
Algebra 2 QR Solutions — August 2023

Problem 1. Let

1 → A
α−→ G

β−→ B → 1

be a short exact sequence of groups, with A and B abelian. Suppose that α(A) is
central in G, and let h be an element of G. Show that g 7→ hgh−1g−1 is a group
homomorphism from G to G.

Solution. We may as well identify A with its image, and thus regard it as a cenral
subgroup of G. Fix h ∈ G and let ϕ(g) = hgh−1g−1. Since B is abelian, the image of
ϕ(g) in B is trivial, meaning that ϕ(g) actually belongs to A. We have

ϕ(gg′) = hgg′h−1(g′)−1g−1 = (hgh−1)ϕ(g′)g−1 = ϕ(g)ϕ(g′),

where in the final step we commuted ϕ(g′) with g−1, which is allowed since ϕ(g′) ∈ A
is central.

Problem 2. Let r, s and t be positive integers, and let G be the group generated by
elements a and b modulo the relations ar = bs = 1, aba−1 = bt. Show that G is finite.

Solution. An element of G is represented by a word in a and b (we do not need
inverses since a and b have finite order). The second relation can be rewritten as
ab = bta, which shows that we can move all a’s to the right, that is, every element
has the form biaj. By the condition on the orders of a and b, we can take 0 ≤ i < r
and 0 ≤ j < s. Thus G is finite.

Problem 3. Let G be a group of order 4 · 3n. Show that G is solvable.

Solution. The number of 3-Sylows divides 4 and is 1 mod 3, so is therefore 1 or 4.
If there is a unique 3-Sylow N then it is normal and solvable (since it is a p-group),
and G/N is also solvable (since it has order 4), and so G is solvable.
Suppose that there are four 3-Sylows. The conjugation action of G on the set of

3-Sylows defines a homomorphism f : G → S4. The kernel of f cannot contain any
2-Sylow, for then it would normalize all 3-Sylows and they would be normal. So
ker(f) has order 3m or 2 · 3m. If ker(f) has order 3m then it is a p-group, and thus
solvable. If it has order 2 · 3m then its 3-Sylow has index 2 and is thus normal, and
so ker(f) is solvable (as in the first paragraph). Since im(f) is also solvable (as S4 is
solvable), it follows that G is solvable.

Problem 4. Let Ω/F be a field extension, let E1 and E2 be distinct subfields of Ω
containing F with [E1 : F ] = [E2 : F ] = d, and let K be the subfield of Ω generated
by E1 and E2. Show that 2d ≤ [K : F ] ≤ d2, and give examples where the extreme
values 2d and d2 each occur.

Solution. Since E1 and E2 are algebraic extensions of F , every element of K can be
written in the form

∑i
i=1 aibi with ai ∈ E1 and bi ∈ E2. It follows that an F -basis



for E2 will span K as an E1-vector space, i.e., [K : E1] ≤ [E2 : F ] = d. Multiplying
by [E1 : F ] = d and using the tower law for degrees, we find [K : F ] ≤ d2. On the
other hand, K is a proper extension of E1 (since E1 and E2 are distinct), and so
[K : F ] = [K : E1][E1 : F ] = ed, where e = [K : E1] > 1. Thus [K : F ] ≥ 2d.
Suppose F = C(x, y) and E1 = C(x1/d, y) and E2 = C(x, y1/d); these are degree d

extensions of F . In this case, K = C(x1/d, y1/d) is a degree d2 extension of F .
Next, let K/F be a Galois extension with Galois group the dihedral group of order

2d. For example, one can take K = C(x1/d) and F = R(x). If E1 and E2 are the
fixed fields of two different reflections then they are degree d extensions that generate
K, which has degree 2d.

Problem 5. Let p be an odd prime. Let K be a subfield of C that is Galois over Q
of degree pn. Show that K ⊂ R.

Solution. Since K is Galois it is stable under complex conjugation c. Since c|K is
an element of Gal(K/Q) that squares to the identity and this group has odd order,
it follows that c|K is already the identity. Thus every element of K is fixed by c, and
so K ⊂ R.


