
AIM Qualifying Review Exam in Differential Equations & Linear Algebra

August 2023

There are five (5) problems in this examination.

There should be sufficient room in this booklet for all your work. But if you use other sheets of paper, be
sure to mark them clearly and staple them to the booklet. No credit will be given for answers without

supporting work and/or reasoning.

Problem 1

Consider the set of real 2-by-2 matrices A such that A = AT .

(a) Let x and y be independent eigenvectors of A, i.e. x 6= αy for any scalar α. For which A in the set
mentioned above is xTy always zero, and for which A in the set could xTy be nonzero? Justify your
answer and give an example of a matrix for each of the two cases.

(b) Show that any A in the set can be written x1x
T
1 + x2x

T
2 for some x1 and x2 ∈ C2.

Solution

(a) Let λx and λy be the eigenvalues for x and y respectively. Then λyxTy = xTAy = xTATy = (Ax)Ty
= λxxTy, so (λx−λy)xTy = 0. Thus xTy is always zero for those A that have distinct eigenvalues (i.e.

without repetition), e.g.

[
1 0
0 2

]
. Whereas xTy could be nonzero for A with repeated eigenvalues,

such as the identity matrix.

(b) Such an A has an orthogonal eigendecomposition, A = QΛQT with a diagonal matrix Λ. Therefore

A =
[

q1 q2

] [ λ1 0
0 λ2

] [
qT
1

qT
2

]
=
[
λ1q1 λ2q2

] [ qT
1

qT
2

]
This last product can be done by the rule that each column of the product is the first matrix times the
corresponding column of the second matrix. Thus,

A =
[
q11λ1q1 + q21λ2q2 q12λ1q1 + q22λ2q2

]
=
[
q11λ1q1 q12λ1q1

]
+
[
q21λ2q2 q22λ2q2

]
= λ1q1q

T
1 + λ2q2q

T
2 .

Now let x1 =
√
λ1q1 and x2 =

√
λ2q2. x1 and x2 may be complex. One can also find them by direct

computation, but the steps are somewhat complicated in general.
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Problem 2

Find a basis for each of these subspaces of R4 (or R2 and R5 in part d). Justify your answers.

(a) All vectors whose components are equal.

(b) All vectors whose components add to zero.

(c) All vectors that are perpendicular to (1,1,0,0)T and (1,0,1,1)T .

(d) The column space (in R2) and the null space (in R5) of U =

[
1 0 1 0 1
0 1 0 1 0

]
.

Solution

(a) All such vectors are proportional to (1, 1, 1, 1)T , so this is a basis.

(b) The subspace is the space orthogonal to (1, 1, 1, 1)T , and it has dimension 3. Any linearly independent set
of 3 vectors in the subspace will do. One choice is: (1,−1, 0, 0)T , (1, 0,−1, 0)T , and (1, 0, 0,−1)T . Any
nontrivial linear combination of these will have at least one of the second, third, or fourth components
nonzero.

(c) This is a subspace of dimension 2. One vector in the subspace is (0, 0, 1,−1)T . To get another indepen-
dent vector, one could perform the Gram-Schmidt process starting with simple random vectors until the
result is nonzero. Or a faster approach: let the third and fourth components be 1; this is automatically
orthogonal to (0, 0, 1,−1)T . Now let the first component be -2 so the vector is orthogonal to (1,0,1,1)T .
Now let the second component be 2 so it’s also orthogonal to (1,1,0,0)T . The second basis vector is thus
(-2,2,1,1)T .

(d) The column space is all of R2, so take the standard basis (1,0)T and (0,1)T for example. The null space
is orthogonal to (1,0,1,0,1)T and (0,1,0,1,0)T , and has dimension 3. It consists of vectors whose 1st,
3rd and 5th components sum to zero and second and fourth components also sum to zero, and is thus
a direct sum of a two-dimensional and a one-dimensional space. For a basis take (0,1,0,-1,0)T (for the
one-dimensional space) and (1,0,-1,0,0)T and (0,0,1,0,-1)T (for the two-dimensional space).

Problem 3

Consider the system of ODEs

dx/dt = (1 + x) sin y ; dy/dt = 1− x− cos y. (1)

(a) Determine all critical points.

(b) Find the corresponding linear system near each critical point.

(c) Find the eigenvalues of each linear system. What conclusions can you then draw about the nonlinear
system?

Solution

(a) The critical points are (x, y) = (0, 2nπ) or (2, (2n+ 1)π), where n ranges over the integers.

(b) The Jacobian matrix J(x, y) =

[
sin y (1 + x) cos y
−1 sin y

]
, so we linear systems with matrices given by

J(0, 2nπ) =

[
0 1
−1 0

]
and J(2, (2n+ 1)π) =

[
0 −3
−1 0

]
.
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(c) The first case of J is a center with eigenvalues ±i and the second has eigenvalues that are roots of
λ2 − 3 = 0, i.e. ±

√
3, so it is a saddle. The stability of the nonlinear system is undetermined by the

linear system in the first case (the center), and is unstable in the second (the saddle).

Problem 4

Consider the initial value problem

y(4) + 2y′′ + y = g(t), y(0) = y′(0) = 0, y′′(0) = y′′′(0) = 0.

(a) What is the most general class of functions g(t) that guarantees the solution exists for all real t?

(b) Solve the initial value problem in the special case g(t) = 3t+ 4.

Solution

(a) If we transform the ODE to a first-order system, we can apply the existence and uniqueness theorem for
linear systems. The theorem says that a unique solution exists for all t where the ODE coefficients and
g are continuous. The coefficients are constants, so we require that g be continuous for all t.

(b) First we find the homogeneous solution yh, using the roots of the characteristic equation r4+2r2+1 = 0:
r = ±i with multiplicity 2. So yh = A sin t + B cos t + Ct sin t + Dt cos t. For the particular solution
yp, we use a polynomial of the same degree as the right hand side. We don’t need to add powers of
t since there is not overlap with the terms of yh. We get yp = 3t + 4. So the general solution is
y = A sin t + B cos t + Ct sin t + Dt cos t + 3t + 4. To satisfy the initial conditions, one can compute
derivatives rapidly using two-term Taylor expansions of sine and cosine at 0. We get A = −4, B = −4,
C = −3/2, and D = 1.

Problem 5

Solve the PDE

∂2u

∂t2
− ∂2u

∂x2
= 0

for u(x, t) in the domain {t > 0 ; 0 < x < 1} with the boundary conditions and initial conditions:

u(0, t) = 0 , u(1, t) = 1

u(x, 0) = x+ sin(πx) ,
∂u

∂t
(x, 0) = sin(πx).

Solution
First, we write u = x + uh(x, t), so uh satisfies the same equation with homogeneous boundary conditions
and one initial condition is modified to uh(x, 0) = sin(πx). Next, we plug in a separation of variables solution
uh = X(x)T (t) and obtain

X ′′

X
=
T ′′

T
= −λ2.

The separation constant −λ2 has been chosen to be negative so that there are nontrivial solutions that
satisfy the boundary conditions X(0) = X(1) = 0. Such is the case for λ = nπ for integers n, in which case
X = A sin(nπx) and T = B cos(nπt) + C sin(nπt). The general solution is

uh =

∞∑
n=1

(an cos(nπt) + bn sin(nπt)) sin(nπx)

3



We can determine the constants by matching the initial conditions. We find a1 = 1, b1 = 1/π, and all
other constants are zero. The solution is

u = x+

(
cos(πt) +

1

π
sin(πt)

)
sin(πx).
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