left(q^{4}-q^{3}-q+1\right) / q^{4}
\end{array}\right]
$$

This diagonalizes and has all nonzero eigenvalues. A similar computation can be done in the quadratic case to understand the composite $\left(M_{w_{6}} \circ M_{w_{6}}\right)$.
Remark 65. It is our expectation that the eigenvalues of $M_{w_{2 n}}$ can all be understood as (possibly signed) explicit powers of q even in the cases where $\chi^{2}=1$, but we have not been able to prove this.
4.5. The Zeta Function. To define our zeta function, we begin by defining the subgroups $Z:=\left\{c I_{6}: c \in k^{\times}\right\}$and

$$
N:=\left\{\left(\left[\begin{array}{cc}
1 & b_{1} \\
& 1
\end{array}\right],\left[\begin{array}{cc}
1 & b_{2} \\
& 1
\end{array}\right],\left[\begin{array}{cc}
1 & b_{3} \\
& 1
\end{array}\right]\right): b_{1}+b_{2}+b_{3}=0\right\} \subseteq \mathrm{GL}_{2}^{(3)}
$$

Note that $Z N \subseteq S\left(\eta_{0}\right)$, so $\eta_{0} Z N \eta_{0}^{-1} \subseteq P_{6}^{\text {sp }}$, so define for brevity $S(\omega):=\operatorname{Ind}_{\eta_{0} Z N \eta_{0}^{-1}}^{\mathrm{GSp}_{6}} \omega^{-1}$, where ω^{-1} is considered to be a character by its behavior on Z, which is canonically isomorphic to k^{\times}. We have the following definition.

Definition 66. We define $Z: S(\omega) \otimes\left(\operatorname{Ind}_{U_{2}}^{\mathrm{GL}} \psi_{2}\right)^{\otimes 3} \rightarrow \mathbb{C}$ by

$$
Z\left(f, W_{1}, W_{2}, W_{3}\right):=\sum_{g \in Z N \backslash \mathrm{GL}_{2}^{(3)}} f\left(\eta_{0} g\right) W_{1}\left(g_{1}\right) W_{2}\left(g_{2}\right) W_{3}\left(g_{3}\right),
$$

where $g=\left(g_{1}, g_{2}, g_{3}\right)$. In the future, we may abbreviate $W_{1}\left(g_{1}\right) W_{2}\left(g_{2}\right) W_{3}\left(g_{3}\right)$ to $W(g)$.

Indeed, Z is linear in each coordinate, so its definition on the tensor product is wellfounded. To see that the summands are N-invariant, the important check is that, by construction of $f \in S(\omega)$, any $c n \in Z N$ has

$$
f\left(\eta_{0} c n g\right)=\omega^{-1}(c) f\left(\eta_{0} g\right)
$$

while $W_{i}\left(c n_{1} g\right)=\omega_{i}(c) \psi_{2}\left(n_{1}\right) W_{i}(g)$, so all the added terms cancel. (Notably, $\omega=\omega_{1} \omega_{2} \omega_{3}$ and $\psi_{2}\left(n_{1} n_{2} n_{3}\right)=1$ by construction of N.)

We would like to combine Z with our multiplicity-one result Theorem 40. For this, we need the following two checks.

Lemma 67. Fix three irreducible representations π_{1}, π_{2}, and π_{3} of GL_{2} of Whittaker type. Then Z restricts to $a \mathrm{GL}_{2}^{(3)}$-linear map

$$
I(\omega) \otimes \mathcal{W}\left(\pi_{1}, \psi\right) \otimes \mathcal{W}\left(\pi_{2}, \psi\right) \otimes \mathcal{W}\left(\pi_{3}, \psi\right) \rightarrow \mathbb{C}
$$

Proof. A direct computation shows that $I(\omega) \subseteq S(\omega)$: indeed, for $f \in I(\omega)$, we need to check that

$$
f\left(\eta_{0} z n \eta_{0}^{-1} g\right) \stackrel{?}{=} \omega(z)^{-1} f(g)
$$

for any $\eta_{0} z n \eta_{0}^{-1} \in \eta_{0} Z N \eta_{0}^{-1}$, but this can be done by directly computing $\widetilde{\omega}\left(\eta_{0} z n \eta_{0}^{-1}\right)$. Thus, it does make sense to say that Z restricts to $I(\omega) \otimes \mathcal{W}\left(\pi_{1}, \psi\right) \otimes \mathcal{W}\left(\pi_{2}, \psi\right) \otimes \mathcal{W}\left(\pi_{3}, \psi\right)$.

It remains to see that Z is $\mathrm{GL}_{2}^{(3)}$-linear. This is also a direct computation: we see that

$$
\begin{aligned}
Z\left(g_{0} f \otimes g_{0} W\right) & =\sum_{g \in Z N \backslash \mathrm{GL}_{2}^{(3)}}\left(g_{0} f\right)(g)\left(g_{0} W\right)(g) \\
& =\sum_{g \in Z N \backslash \mathrm{GL}_{2}^{(3)}} f\left(g g_{0}\right) W\left(g g_{0}\right) \\
& =\sum_{g \in Z N \backslash \mathrm{GL}_{2}^{(3)}} f(g) W(g) \\
& =Z(f \otimes W),
\end{aligned}
$$

as desired.
Lemma 68. Fix three irreducible representations π_{1}, π_{2}, and π_{3} of GL_{2} of Whittaker type. Then the restriction

$$
Z: I(\omega) \otimes \mathcal{W}\left(\pi_{1}, \psi\right) \otimes \mathcal{W}\left(\pi_{2}, \psi\right) \otimes \mathcal{W}\left(\pi_{3}, \psi\right) \rightarrow \mathbb{C}
$$

is nonzero.
Proof. We must find an input on which Z is nonzero. For this, we use Bessel functions combined with the function $f \in I(\omega)$ defined by

$$
f(g):= \begin{cases}\widetilde{\omega}(p) & \text { if } g=p \eta_{0} \text { for some } p \in P_{6}^{\mathrm{sp}} \\ 0 & \text { else. }\end{cases}
$$

Note that $f \in I(\omega)$ by construction. We now compute

$$
Z\left(f \otimes \mathcal{J}_{\pi_{1}, \psi} \otimes \mathcal{J}_{\pi_{2}, \psi} \otimes \mathcal{J}_{\pi_{3}, \psi}\right)=\sum_{\substack{g \in Z N \backslash \mathrm{GL}_{2}^{(3)} \\ 38}} f\left(\eta_{0} g\right) \mathcal{J}_{\pi_{1}, \psi}\left(g_{1}\right) \mathcal{J}_{\pi_{2}, \psi}\left(g_{2}\right) \mathcal{J}_{\pi_{3}, \psi}\left(g_{3}\right),
$$

where $g=\left(g_{1}, g_{2}, g_{3}\right)$ as usual. Now, $f\left(\eta_{0} g\right) \neq 0$ requires $\eta_{0} g \eta_{0}^{-1} \in P_{6}^{\text {sp }}$, so $\eta_{0} \in S\left(\eta_{0}\right)$, so we may write g as

$$
g=\left(\left[\begin{array}{cc}
a & b_{1} \\
& d
\end{array}\right],\left[\begin{array}{cc}
a & b_{2} \\
& d
\end{array}\right],\left[\begin{array}{cc}
a & b_{3} \\
& d
\end{array}\right]\right)
$$

where $b_{1}+b_{2}+b_{3}=0$. Using the fact that we only care about the coset $Z N g$, we may assume that $b_{1}=b_{2}=b_{3}=0$ and that $d=1$. Indeed, modding out by Z allows us to assume that $d=1$, and then we see

$$
\left(\left[\begin{array}{cc}
a & b_{1} \\
& 1
\end{array}\right],\left[\begin{array}{cc}
a & b_{2} \\
& 1
\end{array}\right],\left[\begin{array}{cc}
a & b_{3} \\
& 1
\end{array}\right]\right)=\left(\left[\begin{array}{cc}
1 & b_{1} \\
& 1
\end{array}\right],\left[\begin{array}{cc}
1 & b_{2} \\
& 1
\end{array}\right],\left[\begin{array}{cc}
1 & b_{3} \\
& 1
\end{array}\right]\right)\left(\left[\begin{array}{cc}
a & 0 \\
& 1
\end{array}\right],\left[\begin{array}{ll}
a & 0 \\
& 1
\end{array}\right],\left[\begin{array}{ll}
a & 0 \\
& 1
\end{array}\right]\right)
$$

so modding out by N gets rid of the left term. Now, by Proposition 6 , the only time we can have $\mathcal{J}_{\boldsymbol{\pi}, \psi}\left(\left[{ }^{a}{ }_{1}\right]\right) \neq 0$ is for $a=1$. In total, we must have $g=\left(I_{2}, I_{2}, I_{2}\right)$, which is a single coset. Thus, we find

$$
Z\left(f \otimes \mathcal{J}_{\pi_{1}, \psi} \otimes \mathcal{J}_{\pi_{2}, \psi} \otimes \mathcal{J}_{\pi_{3}, \psi}\right)=f\left(\eta_{0}\right) \mathcal{J}_{\pi_{1}, \psi}\left(I_{2}\right) \mathcal{J}_{\pi_{2}, \psi}\left(I_{2}\right) \mathcal{J}_{\pi_{3}, \psi}\left(I_{2}\right)=1
$$

which is indeed nonzero.
4.6. The Functional Equation. We now combine Theorem 40 with the zeta function constructed in the previous subsection to define our gamma factor.

Lemma 69. Fix three cuspidal irreducible representations π_{1}, π_{2}, and π_{3} of GL_{2}. Then there is a unique constant $\gamma \in \mathbb{C}^{\times}$such that

$$
Z\left(M_{w_{6}} f, W\right)=\gamma Z(f, W)
$$

for any $f \in I(\omega)$ and $W \in \mathcal{W}\left(\pi_{1}, \psi\right) \otimes \mathcal{W}\left(\pi_{2}, \psi\right) \otimes \mathcal{W}\left(\pi_{3}, \psi\right)$.
Proof. Because $M_{w_{6}}$ is GSp_{6}-invariant, we see that $(f, W) \mapsto Z\left(M_{w_{6}} f, W\right)$ is also $\mathrm{GL}_{2}^{(3)}$ invariant by Lemma 67. However, the space

$$
\operatorname{Hom}_{\mathrm{GL}_{2}^{(3)}}\left(I(\omega) \otimes \pi_{1} \otimes \pi_{2} \otimes \pi_{3}, \mathbb{C}\right)
$$

is one-dimensional by Proposition 11, so existence of the needed constant γ exists because Z is a nonzero element of the above space by Lemma 68 and hence a basis.

Definition 70. Fix three cuspidal irreducible representations π_{1}, π_{2}, and π_{3} of GL_{2}. Then the γ-factor is the unique $\Gamma\left(\pi_{1} \times \pi_{2} \times \pi_{3}, \psi\right)$ such that

$$
Z\left(M_{w_{6}} f, W\right)=\Gamma\left(\pi_{1} \times \pi_{2} \times \pi_{3}, \psi\right) Z(f, W)
$$

for any $f \in I(\omega)$ and $W \in \mathcal{W}\left(\pi_{1}, \psi\right) \otimes \mathcal{W}\left(\pi_{2}, \psi\right) \otimes \mathcal{W}\left(\pi_{3}, \psi\right)$.
Here are some immediate corollaries of our definition.
Corollary 71. Fix three cuspidal irreducible representations π_{1}, π_{2}, and π_{3} of GL_{2}. Then

$$
\Gamma\left(\pi_{1} \times \pi_{2} \times \pi_{3}, \psi\right)=\frac{1}{\#(Z N)} \sum_{\substack{g=\left(g_{1}, g_{2}, g_{3}\right) \in \mathrm{GL}_{2}^{(3)} \\ \eta_{0} g \eta_{0}^{1}=p w_{6} u \\ p \in P_{6}^{\mathrm{sp}}, u \in U_{6}^{\mathrm{sp}} \\ 39}} \widetilde{\omega}(p) \mathcal{J}_{\pi_{1}, \psi}\left(g_{1}\right) \mathcal{J}_{\pi_{2}, \psi}\left(g_{2}\right) \mathcal{J}_{\pi_{3}, \psi}\left(g_{3}\right)
$$

Proof. Let $f_{0} \in I(\omega)$ be the vector supported on $P_{6}^{\mathrm{sp}} \eta_{0}$ and defined by $f\left(p \eta_{0}\right)=\widetilde{\omega}(p)$ for each $p \in P_{6}^{\text {sp }}$. Then the proof of Lemma 14 implies that $Z\left(f_{0}, \mathcal{J}\right)=1$ where $\mathcal{J}=$ $\mathcal{J}_{\pi_{1}, \psi} \otimes \mathcal{J}_{\pi_{2}, \psi} \otimes \mathcal{J}_{\pi_{3}, \psi}$. Thus, by definition, we find

$$
\begin{aligned}
& \gamma\left(\pi_{1} \times \pi_{2} \times \pi_{3}, \psi\right)=\sum_{g \in Z N \backslash \mathrm{GL}_{2}^{(3)}} M_{w_{6}} f_{0}\left(\eta_{0} g\right) \mathcal{J}(g) \\
&=\sum_{g \in Z N \backslash \mathrm{GL}}^{2} \\
&\left(\sum_{u \in U_{6}^{\mathrm{sp}}} f_{0}\left(w_{6} u \eta_{0} g\right)\right) \mathcal{J}(g) .
\end{aligned}
$$

Now, $f_{0}\left(w_{6} u g\right) \neq 0$ if and only if we can write $w_{6} u \eta_{0} g=p \eta_{0}$ for some $p \in P_{6}^{\text {sp }}$, which only happens when $\eta_{0} g \eta_{0}^{-1}=u^{-1} w_{6} p$. Such a decomposition of $\eta_{0} g \eta_{0}^{-1}$ in $U_{6}^{\mathrm{sp}} w_{6} P_{6}^{\mathrm{sp}}$ is unique (see, for example, the proof of Lemma 56), so the result follows upon writing out the definition of f_{0}.

Corollary 72. Fix three cuspidal irreducible representations π_{1}, π_{2}, and π_{3} of GL_{2}. Then

$$
\Gamma\left(\pi_{1}^{\vee} \times \pi_{2}^{\vee} \times \pi_{3}^{\vee}, \psi^{-1}\right)=\overline{\Gamma\left(\pi_{1} \times \pi_{2} \times \pi_{3}, \psi\right)}
$$

Proof. This follows immediately from taking the conjugate of both sides of Corollary 71 and noting that

$$
\overline{\mathcal{J}_{\pi, \psi}(g)}=\mathcal{J}_{\pi, \psi}\left(g^{-1}\right)=\mathcal{J}_{\pi^{\vee}, \psi^{-1}}(g)
$$

by [Nie14, Propositions 3.5].
Remark 73. One can use Corollary 72 to compute the magnitude of Γ by using the functional equation twice, but doing this requires adjusting the functional equation somewhat. In particular, one is able to show that Γ is nonzero upon checking that none of the eigenvalues of $M_{w_{6}} \circ M_{w_{6}}$ are zero as done in Example 64 .

5. Comparison with Local Field Scenario

The Local Langlands Correspondence gives us access to gamma factor on the Galois side, which are better understood as in $\S 6$, from the local p-adic scenario. In order to gain access to the Galois side from our current scenario over finite fields, we will demonstrate a way to lift our functional equation over finite fields to one over local p-adic fields, hence relating their respective gamma factors.

In this section, K is a local p-adic field, \mathcal{O}_{K} is the ring of integers of $K, \mathfrak{p} \subset \mathcal{O}_{K}$ is the prime ideal of $\mathcal{O}_{K}, k:=\mathcal{O}_{K} / \mathfrak{p}$ is the residue field of $K, q=|k|$, and $\nu: \mathcal{O}_{K} \rightarrow k$ is the valuation map. We will also denote ν as the valuation map on $\mathrm{GL}_{n}\left(\mathcal{O}_{K}\right)$, where the valuation is taken entry-wise. Additionally, we define once and for all an additive character $\psi: K \rightarrow \mathbb{C}^{\times}$with conductor \mathfrak{p}. As such, the restriction of ψ to \mathcal{O}_{K} induces a character on k, which by abuse of notation we will also label as ψ.

By convention, we set Haar measure $d x$ on K so that $\operatorname{vol}(\mathfrak{p})=1$, and we set Haar measure $d^{\times} x$ on K^{\times}by $d^{\times} x:=d x /|x|$. Later on we will also want a Haar measure on $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$, which we normalize so that

$$
\operatorname{vol}\left(\left\{\left[\begin{array}{cc}
1+a & b \\
c & 1+d
\end{array}\right] \in \underset{40}{\left.\left.\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right): a, b, c, d \in \mathfrak{p}\right\}\right)=1 . . . ~}\right.\right.
$$

All the listed groups are unimodular (in particular, either abelian or compact), so their left and right Haar measures align.
5.1. Review of Level Zero Representations. Given an irreducible cuspidal representation of $\mathrm{GL}_{n}(k)$ and some nonzero complex number $z \in \mathbb{C}^{\times}$, we can produce an irreducible supercuspidal representation of $\mathrm{GL}_{n}(K)$. Such representations of $\mathrm{GL}_{n}(K)$ are called of level zero.

Definition 74 (Level Zero Representation). A representation π of $\mathrm{GL}_{n}(K)$ is of level zero if there exists an irreducible cuspidal representation σ of $\mathrm{GL}_{n}(k)$ and a representation Λ of $K^{\times} \cdot \mathrm{GL}_{n}(\mathcal{O})$ such that $\left.\Lambda\right|_{\mathrm{GL}_{n}(\mathcal{O})}=\sigma \circ \nu$ and

$$
\pi \cong \operatorname{ind}_{K \times\left(\mathrm{GL}_{n}(\mathcal{O})\right.}^{\mathrm{GL}_{n}(K)} \Lambda,
$$

where ind is smooth compact induction.
The representation Λ, and hence the representation π, can be recovered given just σ, which determines Λ on $\operatorname{GL}_{n}(\mathcal{O})$, and the central character ω_{Λ} of Λ. Likewise, ω_{Λ} is determined by the central character of σ and $s:=\omega_{\Lambda}(\varpi) \in \mathbb{C}^{\times}$. By [BK93, Theorem 8.4.1], this map $(\sigma, s) \mapsto \pi$ is a bijection to level zero representations of $\mathrm{GL}_{n}(K)$. The fact that π is irreducible supercuspidal also comes from [BK93].

Given this bijection, we may unambiguously denote a level zero representation as (σ, s) or σ_{s}, where σ is an irreducible cuspidal representation of $\mathrm{GL}_{n}(k)$ and $s \in \mathbb{C}^{\times}$.
5.2. Lifting the Zeta Sum. Throughout this subsection, we fix cuspidal representations $\pi_{1}, \pi_{2}, \pi_{3}$ of $\mathrm{GL}_{2}(k)$ which lift to level-zero supercuspidal representations $\Pi_{1}, \Pi_{2}, \Pi_{3}$ of $\mathrm{GL}_{2}(K)$ as described in section 5.1. By convention, we write $\lambda_{i}:=\omega_{\Pi_{i}}(\varpi)$, so the pair $\left(\pi_{i}, \lambda_{i}\right)$ uniquely determines Π_{i}.

In this subsection, we examine how one can relate the finite-field Z-sum defined in section 4.5 with its local counterpart. This lifting process must be done in steps: we must know how to lift Whittaker functions, we must know to lift elements of $I(\omega)$, and lastly we must compare the Z-sum with the Z-integral.

To begin, we describe how to lift Whittaker functions.
Proposition 75 ([YZ20, Proposition 3.9]). Let Π be a level-zero supercuspidal representation of $\mathrm{GL}_{2}(K)$ arising from the cuspidal representation π of $\mathrm{GL}_{2}(k)$ and $\lambda:=\omega_{\Pi}(\varpi)$. For any Whittaker function $W \in \mathcal{W}(\pi, \psi)$, there is a Whittaker function $\mathcal{L} W \in \mathcal{W}(\Pi, \psi)$ supported on $U_{2}(K) K^{\times} \mathrm{GL}_{2}\left(\mathcal{O}_{K}\right)$ such that

$$
\mathcal{L} W(u z g)=\psi(u) \omega_{\Pi}(z) W(\nu(g))
$$

for any $u \in U_{2}(K)$ and $z \in K^{\times}$and $g \in \mathrm{GL}_{2}\left(\mathcal{O}_{K}\right)$.
Next up, we must lift $f \in I\left(\omega_{\pi}\right)$ to $\mathcal{L} f \in I\left(\omega_{\Pi}, s, t\right)$. For brevity, given complex numbers $s, t \in \mathbb{C}$, we define $I\left(\omega_{\Pi}, s, t\right)$ as containing right $\operatorname{GSp}_{6}\left(\mathcal{O}_{K}\right)$-finite functions $f: \operatorname{GSp}_{6}(K) \rightarrow \mathbb{C}$ such that

$$
f\left(\left[\begin{array}{cc}
\lambda A & * \\
& A^{\iota}
\end{array}\right] g\right)=\omega_{\Pi 1}(\lambda \operatorname{det} A)|\lambda|^{s}|\operatorname{det} A|^{t} f(g)
$$

For brevity, we define

$$
\omega_{\Pi, s, t}\left(\left[\begin{array}{cc}
\lambda A & * \\
& A^{\iota}
\end{array}\right]\right):=\omega_{\Pi}(\lambda \operatorname{det} A)|\lambda|^{s}|\operatorname{det} A|^{t} .
$$

We are now ready to state our lifting result.
Proposition 76. Fix notation as above, and let $f \in I\left(\omega_{\pi}\right)$. Then there is a function $\mathcal{L}_{s, t} f \in I\left(\omega_{\Pi}, s, t\right)$ supported on $P_{6}^{\mathrm{sp}}(K) \operatorname{GSp}_{6}\left(\mathcal{O}_{K}\right)$ such that

$$
\mathcal{L}_{s, t} f\left(\left[\begin{array}{cc}
\lambda A & * \\
& A^{\iota}
\end{array}\right] g\right)=\omega_{\Pi}(\lambda \operatorname{det} A)|\lambda|^{s}|\operatorname{det} A|^{t} f(\nu(g))
$$

for any $\left[\begin{array}{cc}\lambda A & A^{\star}\end{array}\right] \in P_{6}^{\mathrm{sp}}(K)$ and $g \in \operatorname{GSp}_{6}\left(\mathcal{O}_{K}\right)$.
Proof. To begin, define a function $f_{0}: \operatorname{GSp}_{6}(K) \rightarrow \mathbb{C}$ by

$$
f_{0}(g):= \begin{cases}f_{0}(\nu(g)) & \text { if } g \in \operatorname{GSp}_{6}\left(\mathcal{O}_{K}\right) \\ 0 & \text { if } g \notin \operatorname{GSp}_{6}\left(\mathcal{O}_{K}\right)\end{cases}
$$

By construction, $f_{0}(h g)=\omega_{\pi}(\nu(h)) f_{0}(g)$ for any $h \in P_{6}^{\mathrm{sp}}\left(\mathcal{O}_{K}\right)$ and $g \in \operatorname{GSp}_{6}(K)$. This allows us to define

$$
\mathcal{L}_{s, t} f(g):=\int_{P_{6}^{\mathrm{sp}}\left(\mathcal{O}_{K}\right) \backslash P_{6}^{\mathrm{sp}}(K)} \omega_{\Pi, s, t}(h)^{-1} f_{0}(h g) d h .
$$

The left-invariance property of f_{0} by $P_{6}^{\mathrm{sp}}\left(\mathcal{O}_{K}\right)$ implies that this integral is well-defined (i.e., the integrand does not depend on choice of representative of $\left.P_{6}^{\mathrm{sp}}\left(\mathcal{O}_{K}\right) \backslash P_{6}^{\mathrm{sp}}(K)\right)$. It remains to check that $\mathcal{L} f$ satisfies the needed symmetry conditions. To begin, for $h_{0} \in P_{6}^{\mathrm{sp}}$ and $g \in \operatorname{GSp}_{6}(K)$, we compute

$$
\begin{aligned}
\mathcal{L}_{s, t} f\left(h_{0} g\right) & =\int_{P_{6}^{\mathrm{sp}}\left(\mathcal{O}_{K}\right) \backslash P_{6}^{\mathrm{sp}}(K)} \omega_{\Pi, s, t}(h)^{-1} f_{0}\left(h h_{0} g\right) d h \\
& =\int_{P_{6}^{\mathrm{sp}}\left(\mathcal{O}_{K}\right) \backslash P_{6}^{\mathrm{sp}}(K)} \omega_{\Pi, s, t}\left(h h_{0}^{-1}\right)^{-1} f_{0}(h g) d h \\
& =\omega_{\Pi, s, t}\left(h_{0}\right) \mathcal{L}_{s, t} f(g) .
\end{aligned}
$$

Additionally, we see that $\mathcal{L}_{s, t} f(g)=f_{0}(g)=f(\nu(g))$ for any $g \in \operatorname{GSp}_{6}\left(\mathcal{O}_{K}\right)$, which when combined with $\mathcal{L}_{s, t} f \in I(\omega, s)$ completes the proof.

Remark 77. By the Iwasawa decomposition, $\operatorname{GSp}_{6}(K)=P_{6}^{\mathrm{sp}}(K) \operatorname{GSp}_{6}\left(\mathcal{O}_{K}\right)$, so the support of $\mathcal{L}_{s, t} f$ is not hindered by this condition.

The last piece we need before our theorem is to recall the definition of the Z-integral. For brevity, let $\mathcal{W}(\Pi, \psi)$ consist of functions of the form $W:=W_{1} \otimes W_{2} \otimes W_{3}$ where $W_{i} \in \mathcal{W}\left(\Pi_{i}, \psi\right)$ for $i \in\{1,2,3\}$; then define $\mathcal{L} W$ to be the corresponding lift. Then for $f \in I\left(\omega_{\Pi}, s, t\right)$ and $W \in \mathcal{W}(\Pi, \psi)$, one defines

$$
Z(f, W):=\int_{Z(K) N_{0}(K) \backslash \operatorname{GL}_{2}^{(3)}(K)} f\left(\eta_{0} g\right) W(g) d g
$$

This integral absolutely converges for $\operatorname{Re} s, t \gg 0$. We are now ready to prove our result.

Theorem 78. Fix notation and Haar measures as above. Then for $\operatorname{Re} s, t \gg 0$ and any $f \in I(\omega)$ and $W \in \mathcal{W}(\pi, \psi)$, we have

$$
Z\left(\mathcal{L}_{s, t} f, \mathcal{L} W\right)=(q-1) Z(f, W)
$$

Proof. We compute $Z\left(\mathcal{L}_{s, t} f, \mathcal{L} W\right)$ directly. As in [Ike89, section 3.1], we note that each element of $Z(K) N_{0}(K) \backslash \mathrm{GL}_{2}^{(3)}(K)$ is represented by a matrix of the form

$$
g:=\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right]\left[\begin{array}{ll}
1 & b \\
& 1
\end{array}\right]\left[\begin{array}{ll}
x & \\
& x^{-1}
\end{array}\right] g_{1},\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{2},\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right]\left[\begin{array}{ll}
y & \\
& y^{-1}
\end{array}\right] g_{3}\right)
$$

where $a, x, y \in K^{\times}$and $b \in K$ and $g_{1}, g_{2}, g_{3} \in \mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$. In this case, the Haar measure $d g$ becomes $|a x y|^{-2} d^{\times} a d^{\times} x d^{\times} y d b d g_{1} d g_{2} d g_{3}$. Now, to have $W(g) \neq 0$, we claim that $a, x, y \in$ \mathcal{O}_{K}^{\times}. We take this in cases.

- We show that $a \in \mathcal{O}_{K}^{\times}$. The main point is that we need [$\left.{ }^{a}{ }_{1}\right] g_{2}$ to live in the support of W_{2}, which is $U_{2}(K) K^{\times} \mathrm{GL}_{2}\left(\mathcal{O}_{K}\right)$, so we must have

$$
z\left[\begin{array}{ll}
1 & u \\
& 1
\end{array}\right]\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] \in \mathrm{GL}_{2}\left(\mathcal{O}_{K}\right)
$$

for some $z, u \in K$. The matrix is upper-triangular, and the diagonal entries are $a z$ and z, so we see that $z \in \mathcal{O}_{K}^{\times}$and then $a \in \mathcal{O}_{K}^{\times}$are forced.

- We show $x \in \mathcal{O}_{K}^{\times}$; the argument that $y \in \mathcal{O}_{K}^{\times}$is similar. Once again, the main point is that $\left[\begin{array}{c}a \\ \\ \end{array}\right]\left[\begin{array}{cc}1 & b \\ & 1\end{array}\right]\left[\begin{array}{cc}x & x^{-1}\end{array}\right] g_{1}$ to live in the support of W_{1}, so we must have

$$
z\left[\begin{array}{ll}
1 & u \\
& 1
\end{array}\right]\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right]\left[\begin{array}{ll}
1 & b \\
& 1
\end{array}\right]\left[\begin{array}{ll}
x & \\
& x^{-1}
\end{array}\right] \in \mathrm{GL}_{2}\left(\mathcal{O}_{K}\right)
$$

for some $z \in K^{\times}$and $u \in K$. Again, the diagonal entries of this matrix are $z a x$ and $z x^{-1}$; because $a \in \mathcal{O}_{K}^{\times}$, we see that $z x, z x^{-1} \in \mathcal{O}_{K}^{\times}$. Thus,

$$
|x|=\sqrt{|z x| /\left|z x^{-1}\right|}=1,
$$

so $x \in \mathcal{O}_{K}^{\times}$follows.
We now apply the variable substitution $\left[\begin{array}{c}x \\ x^{-1}\end{array}\right] g_{1} \mapsto g_{1}$ and $\left[\begin{array}{c}y \\ y^{-1}\end{array}\right] g_{3} \mapsto g_{3}$; we do not pick up a modular character from this substitution because $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$ is compact and hence unimodular. At this point, we see $Z\left(\mathcal{L}_{s, t} f, \mathcal{L} W\right)$ equals

$$
\begin{aligned}
& \left(\int_{\mathcal{O}_{K}^{\times}} d^{\times} x\right)^{2} \int_{K} \int_{\mathcal{O}_{K}^{\times}} \int_{\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)^{3}} \mathcal{L}_{s, t} f\left(\eta_{0}\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right]\left[\begin{array}{ll}
1 & b \\
& 1
\end{array}\right] g_{1},\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{2},\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{3}\right)\right) \\
& \mathcal{L} W_{1}\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right]\left[\begin{array}{ll}
1 & b \\
& 1
\end{array}\right] g_{1}\right) \mathcal{L} W_{2}\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{2}\right) \mathcal{L} W_{3}\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{3}\right) d g_{1} d g_{2} d g_{3} d^{\times} a d b .
\end{aligned}
$$

The outside integral evaluates to $(q-1)^{2}$ because of how we have chosen to normalize our Haar measures. We now separate the computation into two cases.

- We integrate over $b \in \mathcal{O}_{K}$; label the relevant contribution $Z_{\mathcal{O}_{K}}\left(\mathcal{L}_{s, t} f, \mathcal{L} W\right)$. In this case, all matrices live in $\mathrm{GL}_{d}\left(\mathcal{O}_{K}\right)$ for suitable dimension d, so the constructions of
$\mathcal{L}_{s, t} f$ and $\mathcal{L} W_{i}$ immediately makes $Z_{\mathcal{O}_{K}}\left(\mathcal{L}_{s, t} f, \mathcal{L} W\right)$ equal

$$
\begin{aligned}
(q-1)^{2} \sum_{\substack{b \in k, a \in k^{\times} \\
g_{1}, g_{2}, g_{3} \in \mathrm{SL}_{2}(k)}} f\left(\eta_{0}\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right]\left[\begin{array}{ll}
1 & b \\
& 1
\end{array}\right] g_{1},\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{2},\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{3}\right)\right) \\
W_{1}\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right]\left[\begin{array}{ll}
1 & b \\
& 1
\end{array}\right] g_{1}\right) W_{2}\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{2}\right) W_{3}\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{3}\right) .
\end{aligned}
$$

Notably, the Haar measure $d^{\times} a$ is simply $d a$ on \mathcal{O}_{K}^{\times}, and $d g$ on $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$ was constructed to make this integration work as above. Anyway, rearranging by sending $\left[\begin{array}{cc}1 & b \\ 1\end{array}\right] g_{1} \mapsto g_{1}$, we see that $Z_{\mathcal{O}_{K}}\left(\mathcal{L}_{s, t} f, \mathcal{L} W\right)$ equals

$$
\begin{array}{r}
q(q-1)^{2} \sum_{\substack{a \in k^{\times} \\
g_{1}, g_{2}, g_{3} \in \mathrm{SL}_{2}(k)}} f\left(\eta_{0}\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{1},\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{2},\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{3}\right)\right) \\
W_{1}\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{1}\right) W_{2}\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{2}\right) W_{3}\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{3}\right)
\end{array}
$$

At this point, we recognize that we have the following bijections.

$$
\begin{aligned}
& k^{\times} \times \mathrm{SL}_{2}(k) \times \mathrm{SL}_{2}(k) \times \mathrm{SL}_{2}(k) \cong \mathrm{GL}_{2}^{(3)}(k) \\
& \left(a, \underset{g_{1}}{ }, \quad, \quad g_{2}, g_{3}\right) \mapsto\left(\left[{ }^{a}{ }_{1}\right] g_{1},\left[\begin{array}{l}
a \\
1
\end{array}\right] g_{2},\left[\begin{array}{l}
a \\
1
\end{array}\right] g_{3}\right) \\
& \left(\operatorname{det} g_{1},\left[\begin{array}{ll}
1 / \operatorname{deg} g_{1} & 1
\end{array}\right] g_{1},\left[\begin{array}{ll}
1 / \operatorname{deg} g_{1} & 1 \\
&]^{2},\left[\begin{array}{lll}
1 / \operatorname{deg} g_{1} & 1
\end{array}\right] g_{3}\right) \hookleftarrow \quad\left(g_{1}, g_{2}, g_{3}\right)
\end{array}\right.\right.
\end{aligned}
$$

Thus, we see that $Z_{\mathcal{O}_{K}}\left(\mathcal{L}_{s, t} f, \mathcal{L} W\right)$ equals

$$
q(q-1)^{2} \sum_{g \in \mathrm{GL}_{2}^{(3)}(k)} f\left(\eta_{0} g\right) W(g) .
$$

Modding out by $Z(k) N_{0}(k)$, which has magnitude $q(q-1)$, we see that this equals $(q-1) Z(f, W)$.

- We integrate over $b \notin \mathcal{O}_{K}$; label the relevant contribution $Z_{K \backslash \mathcal{O}_{K}}\left(\mathcal{L}_{s, t} f, \mathcal{L} W\right)$. We would like to move b as far as out as possible to gain better control of it. As such, we note

$$
\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right]\left[\begin{array}{ll}
1 & b \\
& 1
\end{array}\right]=\left[\begin{array}{cc}
1 & a b \\
& 1
\end{array}\right]\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right]
$$

and so apply the substitution $a b \mapsto b$; note $|a|=1$, so $d b$ does not change. Doing so tells us that $Z_{K \backslash \mathcal{O}_{K}}\left(\mathcal{L}_{s, t} f, \mathcal{L} W\right)$ equals

$$
\begin{aligned}
& (q-1)^{2} \int_{K \backslash \mathcal{O}_{K}} \int_{\mathcal{O}_{K}^{\times}} \int_{\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)^{3}} \mathcal{L}_{s, t} f\left(\eta_{0}\left(\left[\begin{array}{ll}
1 & b \\
& 1
\end{array}\right]\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{1},\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{2},\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{3}\right)\right) \\
& \quad \psi(b) \mathcal{L} W_{1}\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{1}\right) \mathcal{L} W_{2}\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{2}\right) \mathcal{L} W_{3}\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{3}\right) d g_{1} d g_{2} d g_{3} d^{\times} a d b .
\end{aligned}
$$

We now apply an Iwasawa decomposition to move the b outside $\mathcal{L}_{s, t} f$. Explicitly, we find

$$
\eta_{0}\left(\left[\begin{array}{ll}
1 & b \\
& 1
\end{array}\right], 1,1\right)=\left(\left[\begin{array}{cc}
1 / b & -1 \\
& b
\end{array}\right], 1,1\right)\left(\left[\begin{array}{cc}
& 1 \\
-1 & 1 / b
\end{array}\right], 1,1\right) \eta_{0}
$$

so $Z_{K \backslash \mathcal{O}_{K}}\left(\mathcal{L}_{s, t} f, \mathcal{L} W\right)$ equals

$$
\begin{aligned}
(q-1)^{2} & \int_{K \backslash \mathcal{O}_{K}} \int_{\mathcal{O}_{K}^{\times}} \int_{\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)^{3}} \omega_{\Pi, s, t}\left(\left(\left[\begin{array}{cc}
1 / b & -1 \\
& b
\end{array}\right], 1,1\right)\right) \psi(b) \\
& \mathcal{L}_{s, t} f\left(\left(\left[\begin{array}{cc}
-1 & 1 / b
\end{array}\right], 1,1\right) \eta_{0}\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{1},\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{2},\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{3}\right)\right) \\
& \mathcal{L} W_{1}\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{1}\right) \mathcal{L} W_{2}\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{2}\right) \mathcal{L} W_{3}\left(\left[\begin{array}{ll}
a & \\
& 1
\end{array}\right] g_{3}\right) d g_{1} d g_{2} d g_{3} d^{\times} a d b .
\end{aligned}
$$

Now, $1 / b \in \mathfrak{p}$, so b does not impact any of the last two lines above, so factoring out the integral on b and arguing as in the previous case, we see that $Z_{K \backslash \mathcal{O}_{K}}\left(\mathcal{L}_{s, t} f, \mathcal{L} W\right)$ equals

It remains to compute the integral I. This computation is somewhat technical. Evaluating $\omega_{\Pi, s, t}$ and "stratifying" by $|b|$, this integral is

$$
\begin{aligned}
I & =\int_{K \backslash \mathcal{O}_{K}} \omega_{\Pi}(1 / b)|1 / b|^{t} \psi(b) d b \\
& =\int_{K \backslash \mathcal{O}_{K}} \omega_{\Pi}(b)^{-1}|b|^{-t-1} \psi(b) d^{\times} b \\
& =\sum_{r=1}^{\infty} \int_{|b|=q^{r}} \omega_{\Pi}(b)^{-1}|b|^{-t-1} \psi(b) d^{\times} b .
\end{aligned}
$$

Setting $b \mapsto b \varpi^{-r}$ and then noting $d^{\times} b=d b$ on \mathcal{O}_{K}^{\times}yields

$$
\begin{aligned}
I & =\sum_{r=1}^{\infty}\left(\omega_{\Pi}(\varpi)^{r} q^{-r(t+1)} \int_{\mathcal{O}_{K}^{\times}} \omega_{\Pi}(b)^{-1} \psi\left(b \varpi^{-r}\right) d b\right) \\
& =\sum_{r=1}^{\infty}\left(\omega_{\Pi}(\varpi)^{r} q^{-r(t+1)} \sum_{x \in k^{\times}} \int_{x+\mathfrak{p}} \omega_{\Pi}(b)^{-1} \psi\left(b \varpi^{-r}\right) d b\right) \\
& =\sum_{r=1}^{\infty}\left(\omega_{\Pi}(\varpi)^{r} q^{-r(t+1)} \sum_{x \in k^{\times}} \omega_{\pi}(x)^{-1} \psi\left(x \varpi^{-r}\right) \int_{\mathfrak{p}} \psi\left(b \varpi^{-r}\right) d b\right)
\end{aligned}
$$

Now, ψ is a nontrivial character on \mathcal{O}_{K}, so for $r \geq 1$, we see that $b \mapsto \psi\left(b \varpi^{-r}\right)$ is a nontrivial character on $\mathfrak{p}^{r}=\varpi^{r} \mathcal{O}_{K}$ and hence on \mathfrak{p}. Thus, the integral vanishes, meaning we have no contribution in this case.

Tallying the contributions from the above cases completes the proof.
5.3. Lifting the Intertwining Operator. Using notation from section 4.1, recall $U_{2 n}^{+}$is the unipotent radical, $U_{2 n}^{-}$its analogue for lower triangular matrices, and $U_{w}^{-}:=U_{2 n}^{+} \cap w U_{2 n}^{-} w^{-1}$ for any Weyl group element $w \in W\left(\mathrm{GSp}_{2 n}\right)$. We have defined an intertwining operator
$M_{w_{2 n}}: \operatorname{Ind}_{B_{2 n}^{\text {p }}(k)}^{\mathrm{GSp}_{2 n}(k)} \chi \rightarrow \operatorname{Ind}_{B_{2 n}^{\text {p }}(k)}^{\mathrm{GSp}_{2 n}(k)} w_{2 n} \chi$ using the long Weyl element, namely

$$
\left(M_{w_{2 n}} f\right)(g):=\sum_{u \in U_{w_{2 n}}^{-}(k)} f\left(w_{2 n} u g\right),
$$

where ${ }^{w} \chi(g):=\chi\left(w^{-1} g w\right)$. The analogous intertwining operator in the local p-adic case is an operator $\widetilde{M}_{w_{2 n}}^{\chi}: \operatorname{ind}_{B_{2 n}^{\text {s. }}(K)}^{\mathrm{GSp}_{2 n}(K)} \chi \rightarrow \operatorname{ind}_{B_{2 n}^{\text {sp }}(K)}^{\mathrm{GSp}_{2 n}(K)} w_{2 n} \chi$ given by

$$
\left(\widetilde{M}_{w_{2 n}}^{\chi} f\right)(g):=\int_{U_{w_{2 n}}^{-}(K)} f\left(w_{2 n} u g\right) d u
$$

We may similarly define an intertwining operator for any Weyl group element $w \in W\left(\mathrm{GSp}_{2 n}\right)$, but we use the operator associated to $w_{2 n}$ in our functional equation producing the triple product gamma factor.

Our present objective is to relate $M_{w_{2 n}}: \operatorname{Ind}_{B_{2 n}^{s p}(k)}^{\mathrm{GSp}_{2 n}(k)} \chi \rightarrow \operatorname{Ind}_{B_{2 n}^{\mathrm{sp}}(k)}^{\mathrm{GSp}_{2 n}(k)} w_{2 n} \chi$ over finite field with the intertwining operator $\widetilde{M}_{w_{2 n}}^{\chi}$ for $n=3$ and $\chi=\omega_{\Pi, s, t}$. We will first work for general χ, then determine what happens for $\chi=\omega_{\Pi, s, t}$.

Following the convention of [Cas75], if $\sigma: B_{2 n}^{\mathrm{sp}} \rightarrow \mathrm{GL}(W)$ is a representation, we will define smooth compact induction as
$\operatorname{ind}_{B_{2 n}^{\mathrm{sp}}}^{\mathrm{GSp}_{2 n}} \sigma:=\left\{f: \mathrm{GSp}_{2 n} \rightarrow W\right.$ locally compact $\left.\mid f(b g)=\sigma(b) \delta_{B}^{1 / 2}(b) f(g) \forall b \in B_{2 n}^{\mathrm{sp}}, g \in \mathrm{GSp}_{2 n}\right\}$.
For all practical purposes, $\sigma=\chi$ will be a character on $B_{2 n}^{\mathrm{sp}}$. One can routinely compute the modular quasicharacter δ_{B} of B_{6}^{sp} to be

$$
\delta_{B}\left(\left[\begin{array}{cccccc}
\lambda x_{1} & & & & & \\
& \lambda x_{2} & & & * & \\
& & \lambda x_{3} & & & \\
& & & x_{1}^{-1} & & \\
& & & & x_{2}^{-1} & \\
& & & & & x_{3}^{-1}
\end{array}\right]\right)=|\lambda|^{6}\left|x_{1}\right|^{6}\left|x_{2}\right|^{4}\left|x_{3}\right|^{2} .
$$

It is difficult to interface with our intertwining operator $\widetilde{M}_{w_{2 n}}^{\chi}$ directly. Instead, the name of the game will be to decompose $\widetilde{M}_{w_{2 n}}^{\chi}$ into intertwining operators $\widetilde{M}_{s_{i}}^{\chi}$ associated to simple reflections s_{i}, and then track our lifted test function through each simple reflection.

The Weyl group $W\left(\mathrm{GSp}_{6}\right)$ is of Cartan type C_{3} and thus has three simple reflections s_{1}, s_{2}, s_{3}, defined below.

Since we wish to work with each $\widetilde{M}_{s_{i}}^{\chi}$, which is an integral over $U_{s_{i}}^{-}$, it is useful to provide these sets explicitly. Following the definition $U_{s_{i}}^{-}:=U_{6}^{+} \cap s_{i} U_{6}^{-} s_{i}^{-1}$, we can compute

$$
\left.\begin{array}{l}
U_{s_{1}}^{-}=\left\{\left[\begin{array}{cccccc}
1 & -x & & & & \\
& 1 & & & & \\
& & 1 & & & \\
& & & 1 & & \\
& & & x & 1 & \\
& & & & & 1
\end{array}\right]: x \in K\right. \\
U_{s_{2}}^{-}=\left\{\left[\begin{array}{lllll}
1 & & & & \\
& 1 & -x & & \\
& & 1 & & \\
& & & 1 & \\
& & & & 1 \\
& & & & x
\end{array}\right]: x \in K\right.
\end{array}\right]
$$

As Weyl group elements, one can compute $w_{6}=s_{3} s_{2} s_{1} s_{3} s_{2} s_{3}$. (As elements of GSp_{6}, the two sides differ by a maximal torus element.) This decomposition of w_{6} in $W\left(\mathrm{GSp}_{6}\right)$ translates to a decomposition of $\widetilde{M}_{w_{6}}^{\chi}$ in the Hecke algebra, namely

$$
\widetilde{M}_{w_{6}}^{\chi} \mathcal{L} f=\widetilde{M}_{s_{3}}^{s_{2} s_{1} s_{3} s_{2} s_{3}} \chi \widetilde{M}_{s_{2}}^{s_{1} s_{3} s_{2} s_{3}} \chi \widetilde{M}_{s_{1}}^{s_{3} s_{2} s_{3}} \chi \widetilde{M}_{s_{3}}^{s_{2} s_{3}} \chi \widetilde{M}_{s_{2}}^{s_{3}} \chi \widetilde{M}_{s_{3}}^{\chi} \mathcal{L} f .
$$

We will describe these twisted characters. Fix any Borel character $\chi:=\tau_{z_{m}} \otimes \alpha_{z_{1}} \otimes \beta_{z_{2}} \otimes \mu_{z_{3}}$, where

$$
\chi\left(\left[\begin{array}{ccccc}
\lambda x_{1} & & & & \\
& \lambda x_{2} & & & * \\
& & \lambda x_{3} & & \\
& & & x_{1}^{-1} & \\
& & & & x_{2}^{-1} \\
\\
& & & & \\
& x_{3}^{-1}
\end{array}\right]\right)=\tau(\lambda) \alpha\left(x_{1}\right) \beta\left(x_{2}\right) \mu\left(x_{3}\right)|\lambda|^{z_{m}}\left|x_{1}\right|^{z_{1}}\left|x_{2}\right|^{z_{2}}\left|x_{3}\right|^{z_{3}} .
$$

(In fact, all characters of the Borel subgroup are induced from characters on the maximal split torus, hence are of this form.) Then, we may describe the twisted characters on each component:

$$
\begin{aligned}
{ }^{s_{3}} \chi & =\tau \mu_{z_{m}-z_{3}}^{-1} \otimes \alpha_{z_{1}} \otimes \beta_{z_{2}} \otimes \mu_{-z_{3}}^{-1} \\
{ }^{s_{2} s_{3}} \chi & =\tau \mu_{z_{m}-z_{3}}^{-1} \otimes \alpha_{z_{1}} \otimes \mu_{-z_{3}}^{-1} \otimes \beta_{z_{2}} \\
{ }_{s_{2} s_{3} s_{3}} \chi & =\tau \beta^{-1} \mu_{z_{m}-z_{2}-z_{3}}^{-1} \otimes \alpha_{z_{1}} \otimes \mu_{-z_{3}}^{-1} \otimes \beta_{-z_{2}}^{-1} \\
{ }^{s_{1} s_{3} s_{2} s_{3}} \chi & =\tau \beta^{-1} \mu_{z_{m}-z_{2}-z_{3}} \otimes \mu_{-z_{3}}^{-1} \otimes \alpha_{z_{1}} \otimes \beta_{-z_{2}}^{-1} \\
{ }_{s_{2} s_{1} s_{3} s_{2} s_{3}} \chi & =\tau \beta^{-1} \mu_{z_{m}-z_{2}-z_{3}}^{-1} \otimes \mu_{-z_{3}}^{-1} \otimes \beta_{-z_{2}}^{-1} \otimes \alpha_{z_{1}}
\end{aligned}
$$

$$
{ }^{w_{6}} \chi=\tau \alpha^{-1} \beta^{-1} \mu_{z_{m}-z_{1}-z_{2}-z_{3}}^{-1} \otimes \mu_{-z_{3}}^{-1} \otimes \beta_{-z_{2}}^{-1} \otimes \alpha_{-z_{1}}^{-1} .
$$

For a representation $\sigma: B_{2 n}^{\mathrm{sp}}(K) \rightarrow \mathrm{GL}(W)$, smooth compact induction is defined as

$$
\operatorname{ind}_{B_{2 n}^{\mathrm{sp}}(K)}^{\mathrm{GSp}_{2 n}(K)} \sigma:=\left\{f: \mathrm{GSp}_{2 n} \rightarrow W \mid f(b g)=\delta_{B}^{1 / 2}(b) \sigma(b) f(g) \forall b \in B_{2 n}^{\mathrm{sp}}\right\}
$$

Given a character $\chi_{0}=\tau \otimes \alpha_{1} \otimes \cdots \otimes \alpha_{n}$ of $B_{2 n}^{\mathrm{sp}}(k)$, some lifting $\chi=\tau_{z_{m}} \otimes\left(\alpha_{1}\right)_{z_{1}} \otimes \cdots \otimes\left(\alpha_{n}\right)_{z_{n}}$ character of $B_{2 n}^{\mathrm{sp}}(K)$, a function $f \in \operatorname{Ind}_{B_{2 n}^{\mathrm{p}}(k)}^{\mathrm{GSp}_{2 n}(k)} \chi_{0}$, and its corresponding inflation f_{0} : $\mathrm{GSp}_{2 n}(K) \rightarrow \mathbb{C}$ as defined in the proof of Proposition 76, we see that the lifting of functions given by

$$
\mathcal{L} f(g):=\int_{B_{2 n}^{\mathrm{sp}}\left(\mathcal{O}_{K}\right) \backslash B_{2 n}^{\mathrm{sp}}(K)} \delta_{B}^{-1 / 2} \chi^{-1}(b) f_{0}(b g) d b
$$

satisfies $\mathcal{L} f \in \operatorname{ind}_{B_{2 n}^{\mathrm{p}}(K)}^{\mathrm{GSp}_{2 n}(K)} \chi$ and $\left.\mathcal{L} f\right|_{\operatorname{GSp}_{2 n}\left(\mathcal{O}_{K}\right)}=\left.f_{0}\right|_{\operatorname{GSp}_{2 n}\left(\mathcal{O}_{K}\right)}$.
We are now ready to relate each $\widetilde{M}_{s_{i}}^{\chi} \mathcal{L} f$ to its corresponding intertwining operator $M_{s_{i}} f$ over finite fields. To establish notation, let $\chi_{0}=\tau \otimes \alpha \otimes \beta \otimes \mu$, lift it to $\chi=\tau_{z_{m}} \otimes \alpha_{z_{1}} \otimes \beta_{z_{2}} \otimes \mu_{z_{3}}$, and fix $f \in \operatorname{Ind}_{B_{6}^{5}(k)}^{\mathrm{GSp}_{6}(k)}$. For the proceeding computations, we will use the equalities

$$
\begin{aligned}
{\left[\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right]\left[\begin{array}{cc}
1 & -x \\
& 1
\end{array}\right] } & =\left[\begin{array}{ll}
1 / x & 1 \\
& x
\end{array}\right]\left[\begin{array}{cc}
1 & \\
-1 / x & 1
\end{array}\right] \\
{\left[\begin{array}{ll}
-1
\end{array}\right]\left[\begin{array}{ll}
1 & \\
x & 1
\end{array}\right] } & =\left[\begin{array}{cc}
x & \\
-1 & 1 / x
\end{array}\right]\left[\begin{array}{cc}
1 & 1 / x \\
& 1
\end{array}\right] .
\end{aligned}
$$

This is an Iwasawa decomposition when $|x|>1$.
For the following, we may assume our support of $\widetilde{M}_{s_{i}}^{\chi} \mathcal{L} f$ to be $\operatorname{GSp}_{6}\left(\mathcal{O}_{K}\right)$, as for any element $g \in \operatorname{GSp}_{6}(K)$, we can find an Iwasawa decomposition $g=b k$ and factor out the Borel term b using our definition of compact induction. Thus, we can fairly assume $g \in \operatorname{GSp}_{6}\left(\mathcal{O}_{K}\right)$. We have

$$
\begin{aligned}
& \left(\widetilde{M}_{s_{1}}^{\chi} \mathcal{L} f\right)(g)=\int_{U_{s_{1}^{-}}} \mathcal{L} f\left(s_{1}^{-1} u g\right) d u=\int_{K} \mathcal{L}\left(s_{1}^{-1}\left[\begin{array}{ccccc}
1 & -x & & & \\
& 1 & & & \\
& & 1 & & \\
& & 1 & & \\
& & x & 1 & \\
& & & & 1
\end{array}\right] g\right) d x \\
& =\int_{\mathcal{O}_{K}} \mathcal{L} f\left(s_{1}^{-1}\left[\begin{array}{cccccc}
1 & -x & & & & \\
& 1 & & & & \\
& & 1 & & & \\
& & & 1 & & \\
& & & x & 1 & \\
& & & & & 1
\end{array}\right] g\right) d x \\
& +\int_{|x|>1} \mathcal{L} f\left(\left[\begin{array}{ccccccc}
1 / x & 1 & & & & \\
& x & & & & \\
& & 1 & & & \\
& & & x & & \\
& & & -1 & 1 / x & \\
& & & & & 1
\end{array}\right]\left[\begin{array}{cccccc}
1 & & & & \\
-1 / x & 1 & & & & \\
& & 1 & & & \\
& & & 1 & 1 / x & \\
& & & & 1 & \\
& & & & & \\
& & & & &
\end{array}\right] g\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{x \in k} f\left(s_{1}^{-1}\left[\begin{array}{cccccc}
1 & -x & & & & \\
& 1 & & & & \\
& & 1 & & & \\
& & & 1 & & \\
& & & x & 1 & \\
& & & & & 1
\end{array}\right] \nu(g)\right) \\
& +f(\nu(g)) \int_{|x|>1} \delta_{B}^{1 / 2} \cdot \chi\left(\left[\begin{array}{cccccc}
1 / x & 1 & & & & \\
& x & & & & \\
& & 1 & & & \\
& & & x & & \\
& & & & 1 / x & \\
& & & & & 1
\end{array}\right]\right) d x \\
& =\left(M_{s_{1}} f\right)(\nu(g))+f(\nu(g)) \int_{|x|>1} \alpha(x)^{-1}|x|^{-z_{1}} \beta(x)|x|^{z_{2}} \delta_{B}^{1 / 2}\left(\left[\begin{array}{ccc}
1 / x & 1 & \\
& x & \\
& & 1
\end{array}\right]\right)|x| d^{\times} x \\
& =\mathcal{L}\left(M_{s_{1}} f\right)(g)+\mathcal{L} f(g) \int_{|x|>1} \beta \alpha^{-1}(x)|x|^{z_{2}-z_{1}} \cdot\left|\frac{1}{|x|^{2}}\right|^{1 / 2} \cdot|x| d^{\times} x \\
& =\mathcal{L}\left(M_{s_{1}} f\right)(g)+\mathcal{L} f(g) \int_{|x|<1} \alpha \beta^{-1}(x)|x|^{z_{1}-z_{2}} d^{\times} x \\
& =\mathcal{L}\left(M_{s_{1}} f\right)(g)+\mathcal{L} f(g) \sum_{r \geq 1} q^{-r\left(z_{1}-z_{2}\right)} \int_{\mathcal{O}_{K}^{\times}} \alpha \beta^{-1}(x) d^{\times} x \\
& =\mathcal{L}\left(M_{s_{1}} f\right)(g)+\mathcal{L} f(g) \cdot \delta_{\alpha, \beta}(q-1) \frac{q^{z_{2}-z_{1}}}{1-q^{z_{2}-z_{1}}},
\end{aligned}
$$

so we conclude

$$
\widetilde{M}_{s_{1}}^{\chi} \mathcal{L} f=\mathcal{L}\left(M_{s_{1}} f\right)+\delta_{\alpha, \beta} \cdot(q-1) \frac{q^{z_{2}-z_{1}}}{1-q^{z_{2}-z_{1}}} \mathcal{L} f
$$

The procedure for $\widetilde{M}_{s_{2}}^{\chi} \mathcal{L} f$ follows a similar story:

$$
\begin{aligned}
& \left.\left(\widetilde{M}_{s_{2}}^{\chi} \mathcal{L} f\right)(g)=\int_{U_{s_{2}}^{-}} \mathcal{L} f\left(s_{2}^{-1} u g\right) d u=\int_{K} \mathcal{L} f\left(s_{2}^{-1}\left[\begin{array}{ccccc}
1 & & & & \\
& 1 & -x & & \\
& & 1 & & \\
\\
& & & 1 & \\
& & & 1 & \\
& & & & x
\end{array}\right]\right) g\right] d x \\
& =\int_{\mathcal{O}_{K}} \mathcal{L} f\left(s_{2}^{-1}\left[\begin{array}{cccccc}
1 & & & & & \\
& 1 & -x & & & \\
& & 1 & & & \\
& & & 1 & & \\
& & & & 1 & \\
& & & & x & 1
\end{array}\right] g\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{|x|>1} \mathcal{L} f\left(\left[\begin{array}{cccccc}
1 & & & & & \\
& 1 / x & 1 & & & \\
& & x & & & \\
& & & 1 & & \\
& & & & x & \\
& & & & -1 & 1 / x
\end{array}\right]\left[\begin{array}{cccccc}
1 & & & & & \\
& 1 & & & & \\
& -1 / x & 1 & & & \\
& & & 1 & & \\
& & & & 1 & 1 / x \\
& & & & & 1
\end{array}\right] g\right) d x \\
& =\sum_{x \in k} f\left(s_{2}^{-1}\left[\begin{array}{cccccc}
1 & & & & & \\
& 1 & -x & & & \\
& & 1 & & & \\
& & & 1 & & \\
& & & & 1 & \\
& & & & x & 1
\end{array}\right] \nu(g)\right) \\
& +f(\nu(g)) \int_{|x|>1} \delta_{B}^{1 / 2} \cdot \chi\left(\left[\begin{array}{cccccc}
1 & & & & & \\
& 1 / x & 1 & & & \\
& & x & & & \\
& & & 1 & & \\
& & & & x & \\
& & & & -1 & 1 / x
\end{array}\right]\right) d x \\
& =\left(M_{s_{2}} f\right)(\nu(g))+f(\nu(g)) \int_{|x|>1} \beta(x)^{-1}|x|^{-z_{2}} \mu(x)|x|^{z_{3}} \delta_{B}^{1 / 2}\left(\left[\begin{array}{lll}
1 & & \\
& 1 / x & 1 \\
& & x
\end{array}\right]\right)|x| d^{\times} x \\
& =\mathcal{L}\left(M_{s_{2}} f\right)(g)+\mathcal{L} f(g) \int_{|x|>1} \beta^{-1} \mu(x)|x|^{z_{3}-z_{2}}\left|\frac{1}{x^{2}}\right|^{1 / 2} \cdot|x| d^{\times} x \\
& =\mathcal{L}\left(M_{s_{2}} f\right)(g)+\mathcal{L} f(g) \int_{|x|<1} \beta \mu^{-1}(x)|x|^{z_{2}-z_{3}} d^{\times} x \\
& =\mathcal{L}\left(M_{s_{2}} f\right)(g)+\mathcal{L} f(g) \sum_{r \geq 1} q^{r\left(z_{3}-z_{2}\right)} \int_{\mathcal{O}_{K}^{\times}} \beta \mu^{-1}(x) d^{\times} x \\
& =\mathcal{L}\left(M_{s_{2}} f\right)(g)+\mathcal{L} f(g) \cdot \delta_{\beta, \mu}(q-1) \frac{q^{z_{3}-z_{2}}}{1-q^{z_{3}-z_{2}}},
\end{aligned}
$$

so

$$
\widetilde{M}_{s_{2}}^{\chi} \mathcal{L} f=\mathcal{L}\left(M_{s_{2}} f\right)+\delta_{\beta, \mu} \cdot(q-1) \frac{q^{z_{3}-z_{2}}}{1-q^{z_{3}-z_{2}}} \mathcal{L} f .
$$

Finally, we run these simplifications on the intertwining operator for s_{3}.

$$
\left(\widetilde{M}_{s_{3}}^{\chi} \mathcal{L} f\right)(g)=\int_{U_{s_{3}}^{-}} \mathcal{L} f\left(s_{3}^{-1} u g\right) d u=\int_{K} \mathcal{L} f\left(s_{3}^{-1}\left[\begin{array}{cccccc}
1 & & & & & \\
& 1 & & & & \\
& & 1 & & & -x \\
& & & 1 & & \\
& & & 1 & \\
& & & & 1
\end{array}\right] g\right) d x
$$

$$
\begin{aligned}
& =\int_{\mathcal{O}_{K}} \mathcal{L} f\left(s_{3}^{-1}\left[\begin{array}{cccccc}
1 & & & & & \\
& 1 & & & & \\
& & 1 & & & -x \\
& & & 1 & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right] g\right) d x \\
& +\int_{|x|>1} \mathcal{L} f\left(\left[\begin{array}{llllll}
1 & & & & & \\
& 1 & & & & \\
& & 1 / x & & & \\
& & & 1 & & \\
& & & & 1 & \\
& & & & & x
\end{array}\right]\left[\begin{array}{cccccc}
1 & & & & & \\
& 1 & & & & \\
& & 1 & & & \\
& & & & 1 & \\
& & & & & \\
& & & 1 / x & & \\
& &
\end{array}\right] g\right) d x \\
& =\sum_{x \in k} f\left(s_{3}^{-1}\left[\begin{array}{llllll}
1 & & & & & \\
& 1 & & & & \\
& & 1 & & & -x \\
& & & 1 & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right] \nu(g)\right) \\
& +f(\nu(g)) \int_{|x|>1} \delta_{B}^{1 / 2} \cdot \chi\left(\left[\begin{array}{cccccc}
1 & & & & & \\
& 1 & & & & \\
& & 1 / x & & & 1 \\
& & & 1 & & \\
& & & & 1 & \\
& & & & & x
\end{array}\right]\right) d x \\
& =\left(M_{s_{3}} f\right)(\nu(g))+f(\nu(g)) \int_{|x|>1} \mu\left(\frac{1}{x}\right)\left|\frac{1}{x}\right|^{z_{3}}\left(|x|^{-2}\right)^{1 / 2}|x| d^{\times} x \\
& =\mathcal{L}\left(M_{s_{3}} f\right)(g)+\mathcal{L} f(g) \int_{|x|<1} \mu(x)|x|^{z_{3}} d^{\times} x \\
& =\mathcal{L}\left(M_{s_{3}} f\right)(g)+\mathcal{L} f(g) \sum_{r \geq 1} q^{r\left(-z_{3}\right)} \int_{\mathcal{O}_{K}^{\times}} \mu(x) d^{\times} x \\
& =\mathcal{L}\left(M_{s_{3}} f\right)(g)+\mathcal{L} f(g) \cdot \mathbb{1}_{\mu=1}(q-1) \frac{q^{-z_{3}}}{1-q^{-z_{3}}} .
\end{aligned}
$$

To summarize, given a fixed character $\chi=\tau_{z_{m}} \otimes \alpha_{z_{1}} \otimes \beta_{z_{2}} \otimes \mu_{z_{3}}$ of $B_{6}^{\text {sp }}$ and $f \in \operatorname{Ind}_{B_{6}^{\text {sp }}(k)}^{\mathrm{GSp}_{6}(k)} \chi_{0}$,

$$
\begin{aligned}
& \widetilde{M}_{s_{1}}^{\chi} \mathcal{L} f=\mathcal{L}\left(M_{s_{1}} f\right)+\delta_{\alpha, \beta} \cdot(q-1) \frac{q^{z_{2}-z_{1}}}{1-q^{z_{2}-z_{1}}} \mathcal{L} f \\
& \widetilde{M}_{s_{2}}^{\chi} \mathcal{L} f=\mathcal{L}\left(M_{s_{2}} f\right)+\delta_{\beta, \mu} \cdot(q-1) \frac{q^{z_{3}-z_{2}}}{1-q^{z_{3}-z_{2}}} \mathcal{L} f \\
& \widetilde{M}_{s_{3}}^{\chi} \mathcal{L} f=\mathcal{L}\left(M_{s_{3}} f\right)+\mathbb{1}_{\mu=1} \cdot(q-1) \frac{q^{-z_{3}}}{1-q^{-z_{3}}} \mathcal{L} f
\end{aligned}
$$

We can now carefully expand $\widetilde{M}_{w_{6}}^{\chi} \mathcal{L} f=\widetilde{M}_{s_{3}}^{s_{2} s_{1} s_{3} s_{2} s_{3}} \chi \widetilde{M}_{s_{2}}^{s_{1} s_{3} s_{2} s_{3}} \chi \widetilde{M}_{s_{1}}^{s_{3} s_{2} s_{3}} \chi \widetilde{M}_{s_{3}}^{s_{2} s_{3}} \chi \widetilde{M}_{s_{2}}^{s_{3}} \chi \widetilde{M}_{s_{3}}^{\chi} \mathcal{L} f$ using the above three equations. We will also use the relation $M_{s_{3}}^{2}=(q-1) M_{s_{3}}+q$, which
comes from $M_{s_{3}}$ being a generator of the Iwahori-Hecke algebra of $W\left(\mathrm{GSp}_{6}\right)$. Since we hope for χ to come from the product of central characters ω_{π}, we will enforce $\alpha=\beta=\mu=\omega_{\Pi}$. Assuming $\omega_{\Pi} \neq 1$,

$$
\begin{aligned}
\widetilde{M}_{w_{6}}^{\chi} \mathcal{L} f= & \mathcal{L}\left(M_{w_{6}} f\right)+\mathbb{1}_{\omega_{\Pi}^{2}=1} \cdot(q-1)\left(\frac { q ^ { - z _ { 2 } - z _ { 1 } } } { 1 - q ^ { - z _ { 2 } - z _ { 1 } } } \mathcal { L } \left(M_{s_{3}} M_{s_{1}} M_{s_{3}} M_{s_{2}} M_{s_{3}} f\right.\right. \\
& +\frac{q^{-z_{3}-z_{1}}}{1-q^{-z_{3}-z_{1}}} \mathcal{L}\left(M_{s_{3}} M_{s_{2}} M_{s_{3}} M_{s_{2}} M_{s_{3}} f\right)+(q-1) \frac{q^{-z_{3}-z_{2}}}{1-q^{-z_{3}-z_{2}}} \mathcal{L}\left(M_{s_{3}} M_{s_{2}} M_{s_{1}} M_{s_{3}} f\right) \\
& +(q-1)^{2} \frac{q^{-z_{3}-z_{1}}}{1-q^{-z_{3}-z_{1}}}\left(\frac{q^{-z_{2}-z_{1}}}{1-q^{-z_{2}-z_{1}}}+\frac{q^{-z_{3}-z_{2}}}{1-q^{-z_{3}-z_{2}}}\right) \mathcal{L}\left(M_{s_{3}} M_{s_{2}} M_{s_{3}} f\right) \\
& +(q-1)^{2} \frac{\left(q^{-z_{3}-z_{2}}\right)\left(q^{-z_{2}-z_{1}}\right)}{\left(1-q^{-z_{3}-z_{2}}\right)\left(1-q^{-z_{2}-z_{1}}\right)} \mathcal{L}\left(M_{s_{3}} M_{s_{1}} M_{s_{3}} f\right) \\
& +q \frac{q^{-z_{3}-z_{2}}}{1-q^{-z_{3}-z_{2}}} \mathcal{L}\left(M_{s_{3}} M_{s_{2}} M_{s_{1}} f\right) \\
& +(q-1) q \frac{\left(q^{-z_{3}-z_{1}}\right)\left(q^{-z_{2}-z_{1}}\right)}{\left(1-q^{-z_{3}-z_{1}}\right)\left(1-q^{-z_{2}-z_{1}}\right)} \mathcal{L}\left(M_{s_{2}} M_{s_{3}} f\right) \\
& +(q-1) q \frac{\left(q^{-z_{3}-z_{2}}\right)\left(q^{-z_{2}-z_{1}}\right)}{\left(1-q^{-z_{3}-z_{2}}\right)\left(1-q^{-z_{2}-z_{1}}\right)} \mathcal{L}\left(M_{s_{3}} M_{s_{1}} f\right) \\
& +(q-1) q \frac{\left(q^{-z_{3}-z_{2}}\right)\left(q^{-z_{3}-z_{1}}\right)}{\left(1-q^{-z_{3}-z_{2}}\right)\left(1-q^{-z_{3}-z_{1}}\right)} \mathcal{L}\left(M_{s_{3}} M_{s_{2}} f\right) \\
& +(q-1)^{2}\left((q-1)^{2}+q\right) \frac{q^{-z_{3}-z_{2}} q^{-z_{3}-z_{1}} q^{-z_{2}-z_{1}}}{\left(1-q^{-z_{3}-z_{2}}\right)\left(1-q^{-z_{3}-z_{1}}\right)\left(1-q^{-z_{2}-z_{1}}\right)} \mathcal{L}\left(M_{s_{3}} f\right) \\
& \left.+(q-1)^{3} q \frac{q^{-z_{3}-z_{2}} q^{-z_{3}-z_{1}} q^{-z_{2}-z_{1}}}{\left(1-q^{-z_{3}-z_{2}}\right)\left(1-q^{-z_{3}-z_{1}}\right)\left(1-q^{-z_{2}-z_{1}}\right)} \mathcal{L} f\right) .
\end{aligned}
$$

Although we declared $\omega_{\Pi} \neq 1$ to manage the number of error terms, if we were to relieve this assumption (i.e., if we kept track of the error terms contributed by $\widetilde{M}_{s 3}^{\chi}$), then one can show the error term would have common denominator $\left(1-q^{2-z_{1}}\right)\left(1-q^{2-z_{2}}\right)\left(1-q^{2-z_{3}}\right)$. We will use this shortly to identify the poles of the lifted intertwining operator.

Now we choose appropriate values for $z_{m}, z_{1}, z_{2}, z_{3}$. Following [Ike99, p.303-4], we normalize our intertwining operator as

$$
\left(\widetilde{M}_{w_{6}}^{\chi}\right)^{*}:=\gamma(2 s-2, \chi, \psi) \gamma\left(4 s-3, \chi^{2}, \psi\right) \widetilde{M}_{w_{6}}^{\chi}
$$

where the gamma factor is defined by

$$
\gamma(s, \chi, \psi):=\varepsilon(s, \chi, \psi) \frac{L\left(\chi^{-1}, 1-s\right)}{L(\chi, s)}=\varepsilon(s, \chi, \psi) \frac{1-q^{-s} \chi(\varpi)}{1-q^{-(1-s)} \chi(\varpi)^{-1}} .
$$

The normalizing factors $\gamma(2 s-2, \chi, \psi)$ and $\gamma\left(4 s-3, \chi^{2}, \psi\right)$ suggest that $\widetilde{M}_{w_{6}}^{\chi}$ has a pole at $4 s-3=0$ when $\chi^{2}=1$, and an additional pole at $2 s-2=0$ when $\chi=1$.

Again following [Ike99, p.303], we define the degenerate principal series $I(\omega, s)$ as the space of functions $f: \operatorname{GSp}_{6}(K) \rightarrow \mathbb{C}$ such that for any $p=\left[\begin{array}{cc}\lambda A & * \\ & A^{\iota}\end{array}\right]$ and $g \in \operatorname{GSp}_{6}(K)$, we have

$$
f(p g)=\omega(\lambda \operatorname{det} A)|\lambda|^{3 s+3 / 2}|\operatorname{det} A|^{2 s+1} f(g)=\omega_{\Pi, 3 s+3 / 2,2 s+1} f(g)
$$

We will want to apply our intertwining operator on $I\left(\omega_{\Pi}^{\prime}, s\right)$ for some twisting $\omega_{\Pi}^{\prime}:=\left(\omega_{\Pi}\right)_{z_{m}} \otimes$ $\left(\omega_{\Pi}\right)_{z_{1}} \otimes\left(\omega_{\Pi}\right)_{z_{2}} \otimes\left(\omega_{\Pi}\right)_{z_{3}}$ of ω_{Π}. By definition of compact induction, $I\left(\omega_{\Pi}^{\prime}, s\right) \subseteq \operatorname{ind}_{B_{6}^{\mathrm{s}(}(K)}^{\mathrm{GSp}_{6}(K)} \chi$ for a character χ such that $\delta_{B}^{1 / 2} \cdot \chi=\omega_{\Pi, 3 s+3 / 2,2 s+1}^{\prime}$. Using our previous computation of δ_{B}, we have

$$
\chi\left(\left[\begin{array}{cc}
\lambda A & * \\
& A^{\iota}
\end{array}\right]\right)=\omega_{\Pi}(\lambda \operatorname{det} A)|\lambda|^{3 s-3 / 2+z_{m}}\left|x_{1}\right|^{2 s-2+z_{1}}\left|x_{2}\right|^{2 s-1+z_{2}}\left|x_{3}\right|^{2 s+z_{3}},
$$

where A has diagonal entries x_{1}, x_{2}, x_{3}. Let $y_{1}(s):=2 s-2+z_{1}, y_{2}(s):=2 s-1+z_{2}$, $y_{3}(s):=2 s+z_{3}$. The poles for the error term occurring when $\omega_{\Pi}^{2}=1$ happen at each of the following three equalities:

$$
\left\{\begin{array}{l}
y_{2}(s)=-y_{3}(s) \\
y_{2}(s)=-y_{1}(s) \\
y_{3}(s)=-y_{1}(s) .
\end{array}\right.
$$

We expect there to be only one pole at $s=3 / 4$, so these equalities must all be true for $s=3 / 4$. In particular, this yields $y_{1}(3 / 4)=-y_{2}(3 / 4)=y_{3}(3 / 4)=-1 / 2$. Solving for the z_{i} 's accordingly, we have

$$
z_{1}=\frac{1}{2}, \quad z_{2}=-\frac{1}{2}, \quad z_{3}=-\frac{3}{2}
$$

so these are our values for z_{1}, z_{2}, z_{3}. Our choice for z_{m} is inconsequential, so we may freely set $z_{m}=0$.

6. Gamma Factors from the Galois Side

Although this project aims to perform all computations strictly on the representation theory side, certain powerful correspondences between the representation/automorphic side and the Galois side allow us to "preview" our results from the Galois side.

To elaborate, let K be a local p-adic field and k its residue field, which we know to be finite. There is a way to lift a representation of $\mathrm{GL}_{n}(k)$ to a certain class of representations of $\mathrm{GL}_{n}(K)$, and the Local Langlands Correspondence gives us a bijection between irreducible admissible complex representations of $\mathrm{GL}_{n}(K)$ and certain representations of the Weil group, called Weil-Deligne representations. These are our central objects of interest on the Galois side, which we introduce first.

Along each correspondence, we have explicit relations between the epsilon factors. Thus, computations of epsilon factors of Weil-Deligne representations will inform us on the epsilon factor of representations of $\mathrm{GL}_{2} \times \mathrm{GL}_{2} \times \mathrm{GL}_{2}$, up to sign and power of $q=|k|$.

We will adopt the same notation as in the previous section. Additionally, let k_{n} be the (unique) degree- n field extension of k in \bar{k}.
6.1. Weil-Deligne Representations. As these are representations of the Weil group, it makes sense to begin by defining the Weil group.

We recall some results from local class field theory. Since k_{n} / k is a finite extension of a finite field, the extension is Galois and it is cyclic of order n, with generator the Frobenius element $\Phi_{k}: x \mapsto x^{q}$. Furthermore, for $m<n$, we have natural projection maps
$\operatorname{Gal}\left(k_{n} / k\right) \rightarrow \operatorname{Gal}\left(k_{m} / k\right)$ where any $\sigma \in \operatorname{Gal}\left(k_{n} / k\right)$ is restricted to an automorphism of k_{m}. Thus, $\left\{\operatorname{Gal}\left(k_{n} / k\right)\right\}_{n}$ forms a directed system, so we can write
where $\widehat{\mathbb{Z}}$ is the profinite completion of \mathbb{Z}. Note that $\widehat{\mathbb{Z}}$ comes equipped with a natural profinite topology, and the Frobenius element Φ_{K} topologically generates $\operatorname{Gal}(\bar{k} / k)$, i.e. $\left\langle\Phi_{k}\right\rangle \subset$ $\operatorname{Gal}(\bar{k} / k)$ is dense.

We also have a natural map $\operatorname{Gal}(\bar{K} / K) \rightarrow \operatorname{Gal}(\bar{k} / k)$. Any $\sigma \in \operatorname{Gal}(\bar{K} / K)$ restricts to an automorphism on $\overline{\mathcal{O}}$, which in turn induces an automorphism on $\bar{k}=\overline{\mathcal{O}} / \mathfrak{P}$ (here, \mathfrak{P} is the prime of $\overline{\mathcal{O}})$. Since \mathfrak{P} is a prime lying over \mathfrak{p}, this induced automorphism of \bar{k} fixes k, so we have produced an element of $\operatorname{Gal}(\bar{k} / k)$. Call this map $\pi: \operatorname{Gal}(\bar{K} / K) \rightarrow \operatorname{Gal}(\bar{k} / k)$. We now have a short exact sequence

$$
1 \rightarrow I_{K} \rightarrow \operatorname{Gal}(\bar{K} / K) \xrightarrow{\pi} \operatorname{Gal}(\bar{k} / k) \simeq \widehat{\mathbb{Z}} \rightarrow 1
$$

where I_{K} is the inertia group of K.
Definition 79 (Weil group). The Weil group W_{K} of K is a topological group, where as a group, $W_{K}:=\pi^{-1}\left(\left\langle\Phi_{K}\right\rangle\right) \subset \operatorname{Gal}(\bar{K} / K)$, and its topology is such that $\pi: W_{K} \rightarrow\left\langle\Phi_{K}\right\rangle \simeq \mathbb{Z}$ is continuous (\mathbb{Z} has the discrete topology) and the induced subspace topology on I_{K} coincides with the induced subspace topology from $I_{K} \subset \operatorname{Gal}(\bar{K} / K)$.

Equivalently, we could define the Weil group as the pullback of the following:

One can observe that we can express W_{K} as the semidirect product $W_{K}=I_{K} \rtimes\left\langle\Phi_{K}\right\rangle$.
While we are still in class field theory, we will define the wild inertia group, as it will appear briefly later.

Definition 80 (Wild Inertia Group). Let $K^{\text {tr }}$ be the maximal tamely ramified extension of K. Then, the wild inertia group is $P_{K}:=\operatorname{Gal}\left(\bar{K} / K^{\operatorname{tr}}\right)$. Equivalently, P_{K} is the first ramification group of \bar{K} / K.

Now we may define Weil-Deligne representations.
Definition 81 (Weil-Deligne Representation). A Weil-Deligne representation is a pair $\phi=(\rho, N)$ such that:
(1) $\rho: W_{K} \rightarrow \mathrm{GL}\left(V_{\rho}\right)$ is a finite dimensional representation such that $\rho(w)$ is semisimple for every $w \in W_{K}$ and ker ρ contains an open subgroup of I_{K},
(2) $N \in \operatorname{End}\left(V_{\rho}\right)$ is nilpotent, satisfying $\rho(w) N \rho(w)^{-1}=\|w\| \cdot N$ for all $w \in W_{K}$.

Equivalence of Weil-Deligne representations comes naturally: we say two Weil-Deligne representations $\phi=(\rho, N)$ and $\phi^{\prime}=\left(\rho^{\prime}, N^{\prime}\right)$ are equivalent if there exists a linear isomorphism $\alpha: V \rightarrow V^{\prime}$ such that for all $w \in W_{K}$, both diagrams commute:

We say the two Weil-Deligne representations are I_{K}-equivalent if the above diagrams commute with ρ, ρ^{\prime} replaced by their respective restrictions to I_{K}.

Finally, we say a Weil-Deligne representation is tamely ramified if it is trivial on the wild inertia group, i.e. (ρ, N) is tamely ramified if $\rho\left(P_{K}\right)=1$.
6.2. Macdonald's Correspondence. Let $\Phi_{I}^{t}\left(\mathrm{GL}_{n}\right)$ be the set of I_{K}-equivalence classes of n-dimensional tamely ramified Weil-Deligne representations of W_{K}, and let $\Pi\left(\mathrm{GL}_{n}(k)\right)$ be the set of isomorphism classes of irreducible representations of $\mathrm{GL}_{n}(k)$. We now provide a way to identify $\Pi\left(\mathrm{GL}_{n}(k)\right)$ with $\Phi_{I}^{t}\left(\mathrm{GL}_{n}\right)$, which will allow us to obtain information about epsilon factors of irreducible representations of $\mathrm{GL}_{n}(k)$ from computations of epsilon factors for Weil-Deligne representations, which we are able to do.

This correspondence, called the Macdonald's Correspondence, between $\Pi\left(\mathrm{GL}_{n}(k)\right)$ and $\Phi_{I}^{t}\left(\mathrm{GL}_{n}\right)$ is parameterized by a certain class of partition-valued functions, which we now construct.

Let \mathcal{P}_{n} be the set of partitions of n, and $\mathcal{P}:=\bigcup_{n>0} \mathcal{P}_{n}$. For a partition $p \in \mathcal{P}$, we have $p \in \mathcal{P}_{n}$ for some integer n; we define $|p|=n$. Denote Γ_{n} as the character group $\widehat{k_{n}^{\times}}$. We have natural norm maps $N_{n, m}: k_{n}^{\times} \rightarrow k_{m}^{\times}$for $m \mid n$; these induce maps on their character groups $N_{n, m}: \Gamma_{m} \rightarrow \Gamma_{n}$. These maps turn $\left\{\Gamma_{n}\right\}$ into a directed system, so we may define $\Gamma:=\lim _{\rightarrow} \Gamma_{n}$.

Denote $\Phi:=\Phi_{K}$ as the Frobenius element. It acts on Γ via $\Phi \cdot \gamma=\gamma^{q}$ for $\gamma \in \Gamma$. Denote the set of Φ-orbits in Γ as $\Phi \backslash \Gamma$. Given a Φ-orbit f, we define the degree of f as $d(f):=|f|$.
Definition 82. Define $P_{n}(\Gamma)$ as the set of partition-valued functions $\lambda: \Gamma \rightarrow \mathcal{P}$ such that
(1) $\lambda \circ \Phi=\lambda$, i.e. λ is constant on Φ-orbits;
(2) $\sum_{\gamma \in \Gamma}|\lambda(\gamma)|=n$.

This set is the central force behind Macdonald's Correspondence. We have bijections from $P_{n}(\Gamma)$ to both $\Pi\left(\mathrm{GL}_{n}(k)\right)$ and $\Phi_{I}^{t}\left(\mathrm{GL}_{n}\right)$, so we can identify π_{λ} with $\phi_{\lambda}=\left(\rho_{\lambda}, N_{\lambda}\right)$, where $\pi_{\lambda} \in \Pi\left(\mathrm{GL}_{n}(k)\right)$ and $\phi_{\lambda} \in \Phi_{I}^{t}\left(\mathrm{GL}_{n}\right)$ are the respective corresponding representations to $\lambda \in P_{n}(\Gamma)$.

Note from (1), since any λ is invariant on Φ-orbits in Γ, for any $f \in \Phi \backslash \Gamma$, we may unambiguously define $\lambda(f):=\lambda(\gamma)$ for any $\gamma \in f$. Even better, Gauss sums are invariant on Φ-orbits. Fix an additive character $\psi \in \widehat{k^{+}}$, and define $\psi_{n}=\psi \circ \operatorname{trace}_{k_{n} / k}$. Let $\gamma \in \Gamma_{n}$. Then, we compute

$$
\begin{aligned}
\tau\left(\Phi \cdot \gamma, \psi_{n}\right) & =-\sum_{x \in k_{n}^{\times}} \Phi \cdot \gamma\left(x^{-1}\right) \psi_{n}(x) \\
& =-\sum_{x \in k_{n}^{\times}} \gamma\left(x^{-q}\right) \psi_{n}(x) \\
& =-\sum_{\substack{x \in k_{n}^{\times} \\
55}} \gamma\left(x^{-q}\right) \psi_{n}\left(x^{q}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-\sum_{x \in k_{n}^{\times}} \gamma\left(x^{-1}\right) \psi_{n}(x) \\
& =\tau\left(\gamma, \psi_{n}\right)
\end{aligned}
$$

where the third equality follows from x, x^{q} being Galois conjugates and the fourth equality follows from the Frobenius map $x \mapsto x^{q}$ being an automorphism. Thus, like with $\lambda \in P_{n}(\Gamma)$, we can unambiguously define for any $f \in \Phi \backslash \Gamma, \tau(f, \psi):=\tau\left(\gamma, \psi_{n}\right)$ for any $\gamma \in f$.
6.3. Epsilon Factors for $\mathrm{GL}_{2} \times \mathrm{GL}_{2} \times \mathrm{GL}_{2}$. We know that the epsilon factor on the Galois side is multiplicative, so we have the equation

$$
\varepsilon_{0}(\pi, \psi)=\prod_{f_{i} \in \Phi \backslash \Gamma} \varepsilon_{0}\left(\pi_{f_{1}} \otimes \pi_{f_{2}} \otimes \pi_{f_{3}}, \psi\right)
$$

where f_{1} is the indicator partition-valued function such that $f_{1}(\gamma)=(1)$ if $\gamma \in f_{1}$ and () (the empty partition) otherwise. Let $\rho:=\left(\rho_{1} \otimes \rho_{2} \otimes \rho_{3}\right)_{I}$ be a Weil-Deligne representation, where under the Macdonald Correspondence, each ρ_{i} corresponds to some $\pi_{i} \in \Pi\left(\mathrm{GL}_{n}(k)\right)$. In turn, each π_{i} is represented by a matrix of the form $\left(\begin{array}{cc}\alpha_{i} & \\ & \alpha_{i}^{q}\end{array}\right)$ for some $\alpha \in k_{2}^{\times} \backslash k^{\times}$. Then, ρ is represented by a diagonal matrix whose diagonal entries are representations of the Galois orbits of $\alpha_{1} \alpha_{2} \alpha_{3}$, which are $\left\{\alpha_{1} \alpha_{2} \alpha_{3}, \alpha_{1} \alpha_{2} \alpha_{3}^{q}, \alpha_{1} \alpha_{2}^{q} \alpha_{3}, \alpha_{1}^{q} \alpha_{2}, \alpha_{3}, \alpha_{1} \alpha_{2}^{q} \alpha_{3}^{q}, \alpha_{1}^{q} \alpha_{2} \alpha_{3}^{q}, \alpha_{1}^{q} \alpha_{2}^{q} \alpha_{3}, \alpha_{1}^{q} \alpha_{2}^{q} \alpha_{3}^{q}\right\}$. Using the multiplicativity of ε_{0} and choose a representative for each Φ-orbit, we conclude from the Galois side

$$
\varepsilon_{0}(\rho, \psi):=q^{-4} \tau\left(\alpha_{1} \alpha_{2} \alpha_{3}, \psi_{2}\right) \tau\left(\alpha_{1} \alpha_{2} \alpha_{3}^{q}, \psi_{2}\right) \tau\left(\alpha_{1} \alpha_{2}^{q} \alpha_{3}, \psi_{2}\right) \tau\left(\alpha_{1} \alpha_{2}^{q} \alpha_{3}^{q}, \psi\right)
$$

6.4. Product of Gauss Sums as Norm Sum. Having a product of Gauss sums is a bit clunky. Luckily, there is a clever way to write our product as a single sum, iterating over the units of a tensor product.

Consider the tensor product $k_{n} \otimes_{k} k_{n} \otimes_{k} k_{n}$. We have $k_{n} \simeq k[\theta]$ for some $\theta \in k_{n}$ where the minimal polynomial $p(X) \in k[X]$ of θ has degree n. Thus, we can write $k[\theta] \simeq k[X] /(p(X))$. This gives us a series of isomorphisms

$$
\begin{aligned}
k_{n} \otimes_{k} k_{n} \otimes_{k} k_{n} & \simeq k_{n} \otimes_{k} k[X] /(p(X)) \otimes_{k} k[Y] /(p(Y)) \\
& \simeq k_{n} \otimes_{k} k[X, Y] /(p(X), p(Y)) \\
& \simeq k_{n}[X, Y] /(p(X), p(Y))
\end{aligned}
$$

Expanding $p(X)=a_{0}+a_{1} X+\cdots+X^{n}$, we see that

$$
\begin{aligned}
p\left(\theta^{1 / q^{r}}\right)^{q^{r}} & =\left(a_{0}+a_{1} \theta^{1 / q^{r}}+\cdots+\theta^{n / q^{r}}\right)^{q^{r}} \\
& =a_{0}+a_{1} \theta+\cdots+\theta^{n}=0,
\end{aligned}
$$

so $p\left(\theta^{1 / q^{r}}\right)=0$ for every $r<n$. It follows that we can factor

$$
p(X)=\prod_{r=1}^{n}\left(X-\theta^{1 / q^{r-1}}\right)
$$

Thus, by Chinese Remainder Theorem, we have a final isomorphism

$$
\begin{aligned}
k_{n}[X, Y] /(p(X), p(Y)) & \simeq k_{n}^{\oplus n^{2}} \\
{[f(X, Y)] } & \mapsto\left(f\left(\theta^{1 / q^{i-1}}, \theta^{1 / q^{j-1}}\right)\right)_{1 \leq i, j \leq n}
\end{aligned}
$$

This isomorphism $k_{n} \otimes_{k} k_{n} \otimes_{k} k_{n}^{\oplus n^{2}}$ provides three distinct actions of k_{n} on $k_{n}^{\oplus n^{2}}$, depending on which component k_{n} is acting on in the tensor product. For the following, fix $\alpha \in k_{n}$.

The first component of the tensor product is simply multiplied as a scalar to the polynomial via the isomorphisms, so α acts on $\left(x_{1}, \ldots, x_{n^{2}}\right)$ by scalar multiplication, i.e. the first action is defined as

$$
\alpha \cdot{ }_{1}\left(x_{1}, \ldots, x_{n^{2}}\right)=\left(\alpha x_{1}, \ldots, \alpha x_{n^{2}}\right)
$$

The second component contributes a polynomial in X. Let $\alpha=a_{0}+a_{1} \theta+\cdots+a_{m} \theta^{m}$; this corresponds to the polynomial $\alpha(X)=\alpha(X, Y)=a_{0}+a_{1} X+\cdots+a_{m} X^{m}$. We wish to write $\alpha\left(\theta^{1 / q^{r}}\right)$ in terms of $\alpha(\theta)$. We have

$$
\begin{aligned}
\alpha\left(\theta^{1 / q^{r}}\right)^{q^{r}} & =\left(a_{0}+a_{1} \theta^{1 / q^{r}}+\cdots+a_{m} \theta^{m / q^{r}}\right)^{q^{r}} \\
& =a_{0}+a_{1} \theta+\cdots+a_{m} \theta^{m}=\alpha(\theta),
\end{aligned}
$$

where the second equality follows because $a_{i} \in k$ and char $k||k|=q$. Thus, for any $f(X, Y) \in k_{n}[X, Y] /(p(X), p(Y))$ and $1 \leq i, j \leq n$, we have

$$
\begin{aligned}
\alpha\left(\theta^{1 / q^{i-1}}, \theta^{1 / q^{j-1}}\right) f\left(\theta^{1 / q^{i-1}}, \theta^{1 / q^{j-1}}\right) & =\alpha\left(\theta^{1 / q^{i-1}}\right) f\left(\theta^{1 / q^{i-1}}, \theta^{1 / q^{j-1}}\right) \\
& =\alpha(\theta)^{1 / q^{i-1}} f\left(\theta^{1 / q^{i-1}}, \theta^{1 / q^{j-1}}\right) \\
& =\alpha^{1 / q^{i-1}} f\left(\theta^{1 / q^{i-1}}, \theta^{1 / q^{j-1}}\right)
\end{aligned}
$$

so the second action is given by

$$
\begin{aligned}
\alpha \cdot_{2}\left(x_{1}, \ldots, x_{n^{2}}\right) & =\left(\alpha^{q^{-\left\lfloor\frac{j-1}{n}\right\rfloor}} x_{j}\right)_{1 \leq j \leq n^{2}} \\
& =\left(\alpha x_{1}, \ldots, \alpha x_{n}, \alpha^{1 / q} x_{n+1}, \ldots, \alpha^{1 / q^{n-1}} x_{n^{2}}\right)
\end{aligned}
$$

Finally, the last component contributes a polynomial in Y, so the action is similar to the above in the sense that we have

$$
\alpha\left(\theta^{1 / q^{i-1}}, \theta^{1 / q^{j-1}}\right) f\left(\theta^{1 / q^{i-1}}, \theta^{1 / q^{j-1}}\right)=\alpha^{1 / q^{j-1}} f\left(\theta^{1 / q^{i-1}}, \theta^{1 / q^{j-1}}\right)
$$

which provides a third action given by

$$
\begin{aligned}
\alpha \cdot{ }_{3}\left(x_{1}, \ldots, x_{n^{2}}\right) & =\left(\alpha^{q^{-(j \bmod n)}} x_{j}\right)_{1 \leq j \leq n^{2}} \\
& =\left(\alpha x_{1}, \alpha^{1 / q} x_{2}, \ldots, \alpha^{1 / q^{n+1}} x_{n}, \alpha x_{n+1}, \ldots, \alpha^{1 / q^{n+1}} x_{n^{2}}\right) .
\end{aligned}
$$

Let $c_{j}=\left\lfloor\frac{j-1}{n}\right\rfloor$ and $d_{j}=j(\bmod n)$. Consider the map $T_{\left(x_{1}, \ldots, x_{n}\right)}: k_{n}^{\oplus n^{2}} \rightarrow k_{n}^{\oplus n^{2}}$ given by $\left(y_{1}, \ldots, y_{n^{2}}\right) \mapsto\left(x_{1} y_{1}, \ldots, x_{n^{2}} y_{n^{2}}\right)$, where multiplication in each component is standard
multiplication in k_{n}. We can write this tuple in terms of each of our three actions:

$$
\begin{aligned}
T_{\left(x_{1}, \ldots, x_{n}\right)}\left(y_{1}, \ldots, y_{n^{2}}\right) & =\left(x_{1} \cdot 1 y_{1}, \ldots, x_{n^{2}} \cdot{ }_{1} y_{n^{2}}\right) \\
& =\left(x_{j}^{q^{-c_{j}}} \cdot 2 y_{j}\right)_{1 \leq j \leq n^{2}} \\
& =\left(x_{j}^{q^{-d_{j}}} \cdot 3 y_{j}\right)_{1 \leq j \leq n^{2}} .
\end{aligned}
$$

We can define the trace of $T_{\left(x_{1}, \ldots, x_{n^{2}}\right)}$, viewed as a k-linear map. Taking the standard basis of $k_{n}^{\oplus n^{2}}$, this amounts to just the sum of all the components, i.e. trace $T_{\left(x_{1}, \ldots, x_{n}\right)^{2}}=\sum_{i=1}^{n^{2}} x_{i}$.

We can also define three distinct norm functions, one for each action, which takes the determinant of $T_{\left.\left(x_{1}, \ldots, x_{n}\right)^{2}\right)}$ with respect to the standard basis on $k_{n}^{\oplus n^{2}}$ and the given action. Restricting our interest to the case $n=2$, we have

$$
\begin{aligned}
T_{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}\left(y_{1}, y_{2}, y_{3}, y_{4}\right) & =\left(x_{1} \cdot{ }_{1} y_{1}, x_{2} \cdot 1 y_{2}, x_{3} \cdot 1 y_{3}, x_{4} \cdot 1 y_{4}\right) \\
& =\left(x_{1} \cdot{ }_{2} y_{1}, x_{2} \cdot 2 y_{2}, x_{3}^{1 / q} \cdot{ }_{2} y_{3}, x_{4}^{1 / q} \cdot{ }_{2} y_{4}\right) \\
& =\left(x_{1} \cdot{ }_{3} y_{1}, x_{2}^{1 / q} \cdot{ }_{3} y_{2}, x_{3} \cdot 3 y_{3}, x_{4}^{1 / q} \cdot{ }_{3} y_{4}\right) .
\end{aligned}
$$

Letting N_{1}, N_{2}, N_{3} be the norm functions with respect to ${ }^{1},{ }_{2},{ }^{\prime} \cdot 3$, respectively, we can compute

$$
\begin{aligned}
& N_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2} x_{3} x_{4} \\
& N_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2} x_{3}^{q} x_{4}^{q} \\
& N_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2}^{q} x_{3} x_{4}^{q}
\end{aligned}
$$

Via the isomorphism $k_{2} \otimes_{k} k_{2} \otimes_{k} k_{2} \simeq k_{2}^{\oplus 4}$, we see that the diagonal multiplication rule on the left agrees with component-wise multiplication on the right. Thus, the units in $k_{2} \otimes_{k} k_{2} \otimes_{k} k_{2}$ are isomorphic to $\left(k_{2}^{\times}\right)^{\oplus 4}$, so we write

$$
\begin{aligned}
\varepsilon_{0}(\rho, \psi) & =q^{-4} \tau\left(\alpha_{1} \alpha_{2} \alpha_{3}, \psi_{2}\right) \tau\left(\alpha_{1} \alpha_{2} \alpha_{3}^{q}, \psi_{2}\right) \tau\left(\alpha_{1} \alpha_{2}^{q} \alpha_{3}, \psi_{2}\right) \tau\left(\alpha_{1} \alpha_{2}^{q} \alpha_{3}^{q}, \psi\right) \\
& =q^{-4} \prod_{j=0}^{3} \sum_{x \in k_{2}^{\times}} \alpha_{1}^{-1}(x) \alpha_{2}^{-1}\left(x^{q^{\lfloor j / 2\rfloor}}\right) \alpha_{3}^{-1}\left(x^{q^{j \bmod 2}}\right) \psi_{2}(x) \\
& =\sum_{\vec{x} \in\left(k_{2}^{\times}\right) \oplus^{\oplus}} \alpha_{1}^{-1}\left(N_{1}(\vec{x})\right) \alpha_{2}^{-1}\left(N_{2}(\vec{x})\right) \alpha_{3}^{-1}\left(N_{3}(\vec{x})\right) \psi(\operatorname{tr} \vec{x}) \\
& =\sum_{\xi \in\left(k_{2} \otimes_{k} k_{2} \otimes_{k} k_{2}\right)^{\times}} \alpha_{1}^{-1}\left(N_{1}(\xi)\right) \alpha_{2}^{-1}\left(N_{2}(\xi)\right) \alpha_{3}^{-1}\left(N_{3}(\xi)\right) \psi(\operatorname{tr} \xi) .
\end{aligned}
$$

Appendix A. Computation of $c\left(1, I_{6}, \psi\right)$

Throughout this section, \mathbb{F}_{q} denotes a finite field with q elements, where q is an odd primepower, and $\mathrm{Sym}_{3}^{\times}$denotes the set of invertible 3×3 matrices with entries in \mathbb{F}_{q}. The goal of the present section is to prove the following result.

Theorem 83. We have

$$
\sum_{A \in \operatorname{Sym}_{3}^{\times}} \psi(\operatorname{tr} A)=q^{2}
$$

We will prove this by using combinatorics and elementary number theory in order to compute the number of invertible symmetric matrices with given diagonal entries. For brevity, given $\left(a_{11}, a_{22}, a_{33}\right) \in \mathbb{F}_{q}^{3}$, we say that $A \in \operatorname{Sym}_{3}^{\times}$has "type $\left(a_{11}, a_{22}, a_{33}\right)$ if and only if

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right]
$$

We now examine each type individually, in ascending levels of difficulty.
Lemma 84. There are $(q-1)^{3}$ matrices in $\operatorname{Sym}_{3}^{\times}$of type $(0,0,0)$.
Proof. Our matrices take the form

$$
A:=\left[\begin{array}{ccc}
0 & a_{12} & a_{13} \\
a_{12} & 0 & a_{23} \\
a_{13} & a_{23} & 0
\end{array}\right]
$$

which has determinant $\operatorname{det} A=2 a_{12} a_{13} a_{23}$. As such, this matrix is invertible if and only if each a_{12}, a_{13}, a_{23} is nonzero, totaling to $(q-1)^{3}$ matrices.
Lemma 85. For any $a \in \mathbb{F}_{q}^{\times}$, there are $q^{3}-q^{2}-(q-1)^{2}$ matrices in $\operatorname{Sym}_{3}^{\times}$of type $(a, 0,0)$. The same statement holds for permutations of $(a, 0,0)$.

Proof. Our matrices take the form

$$
A:=\left[\begin{array}{ccc}
a & a_{12} & a_{13} \\
a_{12} & 0 & a_{23} \\
a_{13} & a_{23} & 0
\end{array}\right],
$$

which has determinant $\operatorname{det} A=2 a_{12} a_{13} a_{23}-a a_{23}^{2}$. By counting the complement, we would like to show that there are $q^{2}+(q-1)^{2}$ solutions $(x, y, z) \in \mathbb{F}_{q}^{3}$ to $2 x y z-a x^{2}=0$. There are two cases.

- If $x=0$, then any $(y, z) \in \mathbb{F}_{q}^{2}$ will work, totaling to q^{2} matrices here.
- If $x \neq 0$, then we see $2 y z=a x \neq 0$. Thus, there are $q-1$ choices for $y \in \mathbb{F}_{q}^{\times}$, from which z is forced. Counting over all $x \in \mathbb{F}_{q}^{\times}$, there are $(q-1)^{2}$ matrices here.
Summing completes the proof.
Lemma 86. For any $a, b \in \mathbb{F}_{q}^{\times}$, there are $q^{3}-q-(q-1)^{2}$ matrices in $\operatorname{Sym}_{3}^{\times}$of type $(a, b, 0)$. The statement holds for permutations of $(a, b, 0)$.

Proof. Our matrices take the form

$$
A:=\left[\begin{array}{ccc}
a & a_{12} & a_{13} \\
a_{12} & b & a_{23} \\
a_{13} & a_{23} & 0
\end{array}\right],
$$

which has determinant $\operatorname{det} A=2 a_{12} a_{13} a_{23}-a a_{23}^{2}-b a_{13}^{2}$. By counting the complement, we would like to show that there are $q+(q-1)^{2}$ solutions $(x, y, z) \in \mathbb{F}_{q}^{3}$ to $2 x y z=a x^{2}+b y^{2}$. We have two cases.

- If $x=0$, then we must have $y=0$, from which any $z \in \mathbb{F}_{q}$ will do. There are q matrices here.
- If $x \neq 0$ and $y \neq 0$, then $z:=\left(a x^{2}+b y^{2}\right) /(2 x y)$ is forced. Totaling, there are $(q-1)^{2}$ matrices here.

Summing completes the proof.
Lemma 87. For any $a, b, c \in \mathbb{F}_{q}^{\times}$, there are $q^{3}-\left(q^{2}+1\right)$ matrices in $\operatorname{Sym}_{3}^{\times}$of type (a, b, c).
Proof. Our matrices take the form

$$
A:=\left[\begin{array}{ccc}
a & a_{12} & a_{13} \\
a_{12} & b & a_{23} \\
a_{13} & a_{23} & c
\end{array}\right] .
$$

Scaling will not change invertibility, so for psychological reasons we replace A with $a^{-1} A$ so that we may assume $a=1$. Then $\operatorname{det} A=2 a_{12} a_{13} a_{23}-b a_{12}^{2}-c a_{12}^{2}-a_{23}^{2}+b c$. By counting the complement, we would like to show that there are $q^{2}+1$ solutions $(x, y, z) \in \mathbb{F}_{q}^{3}$ to $x^{2}-2 x y z=-c y^{2}-b z^{2}+b c$. Sending $x \mapsto x+y z$, we are counting solutions to

$$
x^{2}=y^{2} z^{2}-c y^{2}-b z^{2}+b c=\left(y^{2}-b\right)\left(z^{2}-c\right) .
$$

We now do casework on what elements on the right-hand side are squares. This requires the following lemma.

Lemma 88. Fix $a \in \mathbb{F}_{q}^{\times}$. The number of $x \in \mathbb{F}_{q}$ such that $x^{2}-a$ is a square is

$$
\begin{cases}\frac{q-1}{2} & \text { if } a \text { is not a square, } \\ \frac{q+1}{2} & \text { if } a \text { is a square. }\end{cases}
$$

Proof. We are counting the number of $x \in \mathbb{F}_{q}$ for which there is a solution $y \in \mathbb{F}_{q}$ to the equation $x^{2}-a=y^{2}$. This rearranges to

$$
(x+y)(x-y)=a .
$$

Setting $s:=\frac{x+y}{2}$ and $d:=\frac{x-y}{2}$, we see that $s d=a / 4$, so it is necessary and sufficient to have $x=s+\frac{a}{4 s}$ for some $s \in \mathbb{F}_{q}^{\times}$. In other words, we are currently counting the size of the image of the map $x: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{F}_{q}$ given by

$$
x: s \mapsto s+\frac{a}{4 s} .
$$

Now, $x\left(s_{1}\right)=x\left(s_{2}\right)$ if and only if $s_{1}+\frac{a}{4 s_{1}}=s_{2}+\frac{a}{4 s_{2}}$, which upon clearing fractions and rearranging is equivalent to

$$
\left(4 s_{1} s_{2}-a\right)\left(s_{1}-s_{2}\right)=0
$$

This is now equivalent to $s_{1}=s_{2}$ or $s_{1}=\frac{a}{4 s_{2}}$. Thus, for each $s \in \mathbb{F}_{q}^{\times}$, we see that $x^{-1}(\{x(s)\})=\{s, a /(4 s)\}$, a set which has size 2 unless a is a square and s is a square root of $a / 4$.

To finish, we see that if a is not a square, there are $\frac{q-1}{2}$ values of x. Otherwise, a is a square, and there are two fibers with exactly one element, totaling to $\frac{q-3}{2}+2=\frac{q+1}{2}$ values of x. This completes the proof.

We now have the following cases on b and c.

- Suppose b and c are not squares. Then $y^{2}-b$ and $z^{2}-c$ are always nonzero, so for $\left(y^{2}-b\right)\left(z^{2}-c\right)$ to be a square, either both are squares or neither are squares. Each such pair (y, z) produces two valid values of x, so we have counted

$$
2\left(\left(\frac{q-1}{2}\right)^{2}+\left(\frac{q+1}{2}\right)^{2}\right)=q^{2}+1
$$

triples (x, y, z) in this case.

- Suppose exactly one of b or c is a square; without loss of generality, say that b is a square. There are two values of y for which $y^{2}-b$ vanishes, from which z has any value and $x=0$, totaling to $2 q$ solutions here.

Continuing, there are $\frac{q-3}{2}$ additional values of y for which $y^{2}-b$ is a nonzero square; here, $z^{2}-c$ must be a (nonzero) square, giving

$$
2\left(\frac{q-3}{2}\right)\left(\frac{q-1}{2}\right)=\frac{q^{2}-4 q+3}{2}
$$

additional solutions.
Lastly, there are $\frac{q-1}{2}$ values of y for which $y^{2}-b$ is not a square; here $z^{2}-c$ must not be a square, giving

$$
2\left(\frac{q-1}{2}\right)\left(\frac{q+1}{2}\right)=\frac{q^{2}-1}{2}
$$

more solutions. Summing all three cases gives $2 q+\frac{1}{2}\left(q^{2}-4 q+3\right)+\frac{1}{2}\left(q^{2}-1\right)=q^{2}+1$ solutions.

- Suppose that both b and c are squares. There are two values of y for which $y^{2}-b$ from which z has any value and $x=0$, totaling to $2 q$ solutions. There are two values for z for which $z^{2}-c$ vanishes again, which adds $2 q-4$ more solutions.

In the remaining cases, both $y^{2}-b$ and $z^{2}-c$ must be nonzero. For their product to be a square, either both are squares or neither is a square, so we have counted

$$
2\left(\left(\frac{q-3}{2}\right)^{2}+\left(\frac{q-1}{2}\right)^{2}\right)=q^{2}-4 q+5
$$

more solutions. In total, there are $2 q-4+q^{2}-4 q+5=q^{2}+1$ solutions.
The above casework completes the proof of Lemma 87.
We are now ready to prove Theorem 83 .
Proof of Theorem 83. For given $t \in \mathbb{F}_{q}$, we will count $A \in \operatorname{Sym}_{3}^{\times}\left(\mathbb{F}_{q}\right)$ such that $\operatorname{tr} A=t$. We have two cases.

- Suppose $t=0$. Then the type of any $A \in \operatorname{Sym}_{3}^{\times}\left(\mathbb{F}_{q}\right)$ has one of the following forms.
- Type $(0,0,0)$: there are $(q-1)^{3}$ matrices here.
- Permutations of type $(0, a,-a)$ for given $a \in \mathbb{F}_{q}^{\times}$: there are $q^{3}-q-(q-1)^{2}$ matrices.
- Type $(a, b,-a-b)$ for given $a, b,-a-b \in \mathbb{F}_{q}^{\times}$: there are $q^{3}-\left(q^{2}+1\right)$ matrices.

Totaling all cases, we have

$$
(q-1)^{3}+3(q-1)\left(q^{3}-q-(q-1)^{2}\right)+(q-1)(q-2)\left(q^{3}-q^{2}-1\right)
$$

matrices. Simplifying, this is $q^{5}-q^{4}$.

- Suppose $t \neq 0$. Then the type of any $A \in \operatorname{Sym}_{3}^{\times}\left(\mathbb{F}_{q}\right)$ has one of the following forms.
- Permutations of type $(t, 0,0)$: there are $q^{3}-q^{2}-(q-1)^{2}$ matrices here.
- Permutations of type $(a, t-a, 0)$ for given $a, t-a \in \mathbb{F}_{q}^{\times}$: there are $q^{3}-q-(q-1)^{2}$ matrices.
- Type $(a, b, t-a-b)$ for given $a, b, t-a-b \in \mathbb{F}_{q}^{\times}$: there are $q^{3}-\left(q^{2}+1\right)$ matrices. Quickly, note that $a \notin\{0, t\}$ requires $b \notin\{0, t-a\}$ and hence $q-2$ options for b; otherwise $a=t$ requires $b \neq 0$ and hence $q-1$ options for b.
Totaling all cases, we have
$3\left(q^{3}-q^{2}-(q-1)^{2}\right)+3(q-2)\left(q^{3}-q-(q-1)^{2}\right)+((q-2)(q-2)+(q-1))\left(q^{3}-\left(q^{2}+1\right)\right)$ matrices. Simplifying, this is $q^{5}-q^{4}-q^{2}$.

Combining cases, we see

$$
\begin{aligned}
\sum_{A \in \operatorname{Sym}_{3}^{\times}\left(\mathbb{F}_{q}\right)} \psi(\operatorname{tr} A) & =\sum_{t \in \mathbb{F}_{q}} \#\left\{A \in \operatorname{Sym}_{3}^{\times}\left(\mathbb{F}_{q}\right): \operatorname{tr} A=t\right\} \psi(t) \\
& =q^{2} \psi(0)+\sum_{t \in \mathbb{F}_{q}}\left(q^{5}-q^{4}-q^{2}\right) \psi(t) \\
& =q^{2},
\end{aligned}
$$

which is what we wanted.

Appendix B. Computation of the Symmetric Gauss Sum

Let \mathbb{F}_{q} denote the finite field with q elements, where q is an odd prime-power, and let $\operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$ denote the set of invertible symmetric $n \times n$ matrices with entries in \mathbb{F}_{q}. The goal of the present section is to compute the "symmetric" Gauss sum

$$
g_{n}(\omega, \psi, T):=\sum_{A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)} \omega(\operatorname{det} A) \psi(\operatorname{tr} A T)
$$

where $n \in \mathbb{Z}_{\geq 0}$ is a nonnegative integer, $\omega: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$and $\psi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$are characters, and $T \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$. Here, $\operatorname{Sym}_{0}^{\times}$is understood to consist of a single empty 0×0 matrix with trace 0 and determinant 1 so that $g_{0}(\omega, \psi, T)=1$. In the case where ω is a quadratic character, such sums were considered by [Wal17].

In the following discussion, we will make use of many Gauss sums, so it will be helpful to have the notation

$$
g(\omega, \psi):=\sum_{a \in \mathbb{F}_{q}^{\times}} \omega(a) \psi(a)
$$

where ω and ψ are as above. For example, $g_{1}(\omega, \psi, 1)=g(\omega, \psi)$.
We now state our main result.
Theorem 89. Let $\omega: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$and $\psi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$be characters, and let $\chi: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$denote the nontrivial quadratic character, and fix some $T \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$. Further, assume that ψ is nontrivial.

- If $n=2 m$ is an even nonnegative integer, then

$$
g_{2 m}(\omega, \psi, T)=\frac{\chi(-1)^{m} \chi(\operatorname{det} T) q^{m^{2}}}{\omega\left(4^{m} \operatorname{det} T\right)} \cdot g\left(\omega^{2}, \psi\right)^{m}
$$

- If $n=2 m+1$ is an odd nonnegative integer, then

$$
g_{2 m+1}(\omega, \psi, T)=\frac{q^{m(m+1)}}{\omega\left(4^{m} \operatorname{det} T\right)} \cdot g(\omega, \psi) g\left(\omega^{2}, \psi\right)^{m}
$$

Remark 90. The theorem implies that

$$
\sum_{A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)} \omega\left(\operatorname{det} A T^{-1}\right) \psi(\operatorname{tr} A)=\sum_{B \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)} \omega(\operatorname{det} B) \psi(\operatorname{tr} B T),
$$

but this is not obvious: in particular, one cannot apply the variable change $B:=A T^{-1}$ because $A T^{-1}$ need not be symmetric! We would be interested in a more direct proof of the above equality.

Remark 91. In the "generic" case $\omega^{2} \neq 1$, all Gauss sums have magnitude \sqrt{q} (see Proposition 93), so Theorem 89 implies

$$
\left|g_{n}(\omega, \psi, T)\right|=q^{n(n+1) / 4}=q^{\frac{1}{2}\binom{n+1}{2}} .
$$

This is roughly what we expect to be true from "square-root cancellation": $\left|\operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)\right|=$ $q^{\binom{n+1}{2}}$.
B.1. Quadratic Twists of Gauss Sums. The goal of this subsection is to prove the following result.

Proposition 92. Let $\omega: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$and $\psi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$be characters, and let $\chi: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$ denote the nontrivial quadratic character. Then

$$
\omega(4) g(\omega, \psi) g(\omega \chi, \psi)=g\left(\omega^{2}, \psi\right) g(\chi, \psi)
$$

Proof. Expanding out the Gauss sums, we are trying to show that

$$
\sum_{a, b \in \mathbb{F}_{q}^{\times}} \omega(4 a b) \chi(b) \psi(a+b) \stackrel{?}{=} \sum_{a, b \in \mathbb{F}_{q}^{\times}} \omega\left(a^{2}\right) \chi(b) \psi(a+b) .
$$

Fixing some $d \in \mathbb{F}_{q}^{\times}$and $t \in \mathbb{F}_{q}$, it is enough to show that

$$
\begin{equation*}
\sum_{\substack{a+b=t \\ 4 a b=d}} \chi(b) \stackrel{?}{=} \sum_{\substack{a+b=t \\ a^{2}=d}} \chi(b) \tag{B.1.1}
\end{equation*}
$$

and then sum over all possible values of d and t. At this point, the proof has become combinatorial number theory. For convenience, extend χ to \mathbb{F}_{q} by $\chi(0):=0$, and allow $a, b \in \mathbb{F}_{q}$ in the right-hand sum above; this will not change its value.

For example, suppose that d is not a square. Then the right-hand side of (B.1.1) is empty and hence zero. On the other hand, we claim that the left-hand side is zero. Let $\left(a_{1}, b_{1}\right), \ldots,\left(a_{m}, b_{m}\right)$ denote the solutions to the system of equations $a+b=t$ and $4 a b=d$. Because d is not a square, $a_{k} \neq b_{k}$ for each k-in fact, if a_{k} is a square, then b_{k} is not a square (and vice versa). Thus, if (a, b) is a solution, then (b, a) is a distinct solution with
$\{\chi(a), \chi(b)\}=\{1,-1\}$, so the two pairs (a, b) and (b, a) contribute $1-1=0$ to the left-hand side of (B.1.1). It follows that the left-hand side vanishes.

Thus, in the rest of the proof, we may assume that $d=x^{2}$ where $x \in \mathbb{F}_{q}^{\times}$, so the right-hand side of (B.1.1) reads

$$
\chi(t+x)+\chi(t-x)
$$

To continue, observe that solving the system of equations $a+b=t$ and $4 a b=d$ is equivalent to having $a=t-b$ and

$$
(2 b-t)^{2}=t^{2}-d
$$

As such, for our next case, suppose that $t^{2}-d$ fails to be a square. Then the left-hand side of (B.1.1) is empty and hence vanishes, so we want to show that the right-hand side also vanishes. Well, $t^{2}-d=(t+x)(t-x)$ is then not a square, so both are nonzero, and one is a square while the other is not a square. Thus, $\chi(t+x)+\chi(t-x)=0$, as needed.

Thus, in the rest of the proof, we may assume that $t^{2}-d=y^{2}$ for some $y \in \mathbb{F}_{q}$. Quickly, we deal with the case where $y=0$. On one hand, we have $t^{2}=d$, so $t= \pm x$, so the right-hand side of (B.1.1) is $\chi(2 t)$. On the other hand, we see the left-hand side of (B.1.1) is $\chi(t / 2)$, so we finish by noting $\chi(2 t)=\chi(t / 2)$.

At the current point, we can now say that $t^{2}=x^{2}+y^{2}$ where $x, y \in \mathbb{F}_{q}^{\times}$, and the left-hand side of (B.1.1) is $\chi\left(\frac{t+y}{2}\right)+\chi\left(\frac{t-y}{2}\right)$, so we are trying to show that

$$
\begin{equation*}
\chi\left(\frac{t+y}{2}\right)+\chi\left(\frac{t-y}{2}\right) \stackrel{?}{=} \chi(t+x)+\chi(t-x) . \tag{B.1.2}
\end{equation*}
$$

Because $(t-x)(t+x)=y^{2}$ and $\left(\frac{t+y}{2}\right)\left(\frac{t-y}{2}\right)=\frac{1}{4} x^{2}$, we see that all values above are nonzero, and $\chi\left(\frac{t+y}{2}\right)=\chi\left(\frac{t-y}{2}\right)$ and $\chi(t+x)=\chi(t-x)$. Because, these values are in $\{ \pm 1\}$, we see that it is enough to show that $\chi(t+x)=1$ if and only if $\chi\left(\frac{t+y}{2}\right)=1$.

The main claim, now, is that $\chi(t+x)=1$ implies that $\chi\left(\frac{t+y}{2}\right)=1$. This approximately boils down to the enumeration of Pythagorean triples. The above logic grants that $\chi(t+x)=$ $\chi(t-x)=1$, so both $t+x$ and $t-x$ are squares; write $t+x=x_{1}^{2}$ and $t-x=x_{2}^{2}$ for $x_{1}, x_{2} \in \mathbb{F}_{q}^{\times}$. Adjusting signs, we may assume that $y=x_{1} x_{2}$. Thus,

$$
\frac{t+y}{2}=\frac{1}{2}\left(\frac{x_{1}^{2}+x_{2}^{2}}{2}+x_{1} x_{2}\right)=\left(\frac{x_{1}+x_{2}}{2}\right)^{2}
$$

is a square, and we know $\frac{t+y}{2}$ is nonzero from the above logic, so $\chi\left(\frac{t+y}{2}\right)=1$, as desired.
To finish the proof, we must show the reverse implication: we claim that $\chi\left(\frac{t+y}{2}\right)=1$ implies $\chi(t+x)=1$. Well, we see that $\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{2}\right)^{2}=\left(\frac{t}{2}\right)^{2}$, so the argument of the previous paragraph tells us that $\chi\left(\frac{t}{2}+\frac{y}{2}\right)=1$ implies

$$
\chi(t+x)=\chi\left(\frac{t+x}{4}\right)=\chi\left(\frac{\frac{t}{2}+\frac{x}{2}}{2}\right)=1
$$

as desired.
Before continuing, it will be helpful to have the following well-known fact about the quadratic Gauss sum. Because the proof is so quick, we include the proof.

Proposition 93. Let $\omega: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$and $\psi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$denote nontrivial characters. Then

$$
g(\omega, \psi) g\left(\omega^{-1}, \psi^{-1}\right)=q
$$

Thus, if $\chi: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$denotes the nontrivial quadratic character, then $g(\chi, \psi)^{2}=\chi(-1) q$.
Proof. For the first claim, we want to show

$$
\sum_{a, b \in \mathbb{F}_{q}^{\times}} \omega(a / b) \psi(a-b) \stackrel{?}{=} q .
$$

Well, set $c:=a / b$ so that the sum is

$$
\sum_{c \in \mathbb{F}_{q}^{\times}}\left(\omega(c) \sum_{a \in \mathbb{F}_{q}^{\times}} \psi(a-a c)\right) .
$$

If $c \neq 1$, then the inner sum is $-\psi(0)+\sum_{a \in \mathbb{F}_{q}} \psi(a-a c)=-1$. Otherwise, if $c=1$, then the inner sum is $q-1$. In total, we are left with

$$
(q-1)+\sum_{c \in \mathbb{F}_{q}^{\times} \backslash\{1\}}-\omega(c)=q-\sum_{c \in \mathbb{F}_{q}^{\times}} \omega(c)=q,
$$

which is what we wanted.
For the second claim, we see

$$
g\left(\chi^{-1}, \psi^{-1}\right)=\sum_{a \in \mathbb{F}_{q}^{\times}} \chi(a) \psi(-a)=\chi(-1) \sum_{a \in \mathbb{F}_{q}^{\times}} \chi(a) \psi(a)=\chi(-1) g(\chi, \psi),
$$

so the second claim follows from the first.
B.2. The Main Computation. In this subsection, we prove Theorem 89. The key idea is to use Gaussian elimination of symmetric matrices in order to be able to use induction; note that this idea was used to count the number of invertible symmetric matrices over $\mathbb{Z} / n \mathbb{Z}$ in [BM87]. As such, the hard work is done in the following lemma.

Lemma 94. Let $\omega: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$and $\psi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$be characters, and let $\chi: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$denote the nontrivial quadratic character. Further, assume that ψ is nontrivial. For any positive integer n and $d_{1}, \ldots, d_{n+1} \in \mathbb{F}_{q}^{\times}$,
$g_{n+1}\left(\omega, \psi, \operatorname{diag}\left(d_{1}, \ldots, d_{n+1}\right)\right)=g_{n}\left(\omega, \psi, \operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)\right) \cdot \frac{\chi\left(d_{1} \cdots d_{n}\right) \chi\left(d_{n+1}\right)^{n}}{\omega\left(d_{n+1}\right)} \cdot g\left(\omega \chi^{n}, \psi\right) g(\chi, \psi)^{n}$.
Proof. For brevity, set $T:=\operatorname{diag}\left(d_{1}, \ldots, d_{n+1}\right)$. For a matrix square $A \in M_{m}\left(\mathbb{F}_{q}\right)$, we use the notation $A_{k \ell}$ denote the entry of A in the k th row and ℓ th column. Now, for some $A \in \operatorname{Sym}_{n+1}^{\times}$, there are two cases.

- Suppose $A_{n+1, n+1} \neq 0$; here, set $T^{\prime}:=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ for brevity. For our Gaussian elimination, we note that the map

$$
\begin{aligned}
\operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right) \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{\times} & \rightarrow\left\{A \in \operatorname{Sym}_{n+1}^{\times}\left(\mathbb{F}_{q}\right): A_{n+1, n+1} \neq 0\right\} \\
\left(A^{\prime}, v\right. & , c) \mapsto\left[\begin{array}{r}
1 \\
1
\end{array}\right]\left[\begin{array}{cc}
A^{\prime} \\
& c
\end{array}\right]\left[\begin{array}{c}
1 \\
v^{\top} 1
\end{array}\right]=\left[\begin{array}{cc}
A^{\prime}+c v v^{\top} c v \\
c v^{\top} & c
\end{array}\right]
\end{aligned}
$$

is a bijection. Indeed, $A_{n+1, n+1}$ uniquely determines c, the values $A_{k, n+1}$ for $1 \leq k \leq n$ uniquely determine v, and then the rest of the matrix uniquely determines A^{\prime}. Using this bijection, we see that

$$
\begin{aligned}
S_{\neq 0} & :=\sum_{\substack{A \in \operatorname{Sym}_{n+1}^{\times}\left(\mathbb{F}_{q}\right) \\
A_{n+1, n+1} \neq 0}} \omega(\operatorname{det} A) \psi(\operatorname{tr} A T) \\
& =\sum_{\substack{A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right) \\
v \in \mathbb{F}_{q}^{m}, c \in \mathbb{F}_{q}^{q}}} \omega\left(c \operatorname{det} A^{\prime}\right) \psi\left(\operatorname{tr} A^{\prime} T^{\prime}+c \operatorname{tr} v v^{\top} T^{\prime}+c d_{n+1}\right) \\
& =g_{n}\left(\omega, \psi, T^{\prime}\right) \sum_{c \in \mathbb{F}_{q}^{\times}} \omega(c) \psi\left(c d_{n+1}\right) \sum_{v \in \mathbb{F}_{q}^{n}} \psi\left(c \operatorname{tr} v v^{\top} T^{\prime}\right) \\
& =g_{n}\left(\omega, \psi, T^{\prime}\right) \sum_{c \in \mathbb{F}_{q}^{\times}} \omega(c) \psi\left(c d_{n+1}\right) \prod_{k=1}^{n}\left(\sum_{a \in \mathbb{F}_{q}} \psi\left(c d_{k} a^{2}\right)\right) .
\end{aligned}
$$

Quickly, we claim that

$$
\sum_{a \in \mathbb{F}_{q}} \psi\left(c d_{k} a^{2}\right) \stackrel{?}{=} \sum_{a \in \mathbb{F}_{q}}\left(1+\chi\left(c d_{k} a\right)\right) \psi(a)
$$

where we have extended χ to \mathbb{F}_{q} by $\chi(0):=0$. Indeed, for any $b \in \mathbb{F}_{q}$, we see that $\psi(b)$ appears on the left-hand side 0 times if b does not have the form $c d_{k} a^{2}$, appears 1 time if $b=0$, and appears 2 times if b is nonzero and has the form $c d_{k} a^{2}$; these values are exactly $1+\chi\left(c d_{k} a\right)$ in all cases. As such, the claim follows, and because ψ is nontrivial, we actually have

$$
\sum_{a \in \mathbb{F}_{q}} \psi\left(c d_{k} a^{2}\right)=\sum_{a \in \mathbb{F}_{q}} \chi\left(c d_{k} a\right) \psi(a)=\chi\left(c d_{k}\right) g(\chi, \psi) .
$$

Plugging this in, we see that

$$
\begin{aligned}
S_{\neq 0} & =g_{n}\left(\omega, \psi, T^{\prime}\right) \sum_{c \in \mathbb{F}_{q}^{\times}} \omega(c) \chi(c)^{n} \psi\left(c d_{n+1}\right) \chi\left(d_{1} \cdots d_{n}\right) g(\chi, \psi)^{n} \\
& =g_{n}\left(\omega, \psi, T^{\prime}\right) \cdot \frac{\chi\left(d_{1} \cdots d_{n}\right) \chi\left(d_{n+1}\right)^{n}}{\omega\left(d_{n+1}\right)} \sum_{c \in \mathbb{F}_{q}^{\times}} \omega(c) \chi(c)^{n} \psi(c) g(\chi, \psi)^{n} \\
& =g_{n}\left(\omega, \psi, T^{\prime}\right) \cdot \frac{\chi\left(d_{1} \cdots d_{n}\right) \chi\left(d_{n+1}\right)^{n}}{\omega\left(d_{n+1}\right)} \cdot g\left(\omega \chi^{n}, \psi\right) g(\chi, \psi)^{n} .
\end{aligned}
$$

- Suppose $A_{n+1, n+1}=0$; here, set $T^{\prime}:=\operatorname{diag}\left(d_{1}, \ldots, d_{n-1}\right)$ for brevity. The computation in the previous case implies that we would like to show

$$
\sum_{\substack{A \in \operatorname{Sym}_{n+1}^{\times}\left(\mathbb{F}_{q}\right) \\ A_{n+1, n+1}^{\prime}=0}} \omega(\operatorname{det} A) \psi(\operatorname{tr} A T) \stackrel{?}{=} 0 .
$$

In fact, let e_{n+1} denote the nth basis vector, and for any $v \in k^{n-1}$ and $c \in k$, we claim

$$
S(v, c):=\sum_{\substack{A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right) \\ A e_{n+1}=(v, c, 0)}} \omega(\operatorname{det} A) \psi(\operatorname{tr} A T) \stackrel{?}{=} 0 .
$$

To do Gaussian elimination, we would like to assume $c \neq 0$. Well, because A is invertible, we know that $A_{k, n+1} \neq 0$ for some $1 \leq k \leq n$ (recall $A_{n+1, n+1}=0$ already), so if the sum is to be nonempty, we may assume that $c \neq 0$ or $v_{k} \neq 0$ for some k. If $v_{k} \neq 0$, then note swapping the k th row and column with the nth row and column (of both A and T) will not affect the trace or detetrminant but does switch v_{k} with c, which grants $c \neq 0$.

We now do Gaussian elimination: note that there is a bijection

$$
\begin{aligned}
\operatorname{Sym}_{n-1}^{\times}\left(\mathbb{F}_{q}\right) \times \mathbb{F}_{q}^{n-1} \times \mathbb{F}_{q} & \rightarrow\left\{A \in \operatorname{Sym}_{n+1}^{\times}\left(\mathbb{F}_{q}\right): A e_{n+1}=(v, c, 0)\right\} \\
\left(A^{\prime}, w\right. & , d) \mapsto\left[\begin{array}{cc}
1 \frac{1}{c} v & w \\
1 & \\
& 1
\end{array}\right]\left[\begin{array}{c}
A^{\prime} \\
\\
d c \\
c
\end{array}\right]\left[\begin{array}{cc}
1 \\
\frac{1}{c} v^{\top} & \\
w^{\top} & \\
&
\end{array}\right]
\end{aligned}
$$

(Here, $\operatorname{Sym}_{0}^{\times}$is understood to consist of only the "empty" 0×0 matrix.) To see that this is a bijection, we expand out the matrix product as

$$
\left[\begin{array}{ccc}
A^{\prime}+\frac{d}{c^{2}} v v^{\top}+\left(v w^{\top}+w v^{\top}\right) & d v+c w & v \\
d v^{\top}+c w^{\top} & d & c \\
v^{\top} & c & 0
\end{array}\right],
$$

so we see that $A_{n, n}$ forces d, which then forces w from $A_{k, n}$ as $1 \leq k \leq n$; the rest of the data then forces A^{\prime}. Thus,

$$
\begin{aligned}
S(v, c) & =\sum_{\substack{A^{\prime} \in \operatorname{Sym}_{\begin{subarray}{c}{\times \\
w \in \mathbb{F}_{q}^{n-1}, d \in \mathbb{F}_{q} \\
\hline} }} \omega\left(-c^{2} \operatorname{det} A^{\prime}\right) \psi\left(\operatorname{tr} A^{\prime} T^{\prime}+\frac{d}{c^{2}} \operatorname{tr} v v^{\top} T^{\prime}+2 \operatorname{tr} v w^{\top} T^{\prime}+d d_{n}\right)} \\
{ }\end{subarray}}=\sum_{\substack{A^{\prime} \in \operatorname{Sym}_{n-1}^{\times}\left(\mathbb{F}_{q}\right)}} \omega\left(-c^{2} \operatorname{det} A^{\prime}\right) \psi\left(\operatorname{tr} A T^{\prime}\right)\left(\sum_{d \in \mathbb{F}_{q}} \psi\left(d d_{n}+\frac{d}{c^{2}} \operatorname{tr} v v^{\top} T^{\prime}\right) \sum_{w \in \mathbb{F}_{q}^{n-1}} \psi\left(2 \operatorname{tr} v w^{\top} T^{\prime}\right)\right) .
\end{aligned}
$$

Beginning with the innermost sum, we see $\operatorname{tr} v w^{\top} T^{\prime}=d_{1} v_{1} w_{1}+\cdots+d_{n-1} v_{n-1} w_{n-1}$, so this sum is

$$
\sum_{w \in \mathbb{F}_{q}^{n-1}} \psi\left(2 \operatorname{tr} v w^{\top} T^{\prime}\right)=\prod_{k=1}^{n-1}\left(\sum_{w_{k} \in \mathbb{F}_{q}} \psi\left(2 d_{k} v_{k} w_{k}\right)\right) .
$$

In order for these inner sums to be nonzero, we note that we must have $v_{k}=0$ for each k because ψ is a nontrivial character. Thus, we may assume $v=0$, from which we see

$$
S(0, c)=\left(\sum_{A^{\prime} \in \operatorname{Sym}_{n-1}^{\times}\left(\mathbb{F}_{q}\right)} \omega\left(\operatorname{det} A^{\prime}\right) \psi\left(\operatorname{tr} A^{\prime} T^{\prime}\right)\right)\left(\sum_{d \in \mathbb{F}_{q}} \psi\left(d_{n} d\right)\right)=0
$$

so we conclude in this case as well.
Summing the above two cases finishes the proof of Lemma 94.

We are now ready to prove Theorem 89.
Proof of Theorem 89. Quickly, we reduce to the case where T is diagonal. Indeed, by choosing an orthogonal basis for the symmetric bilinear form given by T, we receive some $g \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ such that $D:=g T g^{\top}$ is diagonal. As such, we compute

$$
\begin{aligned}
g_{n}(\omega, \psi, T) & =\sum_{A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)} \omega(\operatorname{det} A) \psi(\operatorname{tr} A T) \\
& =\sum_{A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)} \omega(\operatorname{det} A) \psi\left(\operatorname{tr} g^{-\top} A g^{-1} D\right) \\
& =\sum_{A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)} \omega\left(\operatorname{det} g^{\top} A g\right) \psi(\operatorname{tr} A D) \\
& =\omega(\operatorname{det} g)^{2} g_{n}(\omega, \psi, D) .
\end{aligned}
$$

Now, suppose we have proven the theorem for diagonal matrices. In this case, we see $g_{n}(\omega, \psi, D)=(\operatorname{det} D)^{-1} g_{n}(\omega, \psi, 1)$, so $\operatorname{det} D=(\operatorname{det} g)^{2}(\operatorname{det} T)$ implies that

$$
g_{n}(\omega, \psi, T)=(\operatorname{det} T)^{-1} g_{n}(\omega, \psi, 1)
$$

which is the theorem for T, as desired.
Thus, we may assume that $T:=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$. At this point, we induct on n. For $n=0$ and $n=1$, there is nothing to say. For the induction, assume $n \geq 2$, and we use Lemma 94 ; for brevity, set $T^{\prime}:=\operatorname{diag}\left(d_{1}, \ldots, d_{n-1}\right)$. There are two cases.

- Suppose that $n=2 m$ is an even positive integer. In this case, Lemma 94 and induction yields

$$
\begin{aligned}
g_{2 m}(\omega, \psi) & =g_{2 m-1}(\omega, \psi) \cdot \frac{\chi(\operatorname{det} T)}{\omega\left(d_{n+1}\right)} \cdot g(\omega \chi, \psi) g(\chi, \psi)^{2 m-1} \\
& =\frac{\chi(\operatorname{det} T) q^{(m-1) m}}{\omega\left(4^{m-1} \operatorname{det} T\right)} \cdot g(\omega, \psi) g\left(\omega^{2}, \psi\right)^{m-1} g(\omega \chi, \psi) g(\chi, \psi)^{2 m-1}
\end{aligned}
$$

By Proposition 92, this is

$$
g_{2 m}(\omega, \psi)=\frac{\chi(\operatorname{det} T) q^{m^{2}-m}}{\omega\left(4^{m} \operatorname{det} T\right)} \cdot g\left(\omega^{2}, \psi\right)^{m} g(\chi, \psi)^{2 m}
$$

Lastly, Proposition 93 yields

$$
g_{2 m}(\omega, \psi)=\frac{\chi(-1)^{m} \chi(\operatorname{det} T) q^{m^{2}}}{\omega\left(4^{m} \operatorname{det} T\right)} \cdot g\left(\omega^{2}, \psi\right)^{m}
$$

- Suppose $n=2 m+1$ is an odd positive integer with $m \geq 1$. In this case, Lemma 94 and induction yields

$$
\begin{aligned}
g_{2 m+1}(\omega, \psi) & =g_{2 m}(\omega, \psi) g(\omega, \psi) \cdot \frac{\chi\left(\operatorname{det} T^{\prime}\right)}{\omega\left(d_{n+1}\right)} \cdot g(\chi, \psi)^{2 m} \\
& =\frac{\chi(-1)^{m} q^{m^{2}}}{\omega\left(4^{m} \operatorname{det} T\right)} \cdot g\left(\omega^{2}, \psi\right)^{m} g(\omega, \psi) g(\chi, \psi)^{2 m}
\end{aligned}
$$

From here, Proposition 93 implies

$$
g_{2 m+1}(\omega, \psi)=\frac{q^{m^{2}+m}}{\omega(4)^{m}} \cdot g(\omega, \psi) g\left(\omega^{2}, \psi\right)^{m}
$$

The above cases complete the induction.
B.3. A Gamma Matrix Computation. In this subsection, we use Theorem 89 to compute the finite-field analogue of a γ-matrix attachaed to the prehomogeneous space $\operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)$. For context, the p-adic analogue of Theorem 89 is intimately related to zeta functions attached to prehomogeneous spaces; see [KS97, Section 3] or [Ike17, Section 2]. We refer to [Sat89] for the general theory of prehomogeneous spaces.

In our case, we note that $\left(\mathrm{GL}_{n}, \mathrm{Sym}_{n}\right)$ is a prehomogeneous space, where the action is given by $g \cdot A:=g A g^{\top}$. In other words, there is a proper algebraic subset $S \subseteq \operatorname{Sym}_{n}(\bar{k})$ such that $\operatorname{Sym}_{n}(\bar{k}) \backslash S$ is a single $\mathrm{GL}_{n}(\bar{k})$-oribt. To see this, for any field k, we note that two invertible symmetric matrices $A, B \in \operatorname{Sym}_{n}(k)$ have some $g \in \mathrm{GL}_{n}(k)$ such that $g \cdot A=B$ if and only if $\operatorname{det} A$ and $\operatorname{det} B$ are the same element in $k^{\times} / k^{\times 2}$; thus, when passing to the algebraic closure, $\operatorname{Sym}_{n}^{\times}(\bar{k})$ is a Zariski-open $\mathrm{GL}_{n}(\bar{k})$-orbit in $\operatorname{Sym}_{n}(\bar{k})$.

We now define our zeta function. Let the $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$-orbits of $\operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$ be denoted by $Y_{1} \sqcup$ Y_{-1}, corresponding to if $A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$ has square or non-square determinant, respectively. Now, because the proper algebraic subset $S \subseteq \operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)$ is cut out by det, our attached zeta functions are

$$
Z_{k}(\omega, \varphi):=\sum_{A \in Y_{k}} \omega(\operatorname{det} A) \varphi(A)
$$

where $\omega: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$is a character and $\varphi: \operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{C}$ is some test function; let $S\left(\operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)\right)$ denote this space of test functions. Now, fix once and for all a nontrivial additive character $\psi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$, so we may define the Fourier transform

$$
\mathcal{F}_{\psi} \varphi(A):=\sum_{B \in \operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)} \varphi(B) \psi(\operatorname{tr} A B) .
$$

Remark 95. To view \mathcal{F}_{ψ} as a Fourier transform, we claim $\mathcal{F}_{\psi^{-1}} \circ \mathcal{F}_{\psi}=q^{\binom{n+1}{2}}$. It suffices to check this result on indicators 1_{C} where $C \in \operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)$. Then we see $\mathcal{F}_{\psi} 1_{C}(B)=\psi(\operatorname{tr} B C)$ for any $B \in \operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)$, so

$$
\left(\mathcal{F}_{\psi^{-1}} \mathcal{F}_{\psi} 1_{C}\right)(A)=\sum_{B \in \operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)} \psi(\operatorname{tr}(C-A) B) .
$$

If $A=C$, then the sum is $q^{\binom{n+1}{2}}$. Otherwise, $A^{\prime}:=C-A \neq 0$, and we need the sum to vanish. Well, if $A_{k^{\prime} \ell^{\prime}}^{\prime} \neq 0$ for some indices k^{\prime} and ℓ^{\prime}, then consider the matrix $B\left(k^{\prime}, \ell^{\prime}\right)$ by $B\left(k^{\prime}, \ell^{\prime}\right)_{k \ell}=1_{\{k, \ell\}=\left\{k^{\prime}, \ell^{\prime}\right\}}$, which gives

$$
\sum_{b \in \mathbb{F}_{q}} \psi\left(\operatorname{tr} A^{\prime} b B\left(k^{\prime}, \ell^{\prime}\right)\right)=\sum_{b \in \mathbb{F}_{q}} \sum_{k, \ell=1}^{n} \psi\left(b A_{k \ell}^{\prime} B\left(k^{\prime}, \ell^{\prime}\right)_{\ell k}\right)=\sum_{b \in \mathbb{F}_{q}} \psi\left(2 b A_{k^{\prime} \ell^{\prime}}^{\prime}\right)=0
$$

Grouping the rest of the sum by $\operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right) / \mathbb{F}_{q} B\left(k^{\prime}, \ell^{\prime}\right)$ shows that $\sum_{B \in \operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)} \psi\left(\operatorname{tr} A^{\prime} B\right)=0$, as needed.

A functional equation of zeta functions attached to prehomogeneous spaces is typically a result relating $Z_{\bullet}(\omega, \varphi)$ to a dual version $Z_{\bullet}\left(\omega^{-1}, \mathcal{F}_{\psi} \varphi\right)$; some such results exist in the literature [DG98], but we will prove an analogue here for completeness. To prove our analogue, we begin with the following multiplicity-two result.

Proposition 96. Fix notation as above, and let ω : $\mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$be a character.
(a) For any $k \in\{ \pm 1\}$ and $g \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ and $\varphi \in S\left(\operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)\right.$), we have

$$
Z_{k}(\omega, g \cdot \varphi)=\omega(\operatorname{det} g)^{2} Z_{k}(\omega, \varphi)
$$

(b) The functionals $Z_{1}(\omega)$ and $Z_{2}(\omega)$ are a basis of the space

$$
\operatorname{Hom}_{\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)}\left(S\left(\operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)\right)^{\circ}, \omega^{2} \circ \operatorname{det}\right),
$$

where $S\left(\operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)\right)^{\circ}$ denotes the functionals on $\operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)$ supported on $\operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$.
Proof. Quickly, we recall that the $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$-action on $\operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)$ is given by $(g \cdot \varphi)(A)=$ $\varphi\left(g^{-1} \cdot A\right)=\varphi\left(g^{-1} A g^{-\top}\right)$. From this one can see that $S\left(\operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)\right)^{\circ}$ is in fact a $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ subrepresentation of $\operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)$.

To see (a), we directly compute

$$
\begin{aligned}
Z_{k}(\omega, g \cdot \varphi) & =\sum_{A \in Y_{k}} \omega(\operatorname{det} A)(g \cdot \varphi)(A) \\
& =\sum_{A \in Y_{k}} \omega(\operatorname{det} A) \varphi\left(g^{-1} \cdot A\right) \\
& =\sum_{A \in Y_{k}} \omega(\operatorname{det} g \cdot A) \varphi(A) \\
& =\omega(\operatorname{det} g)^{2} \sum_{A \in Y_{k}} \omega(\operatorname{det} A) \varphi(A),
\end{aligned}
$$

which is what we wanted.
Thus, we spend most of our time on (b). Fix representatives $A_{1} \in Y_{1}$ and $A_{-1} \in Y_{-1}$. Then we see that $Z_{1}(\omega)$ and $Z_{2}(\omega)$ are at least linearly independent as functionals on $S\left(\operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)\right)^{\circ}$ because $Z_{k}\left(\omega, 1_{A_{\ell}}\right)=1_{k=\ell} \omega\left(\operatorname{det} A_{\ell}\right)$.

It remains to show that Z_{1} and Z_{2} span this eigenspace. The main point is that $\operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$ has only two orbits, so any eigenvector Z is essentially determined by two values. Rigorously, without loss of generality, we replace Z with

$$
Z-\frac{Z\left(1_{A_{1}}\right)}{\omega\left(\operatorname{det} A_{1}\right)} \cdot Z_{1}(\omega)-\frac{Z\left(1_{A_{-1}}\right)}{\omega\left(\operatorname{det} A_{-1}\right)} \cdot Z_{-1}(\omega)
$$

so that $Z\left(1_{A_{1}}\right)=Z\left(1_{A_{-1}}\right)=0$. We now claim that $Z=0$, which will complete the proof. It is enough to show that $Z\left(1_{A}\right)=0$ for any $A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$.

Well, $\operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)=Y_{1} \sqcup Y_{-1}$, so without loss of generality, take $A \in Y_{1}$. Then we may find $g \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ so that $A=g \cdot A_{1}$, so

$$
1_{A}(B)=1_{g \cdot A_{1}}(B)=1_{A_{1}}\left(g^{-1} \cdot B\right)=\left(g \cdot 1_{A_{1}}\right)(B)
$$

for any $B \in \operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)$. Thus, because Z is an eigenvector,

$$
Z\left(1_{A}\right)=Z\left(g \cdot 1_{A_{1}}\right) \underset{70}{=} \omega(\operatorname{det} g)^{2} Z\left(1_{A_{1}}\right)=0,
$$

as desired.
Remark 97. In fact, for any eigenvector Z, the proof of Proposition 96 shows that

$$
Z(\varphi)=\frac{Z\left(1_{A_{1}}\right)}{\omega\left(\operatorname{det} A_{1}\right)} \cdot Z_{1}(\omega, \varphi)+\frac{Z\left(1_{A_{-1}}\right)}{\omega\left(\operatorname{det} A_{-1}\right)} \cdot Z_{-1}(\omega, \varphi)
$$

for any $\varphi \in S\left(\operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)\right)^{\circ}$. Here, we recall $A_{1} \in Y_{1}$ and $A_{-1} \in Y_{-1}$ are any representatives.
To use Proposition 96, we thus want to show that $\varphi \mapsto Z\left(\omega^{-1}, \mathcal{F}_{\psi} \varphi\right)$ is an eigenvector. This follows formally from the following lemma.

Lemma 98. For any $g \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$, the following diagram commutes.

Proof. This is a direct computation. For any $g \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ and $\varphi \in S\left(\operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)\right)$ and $A \in \operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)$, we compute

$$
\begin{aligned}
\left(\mathcal{F}_{\psi} g \varphi\right)(A) & =\sum_{B \in \operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)}(g \varphi)(B) \psi(\operatorname{tr} A B) \\
& =\sum_{B \in \operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)} \varphi\left(g^{-1} B g^{-\top}\right) \psi(\operatorname{tr} A B) \\
& =\sum_{B \in \operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)} \varphi(B) \psi\left(\operatorname{tr} A g B g^{\top}\right) \\
& =\sum_{B \in \operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)} \varphi(B) \psi\left(\operatorname{tr} g^{\top} A g B\right) \\
& =\mathcal{F}_{\psi} \varphi\left(g^{\top} \cdot A\right) \\
& =\left(g^{\left.-\top \mathcal{F}_{\psi} \varphi\right)(A)},\right.
\end{aligned}
$$

which is what we wanted.
Theorem 99. Fix notation as above. Let $\omega: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$be a character. For any $k \in\{ \pm 1\}$, there exist unique constants $\gamma_{k, 1}(\omega)$ and $\gamma_{k,-1}(\omega)$ such that

$$
Z_{k}\left(\omega^{-1}, \mathcal{F}_{\psi} \varphi\right)=\gamma_{k, 1}(\omega) Z_{1}(\omega, \varphi)+\gamma_{k,-1}(\omega) Z_{-1}(\omega, \varphi)
$$

for any $\varphi \in S\left(\operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)\right)$ supported on $\operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$.
Proof. This follows formally from Proposition 96 and Lemma 98. Indeed, it is enough to show that the functional $\varphi \mapsto Z_{k}\left(\omega^{-1}, \mathcal{F}_{\psi} \varphi\right)$ on $S\left(\operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)\right)$ is a $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$-eigenvector with eigenvalue $\omega^{2} \circ$ det. Well, for any $\varphi \in S\left(\operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)\right)$ and $g \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$, we use Lemma 98 to compute

$$
\begin{aligned}
Z_{k}\left(\omega^{-1}, \mathcal{F}_{\psi}(g \varphi)\right) & =Z_{k}\left(\omega^{-1}, g^{-\top} \mathcal{F}_{\psi} \varphi\right) \\
& =\left(\omega^{-1}\left(\operatorname{det} g^{-\top}\right)\right)^{2} Z_{k}\left(\omega^{-1}, \mathcal{F}_{\psi} \varphi\right) \\
& =\omega(\operatorname{det} g)^{2} Z_{k}\left(\omega^{-1}, \mathcal{F}_{\psi} \varphi\right),
\end{aligned}
$$

as desired.
The main point of this subsection is to explicitly compute the constants $\gamma_{k, \ell}(\omega)$, which make up the "change-of-basis" γ-matrix. To this end, we have the following result.

Theorem 100. Fix notation as above. Let $\omega: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$be a character, and let $\chi: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$ be the nontrivial quadratic character. For any $k, \ell \in\{ \pm 1\}$, we have

$$
\begin{equation*}
c_{k, \ell}(\omega)=\frac{g_{n}\left(\omega^{-1}, \psi, 1\right)+k \ell g_{n}\left(\omega^{-1} \chi, \psi, 1\right)}{2} . \tag{B.3.1}
\end{equation*}
$$

In particular, we have the following.

- If $n=2 m$ is an even nonnegative integer, then

$$
c_{k, \ell}(\omega)=\chi(-1)^{m} \omega(4)^{m} q^{m^{2}} g\left(\omega^{-2}, \psi\right)^{m} 1_{k=\ell} .
$$

- If $n=2 m+1$ is an odd nonnegative integer, then

$$
c_{k, \ell}(\omega)=\omega(4)^{m} q^{m(m+1)} g\left(\omega^{-2}, \psi\right)^{m} \cdot \frac{g\left(\omega^{-1}, \psi\right)+k \ell g\left(\omega^{-1} \chi, \psi\right)}{2} .
$$

Proof. The last computations follow from directly from plugging (B.3.1) into Theorem 89, so we will spend our time proving (B.3.1). Using Remark 97, we see

$$
\gamma_{k, \ell}(\omega)=\frac{Z_{k}\left(\omega^{-1} \mathcal{F}_{\psi} 1_{A_{\ell}}\right)}{\omega\left(\operatorname{det} A_{\ell}\right)}=\frac{1}{\omega\left(\operatorname{det} A_{\ell}\right)} \sum_{A \in Y_{k}} \omega^{-1}(\operatorname{det} A) \mathcal{F}_{\psi} 1_{A_{\ell}}(A),
$$

where $A_{\ell} \in Y_{\ell}$ is some representative. A direct computation shows $\mathcal{F}_{\psi} 1_{A_{\ell}}(A)=\psi\left(\operatorname{tr} A A_{\ell}\right)$, so

$$
\gamma_{k, \ell}(\omega)=\frac{1}{\omega\left(\operatorname{det} A_{\ell}\right)} \sum_{A \in Y_{k}} \omega^{-1}(\operatorname{det} A) \psi\left(\operatorname{tr} A A_{\ell}\right)
$$

To express this in terms of $g_{n} \mathrm{~s}$, we need to change the sum from over $A \in Y_{k}$ to over $A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$. To this end, we note that $A \in Y_{k}$ if and only if $\chi(\operatorname{det} A)=k$ and is $-k$ otherwise, so a direct computation shows that $1_{Y_{k}}=\frac{1}{2}(1+k \chi \circ$ det $)$. Thus,

$$
\begin{aligned}
\gamma_{k, \ell}(\omega) & =\frac{1}{\omega\left(\operatorname{det} A_{\ell}\right)} \sum_{A \in \operatorname{Sym}_{n}^{\times}} \omega^{-1}(\operatorname{det} A) \psi\left(\operatorname{tr} A A_{\ell}\right)\left(\frac{1+k \chi(\operatorname{det} A)}{2}\right) \\
& =\frac{g_{n}\left(\omega^{-1}, \psi, A_{\ell}\right)+k g_{n}\left(\omega^{-1} \chi, \psi, A_{\ell}\right)}{2 \omega\left(\operatorname{det} A_{\ell}\right)}
\end{aligned}
$$

To finish up, we note that Theorem 89 implies that $g_{n}\left(\omega^{-1}, \psi, A_{\ell}\right)=\omega\left(\operatorname{det} A_{\ell}\right) g_{n}\left(\omega^{-1}, \psi, 1\right)$ and

$$
g_{n}\left(\omega^{-1} \chi, \psi, A_{\ell}\right)=\omega\left(\operatorname{det} A_{\ell}\right) \chi\left(\operatorname{det} A_{\ell}\right) g_{n}\left(\omega^{-1} \chi, \psi, 1\right)=\omega\left(\operatorname{det} A_{\ell}\right) \ell g_{n}\left(\omega^{-1} \chi, \psi, 1\right)
$$

from which substitution completes the proof.
Corollary 101. Fix notation as above. Let $\omega: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$be a character. The functions $\varphi \mapsto Z_{\bullet}\left(\omega^{-1}, \mathcal{F}_{\psi} \varphi\right)$ form a basis of the space

$$
\operatorname{Hom}_{\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)}\left(S\left(\operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)\right)^{\circ}, \omega^{2} \circ \operatorname{det}\right),
$$

where $S\left(\operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)\right)^{\circ}$ denotes the functionals on $\operatorname{Sym}_{n}\left(\mathbb{F}_{q}\right)$ supported on $\operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$.

Proof. For brevity, define $Z_{\bullet}^{\prime}(\varphi):=Z_{\bullet}\left(\omega^{-1}, \mathcal{F}_{\psi} \varphi\right)$. Note that Z_{\bullet}^{\prime} is in fact an eigenvector by the proof of Theorem 99 , and this space has basis given by $Z_{1}(\omega)$ and $Z_{2}(\omega)$ by Proposition 96. Now, the constants $\left(\gamma_{k, \ell}\right)_{k, \ell \in\{ \pm 1\}}$ make a change-of-basis matrix from $\left\{Z_{1}(\omega), Z_{2}(\omega)\right\}$ to $\left\{Z_{1}^{\prime}, Z_{2}^{\prime}\right\}$, so it suffices to show that

$$
\operatorname{det}\left[\begin{array}{cc}
\gamma_{1,1} & \gamma_{1,-1} \\
\gamma_{-1,1} & \gamma_{-1,-1}
\end{array}\right] \stackrel{?}{\neq 0}
$$

To use Theorem 100, we set $g_{+}:=g_{n}\left(\omega^{-1}, \psi, 1\right)$ and $g_{-}:=g_{n}\left(\omega^{-1} \chi, \psi, 1\right)$, from which we compute

$$
\operatorname{det}\left[\begin{array}{cc}
\gamma_{1,1} & \gamma_{1,-1} \\
\gamma_{-1,1} & \gamma_{-1,-1}
\end{array}\right]=\operatorname{det} \frac{1}{2}\left[\begin{array}{ll}
g_{+}+g_{-} & g_{+}-g_{-} \\
g_{+}-g_{-} & g_{+}+g_{-}
\end{array}\right]=g_{+} g_{-} .
$$

Now, g_{+}and g_{-}are nonzero by Theorem 89 (and Proposition 93), so we are done.
Remark 102. Combining the above computation with Remark 91, in the "generic" case $\omega^{2} \neq 1$, we have

$$
\left|\operatorname{det}\left[\begin{array}{cc}
\gamma_{1,1} & \gamma_{1,-1} \\
\gamma_{-1,1} & \gamma_{-1,-1}
\end{array}\right]\right|=q^{\binom{n+1}{2}} .
$$

If we were to normalize \mathcal{F}_{ψ} to $\mathcal{F}_{\psi}^{*}:=q^{-\frac{1}{2}\binom{n+1}{2}} \mathcal{F}_{\psi}$ and redefine everything with the normalized Fourier transform, then this determinant would have absolute value 1. This normalization factor is desirable because Remark 95 implies $\mathcal{F}_{\psi^{-1}}^{*} \circ \mathcal{F}_{\psi}^{*}=1$.
B.4. Combinatorics. In this subsection, we use Theorem 89 to compute the number of symmetric invertible matrices over \mathbb{F}_{q} with specified trace and determinant. This requires a more complete understanding of the sums $g_{n}(\omega, \psi, T)$ than Theorem 89 provides; in particular, we need to understand the case when ψ is trivial. Nonetheless, the method of proof Theorem 89 still applies.

Proposition 103. Fix a nonnegative integer n and some $T \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$.
(a) Let $\omega: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$be a nontrivial character. If n is odd or $\omega^{2} \neq 1$, then $g_{n}(\omega, 1, T)=0$.
(b) Let $\chi: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$be the nontrivial quadratic character. If $n=2 m$ is even, then

$$
g_{2 m}(\chi, 1, T)=\chi(-1)^{m} q^{m^{2}} \prod_{k=0}^{m-1}\left(q^{2 k+1}-1\right)
$$

Proof. For the proof of (a), we have two cases.

- Suppose $\omega^{2} \neq 1$. Then for any $g \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$, we see that $A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$ if and only if $g A g^{\top} \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$, so

$$
g_{n}(\omega, 1, T)=\sum_{A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)} \omega(\operatorname{det} A)=\sum_{A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)} \omega\left(\operatorname{det} g A g^{\top}\right)=\omega(\operatorname{det} g)^{2} g_{n}(\omega, 1, T) .
$$

Thus, to conclude $g_{n}(\omega, 1, T)=0$, it suffices to find $g \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ with $\omega(\operatorname{det} g)^{2} \neq 1$. Well, $\omega^{2} \neq 1$, so find $c \in \mathbb{F}_{q}^{\times}$such that $\omega(c)^{2} \neq 1$ and then set $g:=\operatorname{diag}(c, 1, \ldots, 1)$.

- Suppose n is odd. By the previous case, we may assume that $\omega^{2}=1$. Now, for any $c \in \mathbb{F}_{q}^{\times}$, we see that $A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$ if and only if $c A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$, so

$$
g_{n}(\omega, 1, T)=\sum_{A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)} \omega(\operatorname{det} A)=\sum_{\substack{A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right) \\ 73}} \omega(c \operatorname{det} A)=\omega(c)^{n} g_{n}(\omega, 1, T) .
$$

Now, if we did have $g_{n}(\omega, 1, T) \neq 0$, then we would have $\omega(c)^{n}=1$ for all $c \in \mathbb{F}_{q}^{\times}$ and hence $\omega^{n}=1$; however, n is odd and $\omega^{2}=1$ already, so it would follow $\omega=1$. However, $\omega \neq 1$ by hypothesis.
For the proof of (b), we imitate the proof of Theorem 89. As an analogue of Lemma 94, we claim that

$$
\begin{equation*}
g_{2 m+2}(\chi, 1, T) \stackrel{?}{=} g_{2 m}(\chi, 1, T) \cdot \chi(-1) q^{2 m+1}\left(q^{2 m+1}-1\right) \tag{B.4.1}
\end{equation*}
$$

for any nonnegative integer m. Note that (B.4.1) will complete the proof of (b) by an induction.

Now, the proof of (B.4.1) is analogous to Lemma 94; there are two cases. Set $n:=2 m$ for brevity.

- We sum over $A \in \operatorname{Sym}_{n+2}^{\times}\left(\mathbb{F}_{q}\right)$ with $A_{n+2, n+2} \neq 0$. As in Lemma 94, we have the following bijection.

$$
\begin{aligned}
\operatorname{Sym}_{n+1}^{\times}\left(\mathbb{F}_{q}\right) \times \mathbb{F}_{q}^{n+1} \times \mathbb{F}_{q}^{\times} & \rightarrow\left\{A \in \operatorname{Sym}_{n+2}^{\times}\left(\mathbb{F}_{q}\right): A_{n+2, n+2} \neq 0\right\} \\
\left(A^{\prime}, v \quad, c\right) & \mapsto\left[\begin{array}{r}
v \\
1
\end{array}\right]\left[\begin{array}{c}
A^{\prime} \\
c
\end{array}\right]\left[\begin{array}{c}
1 \\
v^{\top} 1
\end{array}\right]
\end{aligned}
$$

It follows that

$$
\sum_{\substack{A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right) \\ A_{n+2, n+2} \neq 0}} \chi(\operatorname{det} A)=\left(\sum_{\substack{A^{\prime} \in \operatorname{Sym}_{n+1}^{\times}\left(\mathbb{F}_{q}\right)}} \chi(\operatorname{det} A)\right)\left(\sum_{c \in \mathbb{F}_{q}^{\times}, v \in \mathbb{F}_{q}^{n+1}} \omega(c)\right),
$$

but the left sum vanishes by (a) because it is $g_{2 m+1}(\chi, 1, T)=0$. Thus, there is no contribution in this case.

- We sum over $A \in \operatorname{Sym}_{n+2}^{\times}\left(\mathbb{F}_{q}\right)$ with $A_{n+2, n+2}=0$. In light of the previous case, we expect all contribution from this case. Let e_{n+2} denote the $(n+2)$ nd basis vector. For any $v \in \mathbb{F}_{q}^{n}$ and $c \in \mathbb{F}_{q}$, we claim that

$$
\sum_{\substack{A \in \operatorname{Sym}_{n+2}^{\times}\left(\mathbb{F}_{q}\right) \\ A e_{n+2}=(v, c, 0)}} \chi(\operatorname{det} A) \stackrel{?}{=} g_{2 m}(\chi, 1, T) \cdot \chi(-1) q^{2 m+1}
$$

from which the claim will follow upon summing over all vectors $(v, c) \in \mathbb{F}_{q}^{n+1}$ with at least one nonzero entry. Quickly, because some entry in $(v, c) \in \mathbb{F}_{q}^{n+1}$, we note that we can rearrange the rows and columns of A to allow us to assume that $c \neq 0$.

Thus, as in Lemma 94, we have the following bijection.

$$
\left.\begin{array}{rl}
\operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right) \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q} & \rightarrow\left\{A \in \operatorname{Sym}_{n+2}^{\times}\left(\mathbb{F}_{q}\right): A e_{n+2}=(v, c, 0)\right\} \\
\left(A^{\prime}, w\right. & , d)
\end{array}\right)\left[\begin{array}{ccc}
1 \frac{1}{c} v & w \\
1 & \\
& 1
\end{array}\right]\left[\begin{array}{cc}
A^{\prime} \\
& d \\
& c
\end{array}\right]\left[\begin{array}{c}
1 \\
\frac{1}{c} v^{\top} \\
c \\
w^{\top}
\end{array}\right]
$$

It follows that

$$
\sum_{\substack{A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right) \\ A e_{n+2}=(v, c, 0)}} \chi(\operatorname{det} A)=\sum_{w \in \mathbb{F}_{q}^{n}, d \in \mathbb{F}_{q}}\left(\sum_{A^{\prime} \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)} \chi\left(-c^{2} \operatorname{det} A\right)\right) .
$$

which is what we wanted upon noting $\chi\left(-c^{2}\right)=\chi(-1)$ and collecting sums.

Combining the above casework completes the proof of (b).
Remark 104. One can prove (b) by a combinatorial argument, directly counting the number of invertible symmetric matrices with square determinant; this is done in [Mac69, Theorem 4]. We have included the above proof to emphasize the strength of the Gaussian elimination technique to compute these Gauss sums.

The last sum $g_{n}(\omega, \psi, T)$ to consider is the case where ω and ψ are both trivial. Equivalently, we are counting the number of invertible symmetric $n \times n$ matrices with entries in \mathbb{F}_{q}. This result is well-known; for example, see [Mac69, Theorem 2]. However, to emphasize the strength of our method (and for completeness), we will present a proof using Gaussian elimination, as done in [BM87] in the case of \mathbb{F}_{p}.
Proposition 105. Fix a nonnegative integer n and some $T \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$.
(a) If $n=2 m$ is even, then

$$
g_{2 m}(1,1, T)=q^{m^{2}+m} \prod_{k=0}^{m-1}\left(q^{2 k+1}-1\right)
$$

(b) If $n=2 m+1$ is odd, then

$$
g_{2 m+1}(1,1, T)=q^{m^{2}+m} \prod_{k=0}^{m}\left(q^{2 k+1}-1\right) .
$$

Proof. The proof will be by induction on n. In analogy to Lemma 94, the main claim is that

$$
\begin{equation*}
g_{n+2}(1,1, T) \stackrel{?}{=} q^{n+1}(q-1) g_{n+1}(1,1, T)+q^{n+1}\left(q^{n+1}-1\right) g_{n}(1,1, T) \tag{B.4.2}
\end{equation*}
$$

for any nonnegative integer n. The proof of Equation (B.4.2) uses the typical Gaussian elimination technique.

- We sum over $A \in \operatorname{Sym}_{n+2}^{\times}\left(\mathbb{F}_{q}\right)$ where $A_{n+2, n+2} \neq 0$. As in Lemma 94, we have the following bijection.

$$
\begin{aligned}
\operatorname{Sym}_{n+1}^{\times}\left(\mathbb{F}_{q}\right) \times \mathbb{F}_{q}^{n+1} \times \mathbb{F}_{q}^{\times} & \rightarrow\left\{A \in \operatorname{Sym}_{n+2}^{\times}\left(\mathbb{F}_{q}\right): A_{n+2, n+2} \neq 0\right\} \\
\left(A^{\prime}, v \quad, c\right) & \mapsto\left[\begin{array}{r}
v \\
1
\end{array}\right]\left[\begin{array}{c}
A^{\prime} \\
c
\end{array}\right]\left[\begin{array}{c}
1 \\
v^{\top} 1
\end{array}\right]
\end{aligned}
$$

It follows that the number of matrices in this case is $q^{n+1}(q-1) g_{n+1}(1,1, T)$.

- We sum over $A \in \operatorname{Sym}_{n+2}^{\times}\left(\mathbb{F}_{q}\right)$ where $A_{n+2, n+2}=0$. Let e_{n+2} denote the $(n+2)$ nd basis vector. For any $v \in \mathbb{F}_{q}^{n}$ and $c \in \mathbb{F}_{q}$, we claim that

$$
\#\left\{A \in \operatorname{Sym}_{n+2}^{\times}\left(\mathbb{F}_{q}\right): A e_{n+2}=(v, c, 0)\right\} \stackrel{?}{=} q^{n+1} g_{n}(1,1, T),
$$

from which (B.4.2) will follow by summing over all $(v, c) \in \mathbb{F}_{q}^{n+1}$ with at least one nonzero entry. Quickly, because some entry in $(v, c) \in \mathbb{F}_{q}^{n+1}$, we note that we can rearrange the rows and columns of A to allow us to assume that $c \neq 0$.

Now, as in Lemma 94, we have the following bijection.

$$
\begin{aligned}
\operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right) \times \mathbb{F}_{q}^{n} \times \mathbb{F}_{q} & \rightarrow\left\{A \in \operatorname{Sym}_{n+2}^{\times}\left(\mathbb{F}_{q}\right): A e_{n+2}=(v, c, 0)\right\} \\
\left(A^{\prime}, w\right. & , d) \mapsto\left[\begin{array}{cc}
1 \frac{1}{c} v & w \\
1 & \\
& 1
\end{array}\right]\left[\begin{array}{c}
A^{\prime} \\
\\
\\
\\
\\
c
\end{array}\right]\left[\begin{array}{c}
1 \\
c
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{c} v^{\top} 1 & \\
w^{\top} & 1
\end{array}\right]
\end{aligned}
$$

The desired equality follows.
Summing the above cases completes the proof of (B.4.2).
We now complete the proof by an induction on n. For $n=0$ and $n=1$, there is nothing to say. Now, to synthesize cases, we note that

$$
q^{m^{2}+m} \prod_{k=0}^{m}\left(q^{2 k+1}-1\right)=q^{\frac{1}{2}(2 m+1)(2 m+2)} \prod_{\substack{1 \leq k \leq 2 m+1 \\ \text { odd }}}\left(1-\frac{1}{q^{k}}\right)
$$

and analogously for the even case. Thus, for our induction, we take $n \geq 0$ and use (B.4.2) to see $g_{n+2}(1,1, T)$ is

$$
\begin{aligned}
& q^{n+1}(q-1) g_{n+1}(1,1, T)+q^{n+1}\left(q^{n+1}-1\right) g_{n}(1,1, T) \\
= & q^{\frac{1}{2}(n+2)(n+1)}\left(q^{n+1}(q-1) \prod_{\substack{n<k \leq n+1 \\
k \text { odd }}}\left(1-\frac{1}{q^{k}}\right)+\left(q^{n+1}-1\right)\right) \prod_{\substack{1 \leq k \leq n \\
k \text { odd }}}\left(1-\frac{1}{q^{k}}\right) .
\end{aligned}
$$

If n is odd, we have

$$
q^{\frac{1}{2}(n+2)(n+1)}\left(q^{n+2}-1\right) \prod_{\substack{1 \leq k \leq n \\ k \text { odd }}}\left(1-\frac{1}{q^{k}}\right)
$$

which simplifies correctly. If n is even, we have

$$
q^{\frac{1}{2}(n+2)(n+1)} \underbrace{\left(q^{n+1}(q-1)\left(1-\frac{1}{q^{n+1}}\right)+\left(q^{n+1}-1\right)\right)}_{q\left(q^{n+1}-1\right)} \prod_{\substack{1 \leq k \leq n \\ k \text { odd }}}\left(1-\frac{1}{q^{k}}\right)
$$

which still simplifies correctly. This completes the induction.
We are now ready for our combinatorics.
Theorem 106. Let n be a nonnegative integer, and fix some $T \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$. Further, fix $d \in \mathbb{F}_{q}^{\times}$and $t \in \mathbb{F}_{q}$.
(a) Suppose that $n=2 m+1$ is odd. Then the number of $A \in \operatorname{Sym}_{2 m+1}^{\times}\left(\mathbb{F}_{q}\right)$ such that $\operatorname{det} A=d$ and $\operatorname{tr} A T=t$ is

$$
\begin{aligned}
& \frac{q^{m^{2}+m}}{q(q-1)}\left(\prod_{k=0}^{m}\left(q^{2 k+1}-1\right)-(q-1)^{m+1}\right) \\
& +q^{m^{2}+m} \cdot \#\left\{\left(x, y_{1}, \ldots, y_{m}\right): x+\left(y_{1}+\cdots+y_{m}\right)=t, \frac{x\left(y_{1} \cdots y_{m}\right)^{2}}{4^{m} \operatorname{det} T}=d\right\}
\end{aligned}
$$

(b) Suppose that $n=2 m$ is even. Let $\chi: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$denote the nontrivial quadratic character. Then the number of $A \in \operatorname{Sym}_{2 m}^{\times}\left(\mathbb{F}_{q}\right)$ such that $\operatorname{det} A=d$ and $\operatorname{tr} A T=t$ is

$$
\begin{aligned}
& \frac{q^{m^{2}}}{q(q-1)}\left(\left(q^{m}+\chi(-1)^{m} \chi(d)\right) \prod_{k=0}^{m-1}\left(q^{2 k+1}-1\right)-\chi(-1)^{m}(\chi(d)+\chi(\operatorname{det} T))(q-1)^{m}\right) \\
& +\chi(-1)^{m} \chi(\operatorname{det} T) q^{m^{2}} \cdot \#\left\{\left(y_{1}, \ldots, y_{m}\right): y_{1}+\cdots+y_{m}=t, \frac{\left(y_{1} \cdots y_{m}\right)^{2}}{4^{m} \operatorname{det} T}=d\right\}
\end{aligned}
$$

Proof. We prove these separately.
(a) For any characters $\omega: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$and $\psi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$, we claim that

$$
\begin{aligned}
g_{n}(\omega, \psi, T) \stackrel{?}{=} & \frac{q^{m(m+1)}}{\omega\left(4^{m} \operatorname{det} T\right)} \cdot g(\omega, \psi) g\left(\omega^{2}, \psi\right)^{m} \\
& +\frac{g_{n}(1,1, T)-q^{m(m+1)}(q-1)^{m+1}}{q(q+1)} \sum_{a \in \mathbb{F}_{q}^{\times}, b \in \mathbb{F}_{q}} \omega(a) \psi(b)
\end{aligned}
$$

This is by casework. If ψ is nontrivial, the second sum on the right-hand side vanishes, so the claim follows from Theorem 89. If ψ is trivial and ω is nontrivial, then the right-hand side vanishes, and left-hand side vanishes by Proposition 103. Lastly, if both ψ and ω are trivial, then both sides are $g_{n}(1,1, T)$.

Now, we notice that full expansion gives

$$
\frac{1}{\omega\left(4^{m} \operatorname{det} T\right)} \cdot g(\omega, \psi) g\left(\omega^{2}, \psi\right)=\sum_{x, y_{1}, \ldots, y_{m} \in \mathbb{F}_{q}^{\times}} \omega\left(\frac{x\left(y_{1} \cdots y_{m}\right)^{2}}{4 \operatorname{det} T}\right) \psi\left(x+\left(y_{1}+\cdots+y_{m}\right)\right)
$$

so by summing appropriately over all ω and ψ, we see that the number of $A \in$ $\operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$ such that $\operatorname{det} A=d$ and $\operatorname{tr} A T=t$ is

$$
\begin{aligned}
& \frac{g_{n}(1,1, T)-q^{m(m+1)}(q-1)^{m+1}}{q(q+1)} \\
& +q^{m^{2}+m} \cdot \#\left\{\left(x, y_{1}, \ldots, y_{m}\right): x+\left(y_{1}+\cdots+y_{m}\right)=t, \frac{x\left(y_{1} \cdots y_{m}\right)^{2}}{4^{m} \operatorname{det} T}=d\right\}
\end{aligned}
$$

To finish, we note that we can simplify the first term with from Proposition 105.
(b) For any characters $\omega: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$and $\psi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$, we claim that

$$
\begin{aligned}
g_{n}(\omega, \psi, T) \stackrel{?}{=} & \frac{\chi(-1)^{m} \chi(\operatorname{det} T) q^{m^{2}}}{\omega\left(4^{m} \operatorname{det} T\right)} \cdot g\left(\omega^{2}, \psi\right)^{m} \\
& +\frac{g_{n}(\chi, 1, T)-\chi(-1)^{m} q^{m^{2}}(q-1)^{m}}{q(q-1)} \sum_{a \in \mathbb{F}_{q}^{\times}, b \in \mathbb{F}_{q}} \chi(a) \omega(a) \psi(b) \\
& +\frac{g_{n}(1,1, T)-\chi(-1)^{m} \chi(\operatorname{det} T) q^{m^{2}}(q-1)^{m}}{q(q-1)} \sum_{a \in \mathbb{F}_{q}^{\times}, b \in \mathbb{F}_{q}} \omega(a) \psi(b) .
\end{aligned}
$$

Again, this is by casework. If ψ is trivial, this is Theorem 89 ; otherwise, ψ is trivial. Then if $\omega^{2} \neq 1$ (i.e., $\omega \notin\{1, \chi\}$) the right-hand side vanishes, and the left-hand side vanishes by Proposition 103. Lastly, if $\omega \in\{1, \chi\}$, then both sides are equal by construction.

Now, as in (a), by full expansion of $\omega\left(4^{m} \operatorname{det} T\right)^{-1} g\left(\omega^{2}, \psi\right)^{m}$ and summing the claim over all ω and ψ appropriately, we see that the number of $A \in \operatorname{Sym}_{n}^{\times}\left(\mathbb{F}_{q}\right)$ such
that $\operatorname{det} A=d$ and $\operatorname{tr} A T=t$ is

$$
\begin{aligned}
& \frac{g_{n}(\chi, 1, T)-\chi(-1)^{m} q^{m^{2}}(q-1)^{m}}{q(q-1)} \cdot \chi(d)+\frac{g_{n}(1,1, T)-\chi(-1)^{m} \chi(\operatorname{det} T) q^{m^{2}}(q-1)^{m}}{q(q-1)} \\
& +\chi(-1)^{m} \chi(\operatorname{det} T) q^{m^{2}} \cdot \#\left\{\left(y_{1}, \ldots, y_{m}\right): y_{1}+\cdots+y_{m}=t, \frac{\left(y_{1} \cdots y_{m}\right)^{2}}{4^{m} \operatorname{det} T}=d\right\} .
\end{aligned}
$$

It remains to simplify the first two terms. On one hand, we note Proposition 103 gives
$\frac{g_{n}(\chi, 1, T)-\chi(-1)^{m} q^{m^{2}}(q-1)^{m}}{q(q-1)} \cdot \chi(d)=\frac{\chi(-1)^{m} q^{m^{2}}}{q(q-1)}\left(\prod_{k=0}^{m-1}\left(q^{2 k+1}-1\right)-(q-1)^{m}\right) \chi(d)$.
On the other hand, Proposition 105 gives
$\frac{g_{n}(1,1, T)-\chi(-1)^{m} \chi(\operatorname{det} T) q^{m^{2}}(q-1)^{m}}{q(q-1)}=\frac{q^{m^{2}}}{q(q-1)}\left(q^{m} \prod_{k=0}^{m-1}\left(q^{2 k+1}-1\right)-\chi(-1)^{m} \chi(\operatorname{det} T)(q-1)^{m}\right)$.
Summing the above two equalities completes the simplification.

References

[Mac69] Jessie MacWilliams. "Orthogonal Matrices Over Finite Fields". In: The American Mathematical Monthly 76.2 (1969), pp. 152-164. ISSN: 00029890, 19300972. URL: http://www.jstor.org/stable/2317262 (visited on 07/30/2023).
[Gel70] S I Gel'fand. "Representations of the Full Linear Group Over a Finite Field". In: Mathematics of the USSR-Sbornik 12.1 (Feb. 1970), p. 13. DOI: $10.1070 /$ SM1970v012n01ABEH000907.
[Cas75] W. Casselman. Introduction to the theory of admissible representations of p-adic reductive groups. Germany: Sonderforschungsber. 72 der Univ., 1975.
[Pia83] I.I. Piatetski-Shapiro. Complex Representations of GL(2,K) for Finite Fields K. Contemporary mathematics - American Mathematical Society. American Mathematical Society, 1983.
[BM87] Richard P Brent and Brendan D McKay. "Determinants and ranks of random matrices over Zm". In: Discrete Mathematics 66.1 (1987), pp. 35-49. ISSN: 0012365X. DOI: https://doi.org/10.1016/0012-365X(87) 90117-8. urL: https: //www.sciencedirect.com/science/article/pii/0012365X87901178.
[PR87] I. Piatetski-Shapiro and Stephen Rallis. "Rankin triple L functions". en. In: Compositio Mathematica 64.1 (1987), pp. 31-115. URL: http://www. numdam.org/ item/CM_1987__64_1_31_0/.
[Ike89] Tamotsu Ikeda. "On the functional equations of the triple L-functions". In: Journal of Mathematics of Kyoto University 29.2 (1989), pp. 175-219. DOI: 10.1215/kjm/ 1250520261. URL: https://doi.org/10.1215/kjm/1250520261.
[Sat89] Fumihiro Sato. "On Functional Equations of Zeta Distributions". In: Automorphic Forms and Geometry of Arithmetic Varieties. Ed. by K. Hashimoto and Y. Namikawa. Vol. 15. Advanced Studies in Pure Mathematics. Academic Press, 1989, pp. 465-508. ISBN: 978-0-12-330580-0. DOI: https://doi. org/10.1016/B978-0-12-330580-0.50024-0. URL: https://www.sciencedirect.com/science/ article/pii/B9780123305800500240.
[BK93] Colin J. Bushnell and P. C. Kutzko. The Admissible Dual of GL(N) via Compact Open Subgroups. Vol. 129. AM-129. Princeton: Princeton University Press, 1993. DOI: 10.1515/9781400882496. URL: https://doi.org/10.1515/9781400882496.
[KS97] Stephen S. Kudla and W. Jay Sweet. "Degenerate principal series representations for $U(n, n)$ ". In: Israel Journal of Mathematics 98 (1997), pp. 253-306. Doi: 10. 1007/BF02937337.
[DG98] Jan Denef and Akihiko Gyoja. "Character Sums Asociated to Prehomogeneous Vector Spaces". In: Compositio Mathematica 113.3 (1998), pp. 273-346. Doi: 10. 1023/A: 1000404921277.
[Ike99] Tamotsu Ikeda. "On the gamma factor of the triple L-function, I". In: Duke Mathematical Journal 97.2 (Apr. 1999), pp. 301-318. DOi: 10.1215/S0012-7094-99-09713-2. URL: https://doi.org/10.1215/S0012-7094-99-09713-2.
[Nie14] Chufeng Nien. "A PROOF OF THE FINITE FIELD ANALOGUE OF JACQUET'S CONJECTURE". In: American Journal of Mathematics 136.3 (2014), pp. 653-674. ISSN: 00029327, 10806377. URL: http://www.jstor.org/stable/24477689 (visited on $10 / 27 / 2023$).
[Ike17] Tamotsu Ikeda. "On the functional equation of the Siegel series". In: Journal of Number Theory 172 (2017), pp. 44-62. ISSN: 0022-314X. DOI: https://doi. org/10.1016/j.jnt.2016.08.002. URL: https://www.sciencedirect.com/ science/article/pii/S0022314X16302104.
[Wal17] Lynne Walling. "Higher level quadratically twisted Gauss sums and totally isotropic subspaces". In: (2017). DOI: 10.48550/arXiv.1708.07978.
[Ye19] Rongqing Ye. "Rankin-Selberg gamma factors of level zero representations of GLn". In: Forum Mathematicum 31.2 (2019), pp. 503-516. DOI: 10.1515/forum-2018-0099. URL: https://doi.org/10.1515/forum-2018-0099.
[YZ20] Rongqing Ye and Elad Zelingher. "Exterior square gamma factors for cuspidal representations of GLn: finite field analogs and level-zero representations". In: Israel Journal of Mathematics 240.2 (Oct. 2020), pp. 889-934. ISSN: 1565-8511. DOI: 10.1007/s11856-020-2084-y. URL: https://doi.org/10.1007/s11856-020-2084-y.
[SZ23] David Soudry and Elad Zelingher. "On gamma factors for representations of finite general linear groups". In: (2023). URL: https://arxiv.org/abs/2301.04964.

[^0]: Date: Summer 2023.

[^1]: ${ }^{1}$ This appears in Elad's work on the Bessel function, Proposition A. 2

