
Optimal Stopping of exotic American option by

Deep Learning

Qinghao Lin

August 2020

Abstract

Our REU project mainly focuses on deep learning method for optimal
stopping problems which directly learns the optimal stopping rule from
Monte Carlo samples. The introduction to the theory, mathematical proof
and appliance of Deep Learning will be discussed. We test the approach
on the pricing of a Bermudan max-call option and Asian option. Also,
deep learning on Longstaff Schwartz algorithm’s regression bases will be
mentioned.

1 Introduction

An optimal stopping problem uses sequentially observed random variables to
choose the time to take an action in order to maximize some predefined notion
of reward (or equivalently, minimize some loss). In this report, we deal with
problems where said sequence of random variables is denoted X = (Xn)Nn=0

be an Rd-valued discrete-time Markov process on a probability space (Ω,F , P),
where N and d are positive integers. We denote by Fn the σ-algebra generated
by X0, X1, . . . , Xn and call a random variable τ : Ω→ 0, 1, . . . , N an X-stopping
time if the event τ = n belongs to Fn for all n ∈ {0, 1, . . . , N}. In this context,
mathematically we say is an X-stopping time if = n F, n 0, 1, ..., N. The
notion of reward we look to maximize is given by V = supτ∈T E g(τ,Xτ),

Theoretically optimal stopping problems with finite stopping times such as
this can be solved exactly, where the optimal V is given by the Snell envelope
and the corresponding optimal stopping time is the first-time reward from stop-
ping exceeds the expected reward from the continuation value. Numerically,
these problems are often solved via a dynamic programming based approach.
However, more traditional numerical approaches, such as tree-based methods,
perform poorly if the dimensions of Markov process X is large. This limits the
types of optimization problems that can be solved via traditional methods. An
emerging branch of computational mathematical finance research aims to ap-
ply machine learning approaches to optimal stopping problems. Many machine
learning algorithms are notoriously strong in very high dimensions and are flex-
ible enough to apply to a wide array of problems. The main focus of this report

1

is the feed-forward, multi-layer neural network applied to the optimal stopping
problem.
The whole project is mainly based on Dr. Patrick Cheridito’s work [1] and the
discussion on the second method using the Longstaff-Schwartz method as well
with [2] and [3].

2 Background

2.1 Deep Learning and Neural Network

Deep learning is an artificial intelligence function that imitates the workings of
the human brain in processing data and creating patterns for use in decision
making. Deep learning is a subset of machine learning in artificial intelligence
(AI) that has networks capable of learning unsupervised from data that is un-
structured or unlabeled. The specific strategy that we use in modeling is neural
network.

A neural network is a computational system modeled loosely after the human
brain. Without delving too much into the biological specifics, the basic idea
is that a neuron receives input from other neurons or from an external source
which it uses to generate output. This output is then either passed onto another
neuron as input or treated as the output of the entire system. In computational
neural networks, these neurons are often referred to as nodes.

To apply neural network, we need to functionalize our problem into a math-
ematical format which is easy to demonstrate and model. So we may rewrite the
original statement of the question to a decision to exercise or keep the option:
0 or 1

fn(x) =

{
1 if g(n, x) ≥ hn(x)

0 if g(n, x) < hn(x)
.

2.2 Expressing Stopping Times as a Series of Stopping
Decisions

The first method is to model the stopping decision directly. An intuitive idea to
transform the X-stopping problem is to set the stopping decision as a sequence
of binary digits in order to meet the above criteria. In principle, the decision
whether to stop the process at time n if it has not been stopped before, can be
made based on the whole evolution of X from time 0 until n. But to optimally
stop the Markov process X, it is enough to make stopping decisions according
to fn(Xn) for measurable functions fn : Rd → 0, 1, n = 0, 1, . . . , N .

Consider the auxiliary stopping problems

Vn = sup
τ∈Tn

E g(τ,Xτ)

for n = 0, 1, . . . , N , where Tn is the set of all X-stopping times satisfying
n ≤ τ ≤ N . Obviously, TN consists of the unique element τN ≡ N , and one can

2

write τN = NfN (XN) for the constant function fN ≡ 1. Moreover, for given
n ∈ 0, 1, . . . , N and a sequence of measurable functions fn, fn+1, . . . , fN : Rd →
0, 1 with fN ≡ 1,

τn =

N∑
m=n

mfm(Xm)

m−1∏
j=n

(1− fj(Xj))

2.3 Neural Network Approximation

Now as we have already got a a sequence of measurable functions, it becomes
an intuitive idea to to approximate fn : Rd → 0, 1, n = 0, 1, . . . , N − 1, by a
neural network fθ : Rd → 0, 1 with parameter θ ∈ Rq. We do this by starting
with the terminal stopping decision fN ≡ 1 and proceeding by backward in-
duction. More precisely, let n ∈ 0, 1, . . . , N − 1, and assume parameter values
θn+1, θn+2, . . . , θN ∈ Rq have been found such that fθN ≡ 1 and the stopping
time

τn+1 =

N∑
m=n+1

mfθm(Xm)

m−1∏
j=n+1

(1− fθj (Xj))

produces an expected value E g(τn+1, Xτn+1) close to the optimum Vn+1. Since
fθ takes values in 0, 1, it does not directly lend itself to a gradient-based op-
timization method. So, as an intermediate step, we introduce a feedforward
neural network F θ : Rd → (0, 1) of the form

F θ = ψ ◦ aθI ◦ ϕqI−1
◦ aθI−1 ◦ · · · ◦ ϕq1 ◦ aθ1,

where

• I, q1, q2, . . . , qI−1 are positive integers specifying the depth of the network
and the number of nodes in the hidden layers (if there are any),

• aθ1 : Rd → Rq1 , . . . , aθI−1 : RqI−2 → RqI−1 and aθI : RqI−1 → R are affine
functions,

• for j ∈ N , ϕj : Rj → Rj is the component-wise ReLU activation function
given by
ϕj(x1, . . . , xj) = (x+

1 , . . . , x
+
j)

• ψ : R → (0, 1) is the standard logistic function ψ(x) = ex/(1 + ex) =
1/(1 + e−x).

2.4 Longstaff-Schwartz simulation

There is another way to carry out the estimation by applying Longstaff-Schwartz
method to estimate the decision. Due to the size of the project, we focus on the
first method discussed above but Longstaff -Schwartz method is a popular and
widely-used strategy in derivatives pricing[4]. This approach uses a regression

3

technique to approximate the continuation value of the option. A comparison
is made between a polynomial and spline basis to fit the regression.
One can apply the following variant in the use of neural networks instead of lin-
ear combinations of basis functions. In addition, the sum in the equation is over
all simulated paths, only in-the-money paths are considered to save computa-
tional effort. While it is enough to use in-the-money paths to determine a candi-
date optimal stopping rule, we need accurate approximate continuation values
for all x ∈d to construct good hedging strategies of the Longstaff–Schwartz
algorithm:

Simulate1 paths (xkn)Nn=0, k = 1, . . . ,K, of the underlying process (Xn)Nn=0.

Set skN ≡ N for all k.

For 1 ≤ n ≤ N − 1, approximate EGτn+1 | Xn with cθn(Xn) by minimizing the

sum
∑K
k=1 g(skn+1, x

k
skn+1

)− cθ(xkn)
2

over θ.Setskn :=

{
n if g(n, xkn) ≥ cθn(xkn)

skn+1 otherwise.

Define θ0 := 1
K

∑K
k=1 g(sk1 , x

k
sk1

), and set cθ0 constantly equal to θ0.

In this paper we specify cθ as a feedforward neural network, which in general,
is of the form

aθI ◦ ϕqI−1
◦ aθI−1 ◦ · · · ◦ ϕq1 ◦ aθ1,

where

• I ≥ 1 denotes the depth and q0, q1, . . . , qI the numbers of nodes in the
different layers

• aθ1 : Rq0 → Rq1 , . . . , aθI : RqI−1 → RqI are affine functions,

• For j ∈ N , ϕj : Rj → Rj is of the form ϕj(x1, . . . , xj) = (ϕ(x1), . . . , ϕ(xj))
for a given activation function ϕ : →.

The components of the parameter θ consist of the entries of the matrices
A1, . . . , AI and vectors b1, . . . , bI appearing in the representation of the affine
functions aθix = Aix+ bi, i = 1, . . . , I. So, θ lives in q for q =

∑I
i=1 qi(qi−1 + 1).

To minimize the loss, we choose a network with qI = 1 and employ a stochastic
gradient descent method.

3 Mathematical Framework

Here are two main mathematical problems that we need to solve on the path
from the set-up to our network model. Firstly, we need to show the reason
why we could use the format of 0-1 function to represent the optimal stopping.
Secondly, the effectiveness and correctness of our model above have to be shown.

1As usual, we simulate the paths (xk
n), k = 1, . . . ,K, independently of each other.

4

3.1 Proof of optimal choice

We need to show that the optimal stopping time can be computed as a function
of the series of 0-1 stopping decisions before applying Neural Network. So we
need to show that the function above describing the stopping time defines the
optimal one. The following theorem proves this:

Theorem 1 For a given n ∈ 0, 1, . . . , N − 1, let τn+1 be a stopping time in
Tn+1 of the form

τn+1 =

N∑
m=n+1

mfm(Xm)

m−1∏
j=n+1

(1− fj(Xj))

for measurable functions fn+1, . . . , fN : Rd → 0, 1 with fN ≡ 1. Then there
exists a measurable function fn : Rd → 0, 1 such that the stopping time τn ∈ Tn
satisfies

E g(τn, Xτn) ≥ Vn −
(
Vn+1 − E g(τn+1, Xτn+1

)
)
,

where Vn and Vn+1 are the optimal values.

Proof We begin by setting an arbitrary stopping time τ ∈ Tn and letting ε =
Vn+1−E g(τn+1, Xτn+1), By the Doob–Dynkin lemma there exists a measurable
function hn : Rd → R such that

hn(Xn)=Eg(τn+1, Xτn+1) | Xn.

Now as we previously mentioned, there is another version of is a measurable
function of Xn+1, . . . , XN .

g(τn+1, Xτn+1) =

N∑
m=n+1

g(m,Xm)1τn+1=m =

N∑
m=n+1

g(m,Xm)1fm(Xm)
∏m−1

j=n+1(1−fj(Xj))=1

So it follows from the Markov property of X that

hn(Xn)= Eg(τn+1, Xτn+1) | Fn

. Now we can establish that the following sets are in Fn:

D = g(n,Xn) ≥ hn(Xn) and E = τ = n

τn = n1D + τn+11Dc belongs to Tn and τ̃ = τn+11E + τ1Ec to Tn+1. It fol-
lows from the definitions of Vn+1 and ε that E g(τn+1, Xτn+1) = Vn+1 − ε ≥
E g(τ̃ , Xτ̃)− ε. Hence,

Eg(τn+1, Xτn+1)1Ec ≥ Eg(τ̃ , Xτ̃)1Ec − ε = Eg(τ,Xτ)1Ec − ε,

5

from which one obtains

E g(τn, Xτn) = Eg(n,Xn)ID + g(τn+1, Xτn+1)IDc = Eg(n,Xn)ID + hn(Xn)IDc

≥ Eg(n,Xn)IE + hn(Xn)IEc = Eg(n,Xn)IE + g(τn+1, Xτn+1)IEc

≥ Eg(n,Xn)IE + g(τ,Xτ)IEc − ε = E g(τ,Xτ)− ε.

Since τ ∈ Tn was arbitrary, this shows that E g(τn, Xτn) ≥ Vn − ε. Lastly,
we show that the n we found here is the same as previously declared, for the
function fn : Rd → 0, 1 given by

fn(x) =

{
1 if g(n, x) ≥ hn(x)

0 if g(n, x) < hn(x)
.

Therefore,

τn = nfn(Xn) + τn+1(1− fn(Xn)) =

N∑
m=n

mfm(Xm)

m−1∏
j=n

(1− fj(Xj)),

as required.

3.2 Proof of model effectiveness

Let n ∈ 0, 1, . . . , N − 1 and fix a stopping time τn+1 ∈ Tn+1. Then, for every
depth I ≥ 2 and constant ε > 0, there exist positive integers q1, . . . , qI−1 such
that

sup
θ∈Rq

Eg(n,Xn)fθ(Xn) + g(τn+1, Xτn+1)(1− fθ(Xn))

≥ sup
f∈D

Eg(n,Xn)f(Xn) + g(τn+1, Xτn+1
)(1− f(Xn))− ε,

where D is the set of all measurable functions f : Rd → 0, 1.
proof Fix ε > 0. It follows from the integrability condition (??) that there

exists a measurable function f̃ : Rd → 0, 1 such that

Eg(n,Xn)f̃(Xn) + g(τn+1, Xτn+1
)(1− f̃(Xn))

≥ sup
f∈D

Eg(n,Xn)f(Xn) + g(τn+1, Xτn+1
)(1− f(Xn))− ε/4.

f̃ can be written as f̃ = 1A for the Borel set A = {x ∈ Rd : f̃(x) = 1}.
Moreover,

B 7→ E|g(n,Xn)|1B(Xn) and B 7→ E|g(τn+1, Xτn+1
)|1B(Xn)

define finite Borel measures on Rd. Since every finite Borel measure on Rd is
tight (see e.g., [1]), there exists a compact (possibly empty) subset K ⊆ A such
that

[Eg(n,Xn)1K(Xn) + g(τn+1, Xτn+1
)(1− 1K(Xn))

6

≥ Eg(n,Xn)f̃(Xn) + g(τn+1, Xτn+1)(1− f̃(Xn))− ε/4.

Let ρK : Rd → [0,∞] be the distance function given by ρK(x) = infy∈K ‖x−
y‖2. Then

kj(x) = max 1− jρK(x),−1, j ∈ N,

defines a sequence of continuous functions kj : Rd → [−1, 1] that converge point-
wise to 1K−1Kc . So it follows from Lebesgue’s dominated convergence theorem
that there exists a j ∈ N such that

Eg(n,Xn) 1kj(Xn)≥0 + g(τn+1, Xτn+1
)(1− 1kj(Xn)≥0)

≥ Eg(n,Xn)1K(Xn) + g(τn+1, Xτn+1
)(1− 1K(Xn))− ε/4.

By Theorem 1,kj can be approximated uniformly on compacts by functions
of the form

r∑
i=1

(vTi x+ ci)
+ −

s∑
i=1

(wTi x+ di)
+

for r, s ∈ N , v1, . . . , vr, w1, . . . , ws ∈ Rd and c1, . . . , cr, d1, . . . , ds ∈ R. So there
exists a function h : Rd → R expressible as in (??) such that

Eg(n,Xn) 1h(Xn)≥0 + g(τn+1, Xτn+1)(1− 1h(Xn)≥0)

≥ Eg(n,Xn) 1kj(Xn)≥0 + g(τn+1, Xτn+1
)(1− 1kj(Xn)≥0)− ε/4.

Now note that for any integer I ≥ 2, the composite mapping 1[0,∞) ◦ h can be

written as a neural net fθ of the form (4) with depth I for suitable integers
q1, . . . , qI−1 and parameter value θ ∈ Rq. Hence,we get

Eg(n,Xn) fθ(Xn) + g(τn+1, Xτn+1
)(1− fθ(Xn))

≥ sup
f∈D

Eg(n,Xn)f(Xn) + g(τn+1, Xτn+1
)(1− f(Xn))− ε,

and the proof is complete.

4 Neural Network Model

Now with our proof above and Neural Network for the problem, we are able
to calculate the estimation of key statistics of our estimated decision. Our
numerical method for problem consists in iteratively approximating optimal
stopping to simulate the decisions fn : Rd → 0, 1, n = 0, 1, . . . , N − 1, by a
neural network fθ : Rd → 0, 1 with parameter θ ∈ Rq.

τn+1 =

N∑
m=n+1

mfθm(Xm)

m−1∏
j=n+1

(1− fθj (Xj))

7

Based on the equation, we introduce a feed-forward neural network F θ : Rd →
(0, 1) of the form

F θ = ψ ◦ aθI ◦ ϕqI−1
◦ aθI−1 ◦ · · · ◦ ϕq1 ◦ aθ1,

and calculate the targeted estimator, fθn : Rd → 0, 1 by fθn = 1[0,∞) ◦ aθnI ◦
ϕqI−1

◦ aθnI−1 ◦ · · · ◦ ϕq1 ◦ a
θn
1 , where1[0,∞) : R→ 0, 1 is the indicator function of

[0,∞).

4.1 Geometric Brownian motion simulation

Geometric Brownian Motion (GBM), which is technically a Markov process,
meaning that the stock price follows a random walk and that is one of the
fundamental hypotheses of Black-Sholes Model, on which we build the whole
model. So it is essential and necessary to simulate the path of GBM, which will
be used in training and testing. The formula for GBM is found below:

∆S

S
= µ∆t + σε

√
∆t

where :

S = the stock price

∆S = the change in stock price

µ = the expected return

σ = the standard deviation of returns

ε = the random variable

∆t = the elapsed time period
To simulate a path of a Brownian motion in a forward way, we can use the

independent and stationary Gaussian increments property, or apply Brownian
bridge in a backward simulation. a Brownian bridge X is a continuous Gaussian
process with X0 = X1 = 0, and with mean of

E(Xt) = 0 for t ∈ [0, 1]

and covariance of

cov(Xs, Xt) = min{s, t} − st for s, t ∈ [0, 1]

And then we may use Cholesky’s method to extend the simulation from one
dimension to n-dimension. The details are argued in [5]. As this is not the
major question that we deal with, the rigid proof is omitted but we may adopt
NumPy easily in real simulation as follows.

def stock_sim_path(S, alpha , delta , sigma , T, N, n):

""" Simulates geometric Brownian motion."""

h = T/n

uncomment below for deterministic trend. or , can pass it in

as alpha as an array

8

alpha = alpha # + np.linspace(0, 0.1, 500).reshape ((n,N))

mean = (alpha - delta - .5*sigma **2)*h

vol = sigma * h**.5

return S*np.exp((mean + vol*np.random.randn(n,N)).cumsum(axis =

0))

4.2 Lower bound

To estimate the lower bound of our decision, we simulate a new set of inde-
pendent realizations (ykn)Nn=0, k = 1, 2, . . . ,KL, of (Xn)Nn=0. τΘ is of the form
τΘ = l(X0, . . . , XN−1) for a measurable function l : RdN → 0, 1, . . . , N . Denote
lk = l(yk0 , . . . , y

k
N−1). The Monte Carlo approximation

L̂ =
1

KL

KL∑
k=1

g(lk, yklk)

gives an unbiased estimate of the lower bound L, and by the law of large num-
bers, L̂ converges to L for KL →∞.

4.3 Upper bound

Estimation of upper bound is much more complicated and requires for multiple
paths of geometric Brownian Motion. Here we may omit the rigorous proof and
estimate the upper bound as

U = E max
0≤n≤N

g(n,Xn)−MΘ
n − εn,

4.4 Point estimate and confidence intervals

Our point estimate of V0 is the average

L̂+ Û

2
.

To derive confidence intervals, we assume that g(n,Xn) is square-integrable for
all n. Then

g(τθ, XτΘ) and max
0≤n≤N

g(n,Xn)−MΘ
n − εn

are square-integrable too. Hence, one obtains from the central limit theorem
that for large KL, L̂ is approximately normally distributed with mean L and
variance σ̂2

L/KL for

σ̂2
L =

1

KL − 1

KL∑
k=1

g(lk, yklk)− L̂
2
.

9

So, every α ∈ (0, 1], [
L̂− zα/2

σ̂L√
KL

, Û + zα/2
σ̂U√
KU

]
is an asymptotically valid 1− α confidence interval for V0.

5 Example and Extension

I will explore two examples based on Neural Network model on American-style
option. The first one is the traditional American option stopping strategy,
which is discussed in the paper without simulation code. I will share the crucial
part of my implementation, and I will extend this implementation to another
popular and widely traded option, Asian option, by constructing a new function
of option payoff.

5.1 Bermudan Max-Call Option

A Bermudan max-call option expiring at time T is an option written on d assets,
{Xi}di=1, that gives the holder the right, but not the obligation, to purchase one
of the d assets at strike price K at any point on the time grid 0 = t0 < t1 <
... < tN = T . We assume we are in a Black-Scholes market model, so asset
prices follow a geometric Brownian motion:

Xi
t = (r − γi)dt+ σidW

t
i
i

where

• xi0 is the time 0 stock price

• r ∈ [0,∞) is the marker risk free return rate

• γi ∈ [0,∞) is the dividend yield

• σi ∈ [0,∞)is the asset volatility

• W t
i is the i- th component of a d-dimensional Brownian motion W. We

assume instantaneous correlations ofij = 0 between the assets.

The corresponding payoff function of the option at time t is of the form and
hence its price is given by

sup
τ
E

[
e−rτ

(
max

1≤i≤d
Siτ −K

)+
]
,

where the supremum is over all S-stopping times taking values in t0, t1, . . . , tN
Denote Xi

n = Sitn , n = 0, 1, . . . , N , and let T be the set of X-stopping times.
Then the price can be written as supτ∈T E g(τ,Xτ) for

g(n, x) = e−rtn max
1≤i≤d

xi −K+
,

10

and it is straight-forward to simulate (Xn)Nn=0.
We also assume an equidistant time grid, meaning tn = nT/N , n = 0, 1, . . . , N ,

for a maturity T > 0 and N + 1 equidistant exercise dates. In our example, for
i = 1, .., d we take

xi0 = 90,K = 100, σi = 20%, γi = 10%, r = 5%, T = 3, N = 9

Thus we simulate asset prices according to Black-Sholes Model

xi,k,jm = x0,i
n exp [r − δi − σ2

i /2](m− n)∆t+ σi[v
i,k,j
n+1 + · · ·+ vi,k,jm]

In this section of the report we will highlight some blocks of code including
some key steps in order to properly explain how the example is implemented.
To construct the neural network in Python, we use the Pytorch package. This
allows us to construct the neural network corresponding to equation

class NeuralNet(torch.nn.Module):

def __init__(self , d, q1, q2):

super(NeuralNet , self).__init__ ()

self.a1 = nn.Linear(d, q1)

self.relu = nn.ReLU()

self.a2 = nn.Linear(q1, q2)

self.a3 = nn.Linear(q2, 1)

self.sigmoid=nn.Sigmoid ()

def forward(self , x):

out = self.a1(x)

out = self.relu(out)

out = self.a2(out)

out = self.relu(out)

out = self.a3(out)

out = self.sigmoid(out)

return out

By building a neural network in Pytorch, we are also able to customize the
loss function we wish to minimize, which in our case is the negative of the loss
expectation in proof 2, E[g(n,Xn)fθ(Xn) + g(τn + 1, Xτn+1)(1− fθ(Xn))].

def loss(y_pred ,s, x, n, tau):

r_n=torch.zeros((s.M))

for m in range(0,s.M):

r_n[m]=-s.g(n,m,x)*y_pred[m] - s.g(tau[m],m,x)*(1-y_pred[m]

)

return(r_n.mean())

We also define a function in python, NNtime, to find the optimal parameters,
n, for the time n neural network, fθn . In this function, the feed-forward,
back propagation algorithm for selecting the optimal weights is illustrated. For
each epoch - meaning for each presentation of the entire training dataset to the
algorithm, we first compute F θn using the θn set in the previous epoch.

11

d x0 Std. Error Point est. 95% Confidence Interval

2 90 0.23 7.49 [7.26, 7.72]
3 90 0.34 11.10 [10.75, 11.45]
5 90 0.32 16.81 [16.41, 17.12]

10 90 0.29 23.80 [23.49, 24.11]
20 90 0.4 37.25 [36.83, 37.65]

Table 1: Bermudan Max-call option Simulation

def NN(n,x,s, tau_n_plus_1):

epochs=50

model=NeuralNet(s.d,s.d+40,s.d+40)

optimizer = torch.optim.Adam(model.parameters (), lr = 0.0001)

for epoch in range(epochs):

F = model.forward(X[n])

optimizer.zero_grad ()

criterion = loss(F,S,X,n,tau_n_plus_1)

criterion.backward ()

optimizer.step()

return F,model

The result is shown below.
The result is shown in the table above.

5.2 Asian Max-call Option

An Asian option (or average value option) is a special type of option contract.
For Asian options the payoff is determined by the average underlying price over
some pre-set period of time. This is different from the case of the usual European
option and American option, where the payoff of the option contract depends
on the price of the underlying instrument at exercise; Asian options are thus
one of the basic forms of exotic options. There are two types of Asian options:
fixed strike, where averaging price is used in place of underlying price; and fixed
price, where averaging price is used in place of strike. Fixed strike (also known
as an average rate) Asian call payout

C(T) = max (A(0, T)−K, 0)

where A(0,T) represents the average of underlying price from time 0 to T.
In addition, as our model is not able to deal with time-continuous situation,

we used the same model dealing with Bermudan call option with 9 stopping
points. The only difference between Bermudan call option and Asian option
now is the payoff function, intuitively that is the only part of code needs to be
replaced.
However, a seperate and independent variable needs to be set to store the stock
price before we can calculate the average. This variable is essential in both

12

d x0 Std. Error Point est. 95% Confidence Interval

2 90 0.49 6.23 [6.21, 6.24]
3 90 0.44 10.20 [10.18, 10.21]
5 90 0.31 13.72 [13.71, 13.73]

10 90 0.46 18.95 [18.93, 18.99]
20 90 0.58 31.29 [31.25, 33.32]

Table 2: Asian call option Simulation

training and testing, so we make a bottom modification on the class of stock,
the payoff function to be specific. The original payoff function is

def g(self ,n,m,X):

max1=torch.max(X[int(n),m,:].float()-self.K)

return np.exp(-self.r*(self.T/self.N)*n)*torch.max(max1 ,

torch.tensor([0.0]))

Now we add a new variable a to store the stock price and calculate the
average before carrying out the maximum in the loss function. We rewrite the
stock class as following:

class stock:

def __init__(self , T, K, sigma , delta , So, r, N, M, d):

self.T = T # ending time step

self.K=K # price purchased

self.sigma=sigma *np.ones(d) # asset volatility

self.delta=delta # dividend yield

self.So=So*np.ones(d) # price at time 0

self.r=r # marker risk free return

self.N=N # number of time steps

self.M=M # number of sample paths

self.d=d # number of assets

self.a=a # value of stock

self.i=0 # number of stopping

def g(self ,n,m,X):

self.a = self.a + X

self.i = self.i + 1

Y = self.a/self.i

max1=torch.max(Y[int(n),m,:].float()-self.K)

return np.exp(-self.r*(self.T/self.N)*n)*torch.max(max1 ,

torch.tensor([0.0]))

The result is shown as the above table.

References

[1] Becker S, Cheridito P, Jentzen A. Deep optimal stopping[J]. Journal of Ma-
chine Learning Research, 2019, 20: 74.

13

[2] Becker S, Cheridito P, Jentzen A. Pricing and hedging American-style op-
tions with deep learning[J]. Journal of Risk and Financial Management,
2020, 13(7): 158.

[3] Cheridito P, Jentzen A, Rossmannek F. Efficient approximation of
high-dimensional functions with deep neural networks[J]. arXiv preprint
arXiv:1912.04310, 2019. 1222–1234.

[4] Longstaff F A, Schwartz E S. Valuing American options by simulation: a
simple least-squares approach[J]. The review of financial studies, 2001, 14(1):
113-147.

[5] Karl S, Simulating Brownian motion and geometric Brownian motion

14

