
Degree spectra of functions on ω on a cone

Jad Damaj
Mentor: Matthew Harrison-Trainor∗

July 29, 2023

Abstract

We examine the degree spectra of unary functions on (ω,<) viewed as a com-
putable structure. We answer a question posed by Wright about the possible degree
spectrum on this structure and in order to do so we look more closely at unary block
functions and classify their degree spectra on a cone into one of 3 classes: the c.e.
degrees, all ∆0

2 degrees, or intermediate (strictly containing the c.e. degrees but not
containing all ∆0

2 degrees). Further, we examine these intermediate degree spectra
more closely and offer a description as to what the possible degrees they contain
are, as well as providing an example of a function with intermediate degree spectra.

1 Introduction

Let A be a mathematical structure such as a group, graph, or linear order. For this paper,
we will be solely interested in the case where A is the linear order (ω,<). Let R be an
additional relation on A not in the signature of A. Typical examples are the relation of
linear independence on a vector space or the successor relation on a linear order.

What is the intrinsic complexity of R? One way to measure this is to look at how the
complexity of R behaves under isomorphisms. In particular, we consider all computable
copies B of A (isomorphic presentations of A where all of the functions and relations are
computable) and look at the Turing degree of R in B. The collection of all such Turing
degrees is the degree spectrum of R. In other words, the degree spectrum measures the
possible complexity of R while fixing the complexity of the presentation of the underlying
structure.

In this paper we follow a series of papers [Wri18, BKWa22, HT18] studying the degree
spectra of relations on the structure (ω,<). The successor relation S plays a particularly
important role in this structure. There is one copy of (ω,<), the standard copy, where S
is computable. In any other computable copy L = (L,≺) we have the successor relation
SL. SL is always a co-c.e. set, and hence of c.e. degree, and in fact the degree spectrum
of S is exactly the c.e. degrees.

In any computable copy L there is a unique isomorphism fL : L → (ω,<), and the
Turing degree of this isomorphism is exactly the Turing degree of SL. Given any other
computable relation R on (ω,<), we obtain its image in L by RL = f(R), and so RL ≤T

fL ≤T S
L ≤T ∅′. For many relations R, we also always have RL ≥T S

L, so that the degree

∗This work was supported by the National Science Foundation under Grant DMS-2153823. Jad
Damaj was supported by an REU at the University of Michigan funded under this grant.

1

spectrum of R is the same as the degree spectrum of S, that is, all of the c.e. degrees.
This is the case, for example, for the double-successor relation. Given x < y, we have that
x is the successor of y if and only if there is z > y such that z is the double-successor of x.
This the degree spectrum of the double-successor relation—a d.c.e. relation—is only the
c.e. degrees, rather than the d.c.e. degrees as one might expect. (A more general version
of this argument shows that the degree spectrum of any intrinsically n-c.e. relation on
(ω,<) will be the c.e. degrees.)

There are also examples of computable relations on (ω,<) whose degree spectra are
only the computable degree (such as an empty relation, or the identity function) and
all ∆0

2 degrees (such as an infinite and co-infinite unary relation). Because (ω,<) is 0′-
categorical, every degree spectrum of a computable relation on (ω,<) is contained within
the ∆0

2 degrees.
Wright showed that for any computable relation R on (ω,<), the degree spectrum is

either just the computable degree, or must contain all of the ∆0
2 degrees. Thus no degree

spectrum could be intermediate between the computable degree and the c.e. degrees.
Wright left open the question of the which degree spectra intermediate between the c.e.
degrees and the ∆0

2 degrees were possible.
In [BKWa22], Bazhenov, Kalociński, and Wroclawski showed that there is a unary

function whose degree spectrum is intermediate. However this relation is unnatural in
the sense that it is built via a diagonalization argument. It is ...

In this paper we consider degree spectra of natural relations on (ω,<). Of course
what it means for a relation to be natural is not well-defined and so we use the “on
a cone” formalism to capture this notion. Degree spectra on a cone were first studied
in the second author’s monograph [HT18], where relations on (ω,<) were specifically
considered.1 In this paper the second author asked the on-a-cone version of Wright’s
question: Is there a relation on (ω,<) whose degree spectrum is intermediate on a cone?
While [BKWa22] resolved Wright’s question, it does not resolve the on-a-cone version;
the degree spectrum of that relation is the c.e. degrees on a cone.

In this paper, we resolve the on-a-cone version of Wright’s question:

Theorem 1.1. There are computable relations on (ω,<) whose degree spectrum is strictly
in between the c.e. degrees and the ∆0

2 degrees on a cone.

In particular, there is a natural relation of intermediate degree spectrum. To illustrate
how natural these examples are, we describe our example. Our example will also be a
unary function f . We write In for the loop of length n. Then f consists of the following
blocks:

I1I1I2I1I3I2I4I1I5I2I6I3I7I1I8

The pattern here is that the blocks in odd positions follow the pattern I1I2I3I4 . . . enu-
merating the natural numbers in increasing order, while the blocks in even positions
I1I1I2I1I2I3 . . . are an enumeration of all of the natural numbers such that each number
occurs infinitely many times. Thus every block appears infinitely many times, but any
pair of blocks appears adjacent to each other only once.

While we can describe our example simply, the example of [BKWa22] does not have
a simple description but is actually the result of a complicated priority construction.
Moreover, what relation one gets from the priority construction depends on certain non-
canonical choices that one makes, such as how one does Gödel numberings.

1Though this monograph appeared in publication slightly before Wright’s paper [Wri18], a preprint
of Wright’s paper was available before the second author started working on [HT18].

2

2 Preliminaries

Definition 2.1. Given a computable structure A and a relation R on A, we define the
degree spectrum of R, DgSpA(R), to be the set of degrees

{φ(R) : (φ,B) where φ : A ∼= B and B is computable}

ie. the images of R is all computable copies of A under all isomorphisms.
If A is X-computable, we define the degree spectrum of R relative to X, DgSpX

A(R),
to be the set of degrees

{φ(R) ⊕X : (φ,B) where φ : A ∼= B and B ≤ X}.

Definition 2.2. We say that the degree spectra of two relations R and S on A and B
are equal on a cone if there is some X such that for all Y ≥T X, DgSpY

A(R) = DgSpY
A(S).

We say that the degree spectrum of R is equal to the c.e. degrees on a cone if there
is some X such that for all Y ≥T X, DgSpY

A(R) is the set of Y -c.e. degrees above Y .
Similarly, we can define computable or ∆0

2 on a cone.

Definition 2.3. We say that a function f : ω → ω is a block function if for each n there
is some interval [a, b], containing n, that is closed under f and f−1. We call the minimal
such interval the f -block containing n.

Note that since each f -block is finite we can fix some computable enumeration of the
f -blocks. We denote the nth block in this enumeration by In and will use this to provide
an alternate way to represent an arbitrary block function.

Definition 2.4. Given a block function f , we define sequence, αf , of natural numbers
called the string corresponding to f by αf (i) = n where In is the ith block that occurs
in f .

3 Results

In order to determine which block functions have intermediate degree spectra it is useful
to first determine the conditions under which the degree spectrum of a function is the c.e.
degrees or all ∆0

2 degrees. We begin by providing a necessary and equivalent condition for
when the degree spectrum of a function is exactly the c.e. degrees using a more general
criterion for when the degree spectrum of some relation contains a non-c.e degree.

Definition 3.1. We say that ā is difference-free2 (or d-free) over c̄ if for any tuple b̄ and
quantifier-free formula φ(c̄, ū, v̄) true of ā, b̄ there are ā′, b̄′ satisfying φ(c̄, ū, v̄) such that
(1) R restricted to c̄, ā is not the same as R restricted to c̄, ā′ and (2) for any existential
formula ψ(c̄, ū, v̄) true of ā′, b̄′, there are ā′′ and b̄′′ satisfying ψ(c̄, ū, v̄) and such that R
restricted to c̄, ā, b̄ is the same as R restricted to c̄, ā′′, b̄′′.

Theorem 3.2 (Proposition 3.4 of [HT18]). Theorem that says that if d-free elements
exist, then not intrinsically of c.e. degree.

2Note that in [HT18], the formula φ in the definition was allowed to be existential. The definition we
give is equivalent and simpler.

3

Theorem 3.3. Suppose f is a block function which is not intrinsically computable. Then
f is intrinsically of c.e. degree on a cone if and only if there are infinitely many blocks
that do not embed into a later block.

Proof. For the forward direction of this proof, we work on the cone above αf , i.e., relative
to any degree computing αf and the reverse direction we work on the cone above αf and
the indicator function which tells us whether the ith block embeds into finitely many
other blocks.

First, suppose that there are only finitely many blocks that do not embed into a later
block. After some finite initial segment, all blocks that occur embed into some later block.
By non-uniformly fixing this initial segment, we can assume that every block embeds into
another block.

Then, we show that the degree spectrum of f contains some non-c.e. degree. To do
this, we show that for any tuple c, there is some tuple a which is d-free over c and that
we can find a effectively. Given c, let a be some f -block of size greater than one such that
all its elements are greater than those of c. Since we assumed that f was not intrinscially
computable, it cannot be the identiy almost everywhere and so there must be infinitely
many blocks of size greater than one. We claim that a is d-free over c.

Now, with c, a as above, suppose there is some quantifier-free formula φ(x, u, v) and
tuple b such that φ(c, a, b) is true. We make some simplifying assumptions. First, we
may assume that there is no repetition amongst the elements of all of the tuples. Second,
by including in c̄ any elements of b̄ which are less than the elements of ā, we may assume
that all of the elements of b̄ are greater than all of the elements of ā. And third, we can
assume that b̄ consists of n distinct adjacent blocks b = b1b2 · · · bn.

Now define a′ = a + 1 and b
′

= b + 1. Then c a′b
′

has the same order type as c̄, ā, b̄
and so still satisfies φ(x, u, v). However the values of f on a are not the same as f on
a as the image greatest element of a is in a but this is not true of a′. Furthermore,
suppose ψ(x, u, v) is some existential formula satisfied by c, a′, b

′
. We can again replace

this by quantifier free formula χ(x, u, v, w) which is satisfied by c, a′, b
′
, e for some tuple

e. Noting that there are no gaps between the elements of ā′, b̄′, we may split ē into ē1ē2
where the elements of ē1 are less than the elements of ā′ and the elements of ē2 are greater
than the elements of ā′b̄′.

Now let a′′ be the image of ā in some block into which it embeds, and similarly let
b̄′′1, . . . , b̄

′′
n be the images of b̄1, . . . , b̄n in blocks into which they embed, choosing these

images sufficiently large that c̄ < ē1 < ā′′ < b̄′′1 < b̄′′2 < · · · < b̄′′n. Finally, choose ē′′2 larger
than all of these.

Our construction has ensured that c a′′b
′′
e′ has the same order type as c a′b

′
e and so

c a′′b
′′

satisfies the formula ψ(x, u, v). Moreover, the values of f on c a′′b
′′

are the same as
the values on c a b. Thus, a is d-free over c, as desired.

In the other direction, suppose that there are infinitely many blocks which embed into
no larger blocks. We show that in all computable copies A, fA satisfies the conditions of
the following lemma and so is always of c.e. degree.

Lemma 3.4. Suppose that some relation RA in a computable copy (A, <A) can compute
the nth element in the ordering <A for arbitrarily large n. Then RA is of c.e. degree.

Proof. It is enough to show that RA computes the successor. Let k be arbitrary. To
compute the <A successor of k, use RA to find the <A nth element for n > k then list
out elements of ω till n−1 elements less than the nth elements are found. These elements

4

will form an initial segment of <A of length n and so to find the successor of k it is enough
to check these finitely many elements.

Given arbitrary m, there must be a block greater than m which does not embed
into any greater blocks and suppose there are k elements <A less than it. To find the
elements of this block in the ordering <A begin listing elements and their values under
fA until some collection is found that is isomorphic to this block and such that there are
k elements <A less than it. After this search terminates, we have found the position of
some element greater than m as desired.

Similarly, we now provide a sufficient and necessary condition for when the degree
spectrum of a function is large as possible, ie. contains all ∆0

2 degrees. First, however,
we introduce the following definition to help formalize the way ∆0

2 sets can be coded in
computable copies of (ω,<).

Definition 3.5. Given a block function f , we say two sequences of intervals [a1, b1], [a2, b2], . . .
and [c1, d1], [c2, d2], . . . in (ω,<) and a collection of maps φi, ψi, fi, gi form an f -coding
sequence [a1, b1], [c1, d1], [a2, b2], [c2, d2], . . . if they satisfy the following conditions

• Each interval completely contains all f -blocks it intersects

• φi : [ai, bi] → [ai+1, bi+1] and ψi : [ci, di] → [ci+1, di+1] are non-decreasing embed-
dings which preserve both f and the ordering. Further, we require the sequence
a1, c1, a2, c2, . . . to be non-decreasing.

• fi : [ai, bi] → [ci, di] and gi : [ci, di] → [ai+1, bi+1] are non-decreasing embeddings
which preserve the order but do not preserve f and such that they commute with
the embeddings, ie. gi ◦ fi = φi and fi+1 ◦ gi = ψi.

This definition can be motivated as follows. In order to compute some ∆0
2 from a

linear order we need to introduce certain coding elements for each element of ω. Further,
we build this linear order via finite stages to that the values of f on these elements should
reflects the value of the element they code at that stage. So, they must take on different
f values at stages where the value of the element they code changes. We also want to
ensure that the ∆0

2 set computes this linear order so we require that the value of f be
the same on the coding elements whenever at a stages in which the element they code
has the same value. As the value of an element oscillates between 0 and 1 in the approx-
imation of the ∆0

2, this produces the back and forth alternation between two values of f
on the corresponding elements in the linear order which can be seen in the definition of ∆0

2.

It will be shown below that only one infinite coding sequence is necessary to code a
∆0

2 set as all element of ω can be moved along this same sequence. Further, we will show
that the absence of such a sequence is enough to miss a ∆0

2 set. This is because, if all
coding sequences are finite, then by producing a ∆0

2 set which changes the value of each
element more times than the length of the coding sequence which attempts to determine
its value. This idea will be made more formal in the following proof.

Theorem 3.6. If f is a block function such that every block, except for finitely many,
embeds into some later block then the degree spectrum of f , on a cone, is all ∆0

2 degrees
if and only if there is an infinite f -coding sequence

5

Proof. First, suppose there is an infinite f -coding sequence [a1, b1], [c1, d1], [a2, b2], [c2, d2],
We show that, on the cone above αf and the sequence, the degree spectrum of f is all
∆0

2 degrees. To do this, suppose X is a ∆0
2 set. We will build a computable copy A

of (ω,<) which is turing equivalent to X via finite stages. During this construction,
the elements we place into the linear order will fall into one of two categories: coding
elements and padding elements. For each n ∈ ω, there will be some collection of coding
elements corresponding to n. These coding elements will be an interval, and consist of
some collection of blocks; thus we call the collection of these coding elements a coding
segment for n. The goal of the construction is to move the coding elements so that they
mirror the values they correspond to in X while ensuring that once padding elements
have been added in the value f on those elements does not change. Given n < m, the
coding segment for m will be greater than the coding segment for n, so that we can move
the segment for m without moving the segment for n.

Construction: A will constructed such that at stage s, As satisfies the requirements Re

for e ≤ s where Re states that the coding elements corresponding to e form an interval of
the form [ai, bi] iff Xs(e) = 0 and the coding elements corresponding to e form an interval
of the form [ci, di] iff Xs(e) = 1.
Stage s: At this stage in the construction our partial linear order can be partitioned
into a finite number of coding segements and padding blocks, each of which form an
interval. In increasing order, we ensure that each of these intervals in As−1 still satisfy
our requirements

• If some collection of elements forms a padding f -block in As−1, check to ensure they
still do in As. If not, then insert new padding elements below the least element of
this block and possibly between the elements of this block to move them up to the
image of the original f -block in some other f -block into which it embeds. Further,
ensure we add enough padding elements on the end to complete this block. This,
ensures that for all padding elements present in stage s − 1, the value of fAs on
these elements is the same in stage s− 1.

• If some collection of elements forms the coding block corresponding to e first check
the value of Xs(e) then identify the next interval, either of the form [ai, bi] or
[ci, di], satisfying the requirement Re. By repeatedly applying the f ’s and g’s to
the elements of the coding block we can find the image of the coding elements in
this new interval and, as above, by inserting new elements below the least coding
element and possibly between them we can move the elements to their images.
Any new elements that were inserted and end up in the new interval are added
to the collection of coding elements corresponding to e, otherwise the newly added
elements are padding elements. Further, we ensure that enough new coding elements
are after the final element to ensure we complete the entire interval. This ensures
we have satisfied requirement Re at stage s for e < s.

• Finally, we introduce the coding elements corresponding to s. After we have ensured
all previously added elements still satisfy the requirements check the value of Xs(s)
and identify the next interval, either of the form [ai, bi] or [ci, di], satisfying the
requirement Rs and is greater in length the the linear order at this stage. Insert
enough new padding elements to the end of the linear order to extend it to have
length ai or ci (depending on which interval was chosen), then add in new coding

6

element corresponding to s in order to extend to the length of the interval. This
ensures we have satisfied requirement Rs at stage s.

Verification: First, to see that A is really a computable copy of (ω,<), observe that
for any fixed n, only finitely many elements are inserted below n. This is because an
element is only inserted below n if the value of some k ∈ ω corresponding to a coding
segment below k changes. If n was added at stage s in the construction, then there can
be at most s− 1 coding blocks below it and so after these s− 1 elements of the ∆0

2 set X
stop changing values, elements will stop being inserted below n. Hence, since these are
finitely many elements of a ∆0

2 set, this will occur in a finite number of stages.
Next, we show that fA ≥ X. Given some element n ∈ X run the above construction,
which is computable, until stage n when the first coding elements corresponding to n are
added. Now, compute the value of f on these elements. If it is the same as the value of
f at the stage they were added then X(n) = Xn(n), otherwise X(n) = 1 −Xn(n).

Finally, we show that X ≥ fA. Given some element n ∈ ω run the above construction
till n is added to the linear order. If n is added as a padding element then the construction
ensures that fA(n) does not change so take the value at this stage. If n is a coding
element corresponding to k then fA(n) takes on one of two values depending on X(k)
since the conditions on the coding sequence ensures fA(n) is the same whenever it is in
a block of the form [ai, bi] and similarly for [ci, di]. Hence, after determining the coding
block n first appears in and applying fi or gi we can determine both possible values for
fA(n) computably. To determine the actual value we compute X(n) then choose the
corresponding value of fA.

For the converse direction we work on the cone above αf and show that if no infinite
f -coding sequences exist then we can produce ∆0

2 set C such that there is no computable
copy L of (ω,<) with fL ≡T C. To do this, we meet the following requirements

Re,i,j : If Le
∼= (ω,<), then either ΦfLe

i ̸= C or ΦC
j ̸= fLe

where Le is a computable listing of the (possibly partial) linear orders. The construction
is a finite injury priority construction.

The strategy for Re,i,j is as follows. First, if φe fails to code a linear order the
requirement is automatically satisfied and so we will assume that at all stages s, Le,s is
a linear order.

1. To initialize this requirement choose some x that has not yet been restrained, re-
strain it, and assign it to this requirement. We say the strategy is in Phase 0.

2. At stage s, if the requirement is in Phase 0, say this requirement requires attention
if there are computations

ΦfLe,s

i,s (x) = 0 = Cs(x) with use u0

and
ΦCs

j,s[0, . . . ,m0] = fLe,s [0, . . . ,m0] with use v0

where m0 ≥ u0 such that all f -blocks that intersect [0, . . . , u0] are completely con-
tained in [0, . . . ,m0].

When this requirement acts, restrain [0, . . . , v0] in C and define Cs+1(x) = 1. Fi-
nally, move the requirement to Phase 1.

7

3. At stage s, if the requirement is in Phase n + 1, say this requirement requires
attention if there are computations

ΦfLe,s

i,s (x) = Cs(x) with use un+1

and
ΦCs

j,s[0, . . . ,mn+1] = fLe,s [0, . . . ,mn+1] with use vn+1

wheremn+1 ≥ max{mn, un+1} such that all f -blocks that intersect [0, . . . ,max{mn, un+1}]
are completely contained in [0, . . . ,mn+1].

When this requirement acts, restrain [0, . . . , vn+1] in C and define Cs+1(x) = 1 −
Cs(x). Finally, move the requirement to Phase n+ 2.

Construction of C: At stage s of the construction, consider the first s requirements,
in order of decreasing priority. If any requirement requires attention then the one with
the highest priority acts according to its strategy, injuring and resetting all lower priority
strategies. If no requirement acts, then initialize the lowest priority requirement that has
not yet been initialized.

Verification: It is not obvious that the construction is a finite injury construction, as
even if a requirement Re,i,j is not injured, it appears on the surface that it might go
through infinitely many phases. In this case, our approximation for C would also not
come to a limit. We will argue by induction on the requirements that each requirement
acts only finitely many times and is eventually satisfied.

Consider a requirement Re,i,j and assume that after some stage it is no longer injured.
If Le is partial (or not a linear order), then Re,i,j is automatically satisfied and will no
longer act after some stage. So we may assume that Le is a linear order. If there is
some n such that the strategy enters Phase n but never enters Phase n+ 1, then we are
also done since Re,i,j will have acted only finitely many times and will also be satisfied.

(Otherwise, if ΦfLe

i = C and ΦC
j = fLe , then we would eventually enter Phase n+ 1.) So

it is enough to show that the strategy enters finitely many phases as this will also show
that it requires attention finitely many times. To do this we show that after a strategy
is no longer injured, it enters Phase n for arbitrarily large n, then we can produce an
infinite f -coding sequence.

Let sn be the stage at which the strategy enters Phase n, if it exists, and recall
that vn is the restraint placed at Phase n. We begin by arguing that the restraints are
maintained, and that C (up to the restraint) cycles back and forth between two possible
configurations depending on whether the phase is odd or even.

Lemma 3.7. Let n′ > n be of the same parity. Then:

1. Csn′ [0, . . . , vn] = Csn [0, . . . , vn].

2. fLe,sn′ [0, . . . ,mn] = fLe,sn [0, . . . ,mn].

Further, for all n,

1. fLe,sn [0, . . . ,mn] ̸= fLe,sn+1 [0, . . . ,mn]

Proof. 1. After phase n, we have restrained the elements [0, . . . , vn] and so, since the
requirement is no longer injured by higher priority arguments, the only elements
in [0, . . . , vn] that can change value is the original x that was restrained for Re,i,j.
However, since n and n′ have the same parity, the construction ensures that the
value of x is the same as well. Hence, Csn′ [0, . . . , vn] = Csn [0, . . . , vn], as desired.

8

2. By construction we have Φ
Csn
j [0, . . . ,mn] = fLe,sn [0, . . . ,mn] and Φ

Csn′
j [0, . . . ,mn] =

fLe,sn′ [0, . . . ,mn]. Further, the first computation listed has use vn. Since by (1),

this use vn is the same at stages n and n′, the computations Φ
Csn
j [0, . . . ,mn] =

fLe,sn [0, . . . ,mn] and Φ
Csn′
j [0, . . . ,mn] must be the same as well and so fLe,sn′ [0, . . . ,mn] =

fLe,sn [0, . . . ,mn], as desired.

3. By construction ΦfLe,sn

i (x) = Csn(x) and Φf
Le,sn+1

i (x) = Csn+1(x) but Csn(x) ̸=
Csn+1(x) and so the use of the computation ΦfLe,sn

i (x) must have changed by stage
sn+1, otherwise we would recover the same computation. Hence, since the use is
contained in [0, . . . ,mn], we must have fLe,sn [0, . . . ,mn] ̸= fLe,sn+1 [0, . . . ,mn], as
desired.

In particular, this tells us for every once some elements appear below some mn the value
of f on these elements is the same at all stages with the same parity.

Finally, to produce the f coding sequence we proceed as follows:

• Let [a0, b0] = [0, . . . ,m0]

• Given [ai, bi], let [ci, di] be the minimal interval in [0, . . . ,m2i+1] that contains all
elements that were in [ai, bi] at stage s2i and which completely contains all blocks
it intersects.

• Similarly, given [ci, di], let [ai+1, bi+1] be the minimal interval in [0, . . . ,m2i+2] that
contains all elements that were in [ai, bi] at stage s2i+1 and which completely contains
all blocks it intersects.

• Define the maps fi : [ai, bi] → [ci, di] by fi(n) is the position of the n’th element at
stage s2i at stage s2i+1 and similarly for gi.

• Finally, define the φi, ψi to be the compositions gi ◦ fi and fi+1 ◦ gi, respectively.

This sequence satisfies most of the requirements by construction we just need to ensure
that φi, ψi are f -preserving and the fi, gi are not. However, this is exactly the content of
the previous lemma. Hence, assuming we enter Phase n for arbitrarily large n we have
produced an infinite coding sequence. Thus, by our assumption about the absence of
such a sequence it follows that after a strategy is no longer injured it only enters finitely
many phases.

Now that we have produced necessary and sufficient conditions for the degree spec-
trum of a unary function being either all c.e. degrees or all ∆0

2 degrees on a cone, we
know exactly which conditions a unary condition must satisfy to have an intermediate
degree spectrum. We give a more specific example of this in Example 4.2 below.

Next, we may ask for a more specific description of these intermediate degree spectra
are but the following theorem shows that these degree spectra are not any easily definable
class of degrees.

9

Theorem 3.8. If f is a block function which is not intrinsically computable and such that,
after some initial segment, all blocks embed into some later block then for any computable
listing of indices for ∆0

2 sets the degree spectrum of f contains some degree which is not
in the listing.

Proof. Suppose φ is a listing as above. Then, we construct a computable copy A of (ω,<)
via finite stages, satisfying the requirements

Re,i,j : either ΦfA

i ̸= Xφ(e) or Φ
Xφ(e)

j ̸= fA

where Xn is the ∆0
2 set coded by Φn. The construction is a finite injury priority construc-

tion.
The strategy for Re,i,j at stage s is as follows

1. To initialize this requirement choose some interval [a, b] which forms an f -block of
size greater than one and such that a is greater than the length of the finite linear
order As−1. Insert new elements at the end of the linear order so that it has length
b and restrain the elements in the interval [a, b] for this requirement. Call these
elements l0, . . . , lb−a. We say the requirement is in Phase 0.

2. At stage s, if the requirement is in Phase 0, say this requirement requires attention
if there are computations

Φ
Xφ(e),s

i,s [l0, . . . , lb−a] = fAs [l0, . . . , lb−a] with use u0

and
ΦAs

j,s [0, . . . , u0] = Xφ(e),s[0, . . . , u0] with use v0

When this requirement acts, restrain all blocks in As which contain or are below
some element of the use in the ordering <As . Next, insert one element below the
block consisting of the elements l0, . . . , lb−a. For each block that was restrained
(except for l0, . . . , lb−a) check to ensure the value of f on these elements is the same
as when it was restrained. If not, then insert new elements below the least element
of this block and possibly between the elements of this block to move them up
to the image of the original f -block in some other f -block into which it embeds.
Further, ensure we add enough new elements on the end to complete this block.
This, ensures that for all restrained elements, the value of fAs+1 on these elements
is the same in stage s. We say this requirement is in Phase 1.

3. At stage s, if the requirement is in Phase 2n for n ≥ 1, say this requirement requires
attention if there are computations

Φ
Xφ(e),s

i,s [l0, . . . , lb−a] = fAs [l0, . . . , lb−a] with use u2n

and
ΦAs

j,s [0, . . . , u2n] = Xφ(e),s[0, . . . , u2n] with use v2n

When this requirement acts, insert one new element below the block consisting of
the elements l0, . . . , lb−a. For each block that was restrained in Phase 0 (except for
l0, . . . , lb−a) check to ensure the value of f on these elements is the same as when
it was restrained. If not, then insert new elements below the least element of this

10

block and possibly between the elements of this block to move them up to the image
of the original f -block in some other f -block into which it embeds. Further, ensure
we add enough new elements on the end to complete this block. This, ensures that
for all restrained elements, the value of fAs+1 on these elements is the same in stage
s. We say this requirement is in Phase 2n+ 1.

4. At stage s, if the requirement is in Phase 2n + 1 for n ≥ 1, say this requirement
requires attention if there are computations

Φ
Xφ(e),s

i,s [l0, . . . , lb−a] = fAs [l0, . . . , lb−a] with use u2n+1

and
ΦAs

j,s [0, . . . , u2n+1] = Xφ(e),s[0, . . . , u2n+1] with use v2n+1

When this requirement acts, insert enough new elements element below the element
l0 and possible between the l0, . . . , lb−a so that they are moved up to the image of the
block containing l0, . . . , lb−a during Phase 2n in some block into which it embeds.
This ensures that the value of f on l0, . . . , lb−a is the same as it was in Phase 2n. For
each block that was restrained in Phase 0 (except for l0, . . . , lb−a) check to ensure
the value of f on these elements is the same as when it was restrained. If not, then
insert new elements below the least element of this block and possibly between the
elements of this block to move them up to the image of the original f -block in some
other f -block into which it embeds. Further, ensure we add enough new elements
on the end to complete this block. This, ensures that for all restrained elements,
the value of fAs+1 on these elements is the same in stage s. We say this requirement
is in Phase 2n+ 2.

Note that whenever the requirement is acted on we change the value of f on the li, break-
ing the computation that was found at that stage and ensuring that the requirement is
again satisfied when we move to the next stage.

Verification: Since elements are inserted below the li corresponding to some requirement
only when that requirement or some higher priority requirement requires attention it is
enough to check that after a requirement is no longer injured its strategy enters only
finitely many phases. This will ensure that this construction produces a copy of (ω,<)
and that all requirements are eventually satisfied, ie. A is not equivalent to any of the
degrees in the listing.
First, we make the following observations about the construction. Let sn be the stage
where the strategy enters Phase n

• The value of fAs2n is the same on the li assigned to this strategy for all n.

• The value of fAsn on the blocks in the use v0 which were restrained in Phase 0 is
the same for all n.

We now show that Xφ(e) changes each time we move to another phase but maintains the
same value on some interval for all even phases. In the proof of the previous theorem
where we showed the value of the set we were trying to beat oscillated between two
possible values but in this case the set must only have a certain value for even phases but
is allowed to vary on odd ones.

11

Lemma 3.9.

1. For all even n, Xφ(e),sn [0, . . . , u0] = Xφ(e),s0 [0, . . . , u0]

2. For all n, Xφ(e),sn [0, . . . , u0] ̸= Xφ(e),sn+1 [0, . . . , u0].

Proof.

1. Observe that for the computation Φ
As0
j,s0

[0, . . . , u0] = Xφ(e),s0 [0, . . . , u0] its use, except
for possibly the li, is preserved at all stages and so since the value of fAsn is the
same for all even n, the use of this computation must be preserved at stage sn for all

even n so the original computation must hold, ie. Φ
As0
j,s0

[0, . . . , u0] = Φ
Asn
j,s0

[0, . . . , un]
and so it follows that Xφ(e),sn [0, . . . , u0] = Xφ(e),s0 [0, . . . , u0], as desired.

2. The computation Φ
Xφ(e),s

i,s0
[l0, . . . , lb−a] = fAs0 [l0, . . . , lb−a] found in Phase 0 has use u0

and so by part (1) holds at stage sn for all even n. However, since fAsn [l0, . . . , lb−a] ̸=
fAsn+1 [l0, . . . , lb−a] and Φ

Xφ(e),s

i,sn
[l0, . . . , lb−a] = fAsn [l0, . . . , lb−a] for all n we must have

Φ
Xφ(e),sn

i,sn
[l0, . . . , lb−a] ̸= Φ

Xφ(e),sn+1

i,sn+1
[l0, . . . , lb−a]. Hence, the use of the computation

must change between stage sn and sn+1. Further, since either n or n + 1 is even,
the use of one of these computations is u0 and so we must have Xφ(e),sn [0, . . . , u0] ̸=
Xφ(e),sn+1 [0, . . . , u0], as desired.

This lemma tells us that some element in [0, . . . , u0] must change value each time the
strategy enters a new phase. Now, since X is a ∆0

2 set, it follows that each finite collection
of elements can change only finitely often so this strategy can enter only finitely many
stages.

Despite the apparent difficulty in describing these intermediate degree spectra one
way we can attempt to characterize them is by the α such that their degree spectra
contains all α-c.e. degrees. To do this we introduce the notion of coding trees to better
understand which types of finite coding sequences exist for a given function f .

Definition 3.10. Given a block function f we can define its maximal coding tree as
follows. The vertices of the tree will be all finite coding sequences, including the empty
sequence. There is an edge between two coding sequences if one coding sequence is one
interval than the other, and they are the same sequence on the intervals they have in
common. We can also define the minimal coding tree to be the subtree of the maximal
coding tree which consist of coding sequences such that for all intervals that occur in the
sequence there are infinitely many intervals which are f -isomorphic, except for possibly
the last interval in the sequence.

Note that we have defined both a maximal coding tree and a minimal coding tree
instead of just one coding tree from which α-c.e sets are possible. This is because there
are actually two ways in which we need to be able to move coding elements in a linear
order. The first, which was previously mentioned, is the ability to move the coding
elements back and forth between two possible values of f to account for changes in a
∆0

2 set. The second, which was not as apparent in the case where we had an infinite
coding sequence, is the ability to preserve the value of f on the coding sequence while
other elements are inserted below them, ie. the value of f on other coding sequences is
changing. So, the rank of the maximal coding tree captures which types of moves are

12

possible when coding only a single element while the minimal coding tree captures which
types of moves are possible while ensuring that coding sequences can move independently
of each other. However, we will see below that the ranks of the minimal and maximal
coding trees only provide an upper and lower bound on the α such that all α-c.e. sets
can be coded but it can be much more complicated to determine exactly which α are
possible.

Theorem 3.11. If α is the rank of the maximal coding tree corresponding to some block
function f , then there is some α-c.e. degree which is not in the degree spectrum of f .

Proof. To show this, we consider the set constructed in the proof of Theorem 3.8 and
show that it is α + 1-c.e. on the cone above αf and the maximal tree. Call this set
C. Suppose x ∈ ω restrained for some strategy Re,i,j then, as shown in the proof, if
this strategy reaches Phase k without being injured we can produce a coding sequence
of length k. let si be the stage the strategy enters Phase i. To show this set is α-c.e we
take g(x, s) to be the value of n at stage s in the construction and let n(x, s) be the rank
of the vertex corresponding to the sequence produced at Phase k where sk is the greatest
si less than s. If s is less than all si let n(x, s) = α.

Theorem 3.12. If α is the rank of the minimal coding tree corresponding to some block
function f , then, on a cone, the degree spectrum of f contains all β-c.e. degrees for any
β < α.

Proof. We work on the cone above αf and the minimal coding tree. Suppose X is an β-
c.e. set, with β < α, given by functions g, n where g is the value of X and n is the number
of changes. We constuct a computable copy, A, of (ω,<) which is turing equivalent to
X. This construction will mirror that of Theorem 3.6 in the sense that we will have two
types of elements padding and coding elements and we will move the coding elements to
reflect changes in X while maintaining the value of the padding elements. However, in
this case we will also be choosing the path the coding elements take through the minimal
tree in order to account for the number of changes X can make to the value of some
element.
Construction: A will be constructed such that for x ∈ ω there is some collection of
coding elements corresponding to x in A. Further, the position of these elements as s
increases will correspond to a path through the minimal tree. This construction will be
carried out so that at stage s, As satisfies the requirements Re for e ≤ s where Re states
that the path corresponding to the coding elements of e is of even length iff Xs(e) = 0
and the path is of odd length iff Xs(e) = 1. Re also requires that, in the minimal coding
tree, the sequence corresponding to these coding elements has rank at least n(e, s). To
do this, suppose we have the finite ordering As−1. In increasing order, we ensure that
each of the intervals in As−1 still satisfy our desired conditions

• Suppose that the value e has changed at stages s0 < s1 < s2 < . . . < sk then the
sequence corresponding to the coding elements of e is the intervals that the coding
elements occupy at stages s0 − 1, s1 − 1, The construction will ensure that this
really does form a coding sequence.

• If some collection of elements forms a padding f -block in As−1 check to ensure they
still do in As−1. If not, then insert new padding elements below the least element
of this block and possibly between the elements to move them up to the image of

13

the original f -block in some other f -block into which it embeds. Further, ensure we
add enough padding elements on the end to complete the block. This ensures that
for all padding elements present in stage s− 1, the value of fAs on these elements
is the same as in stage s− 1.

• If some collection elements forms the coding interval corresponding to e first check
the value of Xs(e). If Xs(e) = Xs−1(e) then we want to ensure fAs−1 = fAs on this
coding interval. If necessary, insert new padding element below the least element
of the block to move it up to another interval which is f -isomorphic to the coding
interval. If Xs(e) = Xs−1(e) then n(e, s − 1) > n(e, s) = γ. At this stage in the
construction, the coding block corresponding to e has produced a coding sequence
with length equal to the number of changes. Further, its corresponding vertex in the
minimal coding tree has rank n(e, s − 1) and so there must be some other vertex,
corresponding to a coding sequence one interval longer, with rank ≥ γ which is
connected to this vertex. Choose one such sequence and insert elements below and
possibly between the elements of the coding interval to move the elements to the
image of the current interval under either f or g. Further, ensure that enough new
coding element are inserted after the final element so that we complete the entire
interval. This ensures we have satisfied requirement Re at stage s for e < s.

• Finally, we introduce the coding elements corresponding to s. After we have ensured
all previously added elements satisfy the requirements, choose some coding sequence
of length one whose corresponding vertex has rank ≥ β. Further, we choose this
sequence so that the least element of its interval is greater than the length As at
this point in the construction. Insert enough new padding elements to the end of
the linear order to extend it to beginning of this interval, then add new coding
elements corresponding to s in order to extend to the length of the full interval.
This ensures we have satisfied requirement Rs at stage s.

Verification: First, to see that A is really a computable copy of (ω,<), observe that
for any fixed n, only finitely many elements are inserted below n. This is because an
element is only inserted below n if the value of some k ∈ ω corresponding to a coding
segment below k changes. If n was added at stage s in the construction, then there can
be at most s− 1 coding blocks below it and so after these s− 1 elements of the ∆0

2 set X
stop changing values, elements will stop being inserted below n. Hence, since these are
finitely many elements of a ∆0

2 set, this will occur in a finite number of stages.
Next, we show that fA ≥ X. Given some element n ∈ X run the above construction,
which is computable, until stage n when the first coding elements corresponding to n are
added. Now, compute the value of f on these elements. If it is the same as the value of
f at the stage they were added then X(n) = Xn(n), otherwise X(n) = 1 −Xn(n).

Finally, we show that X ≥ fA. Given some element n ∈ ω run the above construction
till n is added to the linear order. If n is added as a padding element then the construction
ensures that fA(n) does not change so take the value at this stage. If n is a coding element
corresponding to k then fA(n) takes on one of two values depending on X(k) since the
conditions on the coding sequence ensures fAs(n) is the same whenever Xs(k) is the same.
Hence, after determining the coding block n first appears we can determine the value of
fA(n) if X(k) equals the value at this stage. Otherwise, if X(k) is the opposite value,
run the construction till Xs(k) changes values. Then, the value of fAs(n) at this stage
will be the final value of fA(n).

14

4 Examples

We conclude this paper with a few applications of Theorem 3.6; the first of which is an
instance in which the degree spectrum of a function is all ∆0

2 degrees. Note that in this
example we work with non-pairwise embeddable blocks so all f -embedings in the coding
sequence are uniquely determined up to shifting of blocks.

Proposition 4.1. Given a block function f with non-pairwise embeddable blocks such
that after some point all blocks occur occur infinitely often. Then, if there exists distinct
strings σ, τ that occur infinitely often in αf such that σ and τ have the same underlying
lengths (ie. the sum of the lengths their blocks is the same) then the degree spectrum is
all ∆0

2 degrees.

Proof. Suppose σ and τ are as above. Our coding sequence will involve shifting a set
amount of elements between occurrences σ and τ as they move up ω. Inductively define
the intervals as follows:

• Given [a0, b0], [c0, d0], . . . , [ai−1, bi−1], [ci−1, di−1], let [ai, bi] be some interval such
that, when viewed as a substring of αf , the blocks that make up this interval
are an instance of σ and ensure that di−1 < ai. Define gi : [ci−1, di−1] → [ai, bi] by
x 7→ x+ (ai − ci) and φi−1 : [ai−1, bi−1] by x 7→ (ai − ai−1).

• Similarly, given [a0, b0], [c0, d0], . . . , [ai, bi−1], let [ci, di] be some interval such that,
when viewed as a substring of αf , the blocks that make up this interval are an
instance of τ and ensure that bi < ci. Define fi : [ai, bi] → [ci, di] by x 7→ x+(ai−ci)
and φi−1 : [ai−1, bi−1] by x 7→ (ai − ai−1).

Since σ and τ have the same underlying length, all intervals have the same length so it
follows that the maps satisfy the desired conditions. Hence, we have produced a coding
sequence and so the degree spectrum of f must be all ∆0

2 degrees on a cone.

The second application of this theorem again works with non-pairwise embeddable
blocks but considers a case in which the first example fails. Since there exist no σ and
τ as above, we can use this fact to show that the intervals in any coding sequence must
increase in size. This combined with restrictions placed on when two blocks may be
adjacent in the function will be used to show that all coding sequences for the below
function must be finite.

Example 4.2. Let Ik be the block corresponding to the loop of length k, ie. the block
isomorphic to [1, . . . , k] → [1, . . . , k] via x 7→ x + 1 for x < k and k 7→ 1. Consider the
block function f where the odd blocks are given by the sequence I1, I2, I3, I4, I5, . . . and
the even blocks are given by the sequence I1, I1, I2, I1, I2, I3, . . ., eg. an initial segment
looks like:

I1 + I1 + I2 + I1 + I3 + I2 + I4 + I1 + I5 + I2 + I6 + I3 + I7 + · · ·

This function is constructed so that it satisfies the following:

• all blocks that occur in the function occur infinitely often

• no different block types that occur in the function have the same size

• no two blocks types are adjacent (in the same order) more than once

15

Since each block occurs infinitely often the degree spectrum of f must contain a non-c.e.
degree. To show that the degree spectrum of f does not contain all ∆0

2 degrees we show
that f contains no infinite coding sequence.
Given any finite coding sequence [a1, b1], [c1, d1], . . . we make the following definitions.
Note that we will identify the elements in an interval with their images under the maps
fi, gi in all greater intervals.

• Say that l1 < . . . < lp form a link if they form a block of length p in the k’th
interval. Say the kth interval witnesses this link.

• Say that a link l1 < . . . < lp is vulnerable if in some interval, after the first interval
witnessing this link, the l1 < . . . < lp are contained in two or more blocks.

• Say that a link l1 < . . . < lp is broken in some interval, after the first interval
witnessing this link, if some element is inserted between l1 and lp, i.e., the li are no
longer adjacent.

First, observe that since the blocks in f are non-pairwise embedable if some link is
witnessed at some stage k then every m > k of the same parity must also witness this
link. This also implies that after a link is broken the coding sequence must terminate. To
see why this is the case, note that a link cannot be broken at a stage witnessing the link so
by the above observation the next interval added to this sequence must witness the link.
However, since there have been elements inserted between the li and the embeddings fi, gi
must be order preserving, their images cannot form a block in any intervals and so the
coding sequence must terminate. Next, observe that after a link becomes vulnerable it
must break in one of the next two intervals in the coding sequence or the coding sequence
must terminate. Given any link l1 < . . . < lp in order for this link to become vulnerable
there must be some interval in the li’s lie in two blocks or more blocks. Say this occurs in
the kth interval in the sequence. In the k+2th interval the value of f on the li must be the
same and so the each li must be in the same block-type as in the kth interval. However,
by construction of this function these blocks can no longer be adjacent so some elements
must have been inserted between them, ie. the link must have been broken. Finally, it
remains to show that in any coding sequence some link must become vulnerable. We
claim this must occur in the second or third interval. Since the map from the first to the
second interval is not f -preserving there must be some link l1 < . . . < lp witnessed in the
first interval which no longer forms a block of size p in the second interval. Either these
l1 < . . . < lp lie in two blocks and are already vulnerable or they are all contained in
some larger block. Suppose they are contained in some larger block k1 < . . . < kq then
this link must become vulnerable in the third interval. This is because the l1 < . . . < lp
must form a block of size p < q in this interval and so the l1 < . . . < lq cannot all lie in
the same block.

References

[BKWa22] Nikolay Bazhenov, Dariusz Kalociński, and Micha lWroc l awski. Intrinsic com-
plexity of recursive functions on natural numbers with standard order. In
39th International Symposium on Theoretical Aspects of Computer Science,
volume 219 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 8, 20. Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern, 2022.

16

[HT18] Matthew Harrison-Trainor. Degree spectra of relations on a cone. Mem.
Amer. Math. Soc., 253(1208):v+107, 2018.

[Wri18] Matthew Wright. Degrees of relations on ordinals. Computability, 7(4):349–
365, 2018.

17

	Introduction
	Preliminaries
	Results
	Examples

