DUPLICITOUS PERMUTATIONS AND BUMPLESS PIPE
DREAMS

RAINIE HECK

1. INTRODUCTION

The goal of this project is to establish a geometric interpretation of a new
formula for the Schubert polynomials of Lascoux and Schiitzenberger. The formula
is in terms of combinatorial objects called bumpless pipe dreams |[LLS18|. We
will study a conjecture of Hamaker, Pechenik, and Weigandt [HPW19] about the
diagonal Grobner geometry of matrix Schubert varieties.

The original formula for Schubert polynomials was an algebraic formula in
terms of divided difference operators |[LS82|. The fact that the coefficients are
non-negative integers hinted that there may be combinatorial formulas for the
coefficients. Many such formulas have been provided: see for example [Koh91|,
[FGRS97]. Knutson and Miller provided a geometric explanation for a formula
in terms of a combinatorial object called pipe dreams [KMO5| |[BB93| [FK96|.
Knutson and Miller showed that the pipe dreams label coordinate subspaces in the
Grobner degeneration of a matrix Schubert variety with respect to an antidiagonal
term order.

Hamaker, Pechenik, and Weigandt have conjectured an analogous result for the
diagonal Grobner geometry of matrix Schubert varieties [HPW19]. Their con-
jecture relates to the bumpless pipe dream formula. Often, the degenerations of
matrix Schubert varieties with respect to diagonal term orders are not reduced.
My project this summer has centered on trying to understand a class of permu-
tations for which the conjecture predicts that the limit is reduced.

In Section[2] I will give some background on bumpless pipe dreams, the Schubert
polynomial formula, and the geometry of matrix Schubert varieties. In Section
I will state the conjecture and explain the research question in more detail. In
Section |4} I will discuss a phenomenon called pattern containment and evidence
that it governs the permutations of interest, as well as discussing pattern contain-
ment results for related classes of permutations. In Section [5], I will show how we
can find new examples of permutations of interest. Finally, in Section [0 I will
discuss our current computational and theoretical results about the permutations
of interest.
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2. BACKGROUND ON BUMPLESS PIPE DREAMS, SCHUBERT POLYNOMIALS AND
MATRIX SCHUBERT VARIETIES

Lam, Lee and Shimozono defined a combinatorial object called a bumpless pipe
dream. We follow |[LLS18| as a reference.

Definition 1. A bumpless pipe dream (BPD) is a tiling of an n x n grid with the
following tiles

-

.

which obeys these rules:

e pipes start at the right edge of the grid,
e pipes end at the bottom edge of the grid, and
e pipes cross pairwise at most once.

The set of positions of the blank tiles in a BPD is its diagram.

Since each pipe traces out a path from the right edge of the grid to the bottom
edge, we can associate to each BPD a permutation. Given a BPD with n pipes,
we can associate a permutation w in the symmetric group of n elements .S, in the
following way. We label the pipes based on the column in which they originate
and then trace that label to the row in which they terminate. We then obtain w
in one line notation by reading the labels on the right side from top to bottom.
We denote the set of bumpless pipe dreams corresponding to a given permutation
w by BPD(w).

X[ X

FIGURE 1. The permutation associated to this BPD is 214365,
which we can read in one line notation on the right side of the
diagram.
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The bumpless pipe dream in which each pipe bends exactly once is called the
Rothe bumpless pipe dream for the given permutation, and its diagram is called
the Rothe diagram of its permutation.

We can associate a monomial weight to each bumpless pipe dream:

Theorem 1 (|LLS18|). Given a permutation w € S, the formula for the associ-
ated Schubert polynomial is given by

(2) Wt(b) — ﬁx(# blank tiles in row )

i=1

We take this theorem as our definition.

diiir::

- — 42
62143 =X7 +X1X2 +X X3

[ X |
X,X3 \ ai=

X1X2

FIGURE 2. There are three BPDs associated to 2143. We assign
the monomial weights as shown in and then add them as in
to obtain 62143.

2.1. The Grobner geometry of matrix Schubert varieties. In this section,
we follow [KMO05| as a reference. Take Mat(n) to be the set of n x n matrices and
let z = (%’)Zj:l be a generic matrix. Let Clz] := C[z11, 212, - - -, Znn]-

Definition 2. A term order on monomials in C|z] is a total order > that satisfies
the following properties given any m, mg, m monomials in C|z] :

e 1 <m, and

e If mg < m then m-mg < m-m.

A Grébner degeneration takes an ideal [ to init([).
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Definition 3. The lead term of a polynomial f € C[z] is the largest monomial of
f with a non-zero coefficient with respect to a set term order. We denote the lead
term by 1t(f) and define the initial ideal of an ideal I as init([) := {t(f) : f € ).

Definition 4. Given a matrix minor, its antidiagonal term is given by the product
of entries along its main antidiagonal. The diagonal term of a minor is given by
the product of entries along its main diagonal. An antidiagonal term order on
C|z] satisfies that the lead term of any minor is its antidiagonal term, and a
diagonal term order satisfies that the lead term of any minor is its diagonal term.

Definition 5. Fix an ideal I and a term order. Then a set {g1, ..., gr} is a Grobner
basis for I if and only if I = (g1, ..., gx) and init(I) = {t(g1), ..., 1t(gx))-

Take T' < GL(n) < Mat(n) as the torus of diagonal matrices. Then T acts via
left multiplication on Mat(n). We say that X < Mat(n) is T-stable if T - X < X.
It is a fact that if X is T-stable, then X defines a class [X]r in H}(Mat(n)) =
Z|x1, ..., x,], the T-equivariant cohomology of Mat(n).

We can use the following strategy to compute [X|r. If X v X' is a “nice
enough” degeneration, then [X|r = [X']r [KMO05]. If X = | J K, where K are of
equal dimension and reduced, then

(3) [(X]r = > [K]r.

Let [n] :={1,...,n}. Consider the following case, where S < [n] x [n]. Then

(4) Ls = V(<Zi7j : (Zvj) € S>)

and

(5) [Lr= [] zieZlx,... a).
(3,5)eS

We consider the following example:

Example 1. If S = (1,1), (2,2) then L, = {l(z g] ca,be Ch =V ({1, 222)). As
such, [Lia1),@2]r = 2122.

Our research question concerns a type of variety called a matrix Schubert variety
(see |Ful92]). These varieties are indexed by permutations w € S,,, and the variety
X,, is defined by determinantal conditions. We work with the example X543 for
simplicity and do not discuss the exact conditions on the determinants here.

It is a fact that

mi1r Mz M3
(6) X2143 = {[m”] € Mat(n) : rk([mu]) = O,I‘k( ™TMo1 1Moy M3 ) < 2}
m31 Mgz MM33



It can also be shown that

211 R12 213
(7) Xoraz = V ({211, det Zo1 Zoa Zaz | |))-

231 232 233

Knutson and Miller proved that for any antidiagonal term order, these gener-
ators form a Grobner basis, and that the coordinate subspaces in the Grobner
degeneration of the ideal are naturally labeled by combinatorial objects called
pipe dreams [KMO05].

Our research question addresses instead a diagonal term order. Looking at the
formula for X543 in @, we see that if we simply take the leading terms of each
determinant, we will not get a Grobner basis because both terms contain z;;. It
can be shown that we obtain a Grobner basis by ignoring the terms in the second
determinant with zq;:

(8) 211297233 — 211293239 — 212221233 T 212223231 + 213221232 — 213222231
Then:
init(Xoyas) = V(Cz11, 212201 233))

= V(<Z117 Z12> N <2’11, 221> N <Z117 Z33>)

= Lin,0.21 Y L,y Y Lia,ss)-
This implies
[X2143]T = IB% + 122 + X173,

which is exactly the Schubert polynomial for w = 2143. Now if we return to
bumpless pipe dreams, we see that the coordinate subspaces in the Grébner de-
generation seem to be labelled by bumpless pipe dreams for w, as we can see in
Figure [2|

3. RESEARCH QUESTION

My research question addresses the combinatorics related to the following con-
jecture:

Conjecture 1 (JHPW19)). If a permutation w € S, has no repeated diagrams,
then the BPDs for w label coordinate subspaces in a diagonal term order Gréibner
degeneration of the matriz Schubert variety. In particular, init(X,,) is reduced.

My work this summer has centered around determining which permutations
have bumpless pipe dreams with repeated diagrams from a combinatorial per-
spective.

In Figure 3] we show two examples of permutations in Sg with duplicate dia-
grams in their bumpless pipe dreams.
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FIGURE 3. (a) Duplicate diagrams for 321654. (b) Duplicate dia-
grams for 214365.

Using a computer check, we determined that 321654 and 214365 are the only
permutations in Sg with duplicate diagrams and that there are no such permuta-
tions in S, for n < 6. However, there are already 85 examples of these type of
permutations in S7.

We call the set of permutations with repeated diagrams among their bumpless
pipe dreams duplicitous. Such permutations have two distinct associated bump-
less pipe dreams that leave the same set of tiles blank. Write D for the set of
duplicitous permutations.

Returning for a moment to the geometric context, we note that if w is duplic-
itous, we expect at least one coordinate subspace in init(X,) to appear with
multiplicity. This did not occur when degenerating with respect to antidiagonal
term orders in [KMO5].

4. EXPLORATIONS IN PATTERN CONTAINMENT

4.1. Evidence for pattern containment. One can study permutations in terms
of the notion of pattern containment.

Definition 6. Given v € S, and w € S,,, we say that w contains v as a pattern
if there is some subsequence (w;,,...,w;, ), 1 < i3 <is < -+ < i, <n, in w such
that if we let ;s € {1,...,m}, then w;, < w;, if and only if v, < vs. We say that
w avoids v if w does not contain v as a pattern.
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Example 2. If v = 214365 and w = 432615978 then w contains v. We have
highlighted the subsequence in w for emphasis.

We say that w avoids v if w does not contain v as a pattern. Our main goal in
this project was to try to characterize the set of duplicitous patterns in terms of
pattern containment.

Other related classes of permutations have been understood in terms of pattern
containment, which gives hope that D may be governed by the same type of rule.

Our approach is guided by the following questions:

Question: Fix v € D and consider w containing v. Is w duplicitous?

e If yes: what are the minimal duplicitous patterns?
e Is the list of minimal patterns finite?

Other researchers have answered these questions for several related classes of
permutations, and we briefly highlight relevant results here.

4.1.1. Permutations with Zero-One Schubert Polynomials. Fink, Meszaros, and
St. Dizier considered the set of permutations with associated Schubert polynomi-
als with only zero and one as coefficients, denoted by ZeroSchub [FMD19|.

The following theorem tells us that this class is governed by pattern contain-
ment.

Theorem 2 ([FMD19|). A permutation w has a zero-one Schubert polynomial if
and only if it avoids a set of 12 patterns in Ss and Sg.

Lemma 1. If a permutation is duplicitous then it does not have a zero-one Schu-
bert polynomial, 1.e. D < ZeroSchub.

Proof. 1f a permutation has repeated bumpless pipe dream diagrams, then it will
have repeated monomial weights in its Schubert polynomial, and thus the Schubert
polynomial will have a coefficient greater than 1 in its monomial expansion. [

We also note that the containment is proper; there are permutations that have
bumpless pipe dreams with the same monomial weight but different diagrams.
The example in Figure [d] illustrates such a case.

4.1.2. Multiplicity-Free Permutations.

Definition 7. [LLS18| A BPD is Edelman-Greene if all diagram boxes are upper-
left justified.

For example, the BPDs for w = 321654 shown in Figure [3(a) are Edelman-
Greene because all of the boxes are in the upper left corner.

There is a bijection between Edelman-Greene bumpless pipe dreams and a
combinatorial object called Edelman-Greene tableaux [LLS18§].

Definition 8. An FEdelman-Greene tableau for w € S, is an increasing tableau
such that its reading word (with the order right to left, then top to bottom) is a
reduced word for w.
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FIGURE 4. The permutation w = 12543 in S5 has repeated mono-
mial weights but no repeated diagram.

The integers in the tableau encode simple transpositions, which generate the
symmetric group.

Example 3. We consider as an example the set of Edelman-Greene tableaux for
w = 214365. We see that in cycle notation, 214365 = (12)(34)(56) and further
that all of these transpositions commute with one another since they are disjoint.
Figure [f] shows all possible increasing tableaux filled in with 1,3,5. Note that the
repeated tableau shape is exactly the same shape as the repeated diagram that
we see for w = 214365.

113 115 113 1|5 1
5 3 3
5

FIGURE 5. Pictured above are increasing tableaux for w = 214365.

Another related class of permutations are the multiplicity free permutations,
defined by Billey and Pawlowski |[BP14|. They are defined as follows. A per-
mutation is in the set MultFree if it has no repeated Edelman-Greene tableaux
shapes. The following results demonstrate that the set MultFree is also governed
by pattern containment.

Theorem 3 (|BP14|). If w contains v as a pattern and w is multiplicity free,
then v 1s also multiplicity free.

Conjecture 2 (|[BP14|). The set of multiplicity free permutations is closed under
taking patterns, and the minimal patterns all occur in S,, for n < 11.
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It is clear that the set of non-multiplicity free permutations sits inside of the
set of duplicitous permutations, i.e. MultFree < D, since if a permutation has
repeated Edelman-Greene tableaux shapes, then it has repeated Edelman Greene
bumpless pipe dream diagrams with the same shape.

One of the original questions that we considered was the following: are there
permutations with repeated diagrams where not all of the diagram boxes are in
the upper left corner? We confirmed that there are indeed such permutations
by generating a list of all duplicitous patterns in S7; and comparing it with the
conjectural list of patterns that cause permutations to be non-multiplicity free
[BP14].

There is exactly one permutation in S7 that is both duplicitous and multiplicity
free, w = 3216745. Since this permutation avoids all of the patterns in Billey and
Pawlowski’s list, it must be multiplicity-free. However, it does have repeated
diagrams in its bumpless pipe dreams, as shown in Figure [6] The purple diagram
box is not in the upper left corner, meaning that these repeated diagrams are not
from Edelman-Greene bumpless pipe dreams, as expected.

X| X

X X X
XX X
X X

X
X

FIGURE 6. Repeated diagrams for w = 3216745.

Thus we arrive at the situation shown in Figure[7], where we know that the outer
and inner circles are governed by pattern containment. The following theorem
also tells us that all of the elements in D (|MultFree are governed by pattern
containment.

Definition 9. Given a permutation v € S, the set £G(v) is the set of Edelman-
Greene tableaux corresponding to v.

Theorem 4 (|BP14]). Let v,w be permutations with w containing v as a pattern.
There is an injection i : EG(v) — EG(w) such that if P € £G(v), then shape(P) <
shape(i(P)). Moreover, if P, P’ have the same shape, so do i(P),i(P’).

Corollary 1. Given permutations v, w, if v is not a multiplicity-free permutation
and w contains v as a pattern, then w s duplicitous.
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w that have BPD with
same monomial weight
but different diagrams

3216745

FIGURE 7. The outer and inner circles governed by pattern con-
tainment, and we hope that D is governed by pattern containment
as well.

Proof. Since v is not multiplicity-free, it has multiple Edelman-Greene tableaux
of the same shape. Since Edelman-Greene BPDs are in bijection with Edelman-
Greene tableaux, then by Theorem [4] w must also have multiple Edelman-Greene
tableaux of the same shape. Thus, w has repeated BPD diagrams. O

Thus we can focus all of our attention on the set D\MultFree. To begin,
we only have the one example in S7;. As such, our first goal is to find other
permutations with this property and determine whether or not these patterns are
causing duplicitous behavior via containment.

5. GENERATING EXAMPLES OF PERMUTATIONS WHICH ARE DUPLICITOUS
AND MULTIPLICITY FREE

A pivot of a permutation is a southeast-most cell in its Rothe diagram. We
observe that the example 3216745 differs from one of the known duplicitous pat-
tern in Sg, 321654, simply by removing a south-east most box in its diagram (see
Figure [§). Notice that there is an injection from BPD(321654) to BPD(3216745)

X|X
X X|X
transition | X
XX 1= >—7H
XX XX
X
|
I
w = 3216745 v = 3216547

FIGURE 8. 3216745 and 321654 are related by deleting a pivot
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which is almost diagram preserving. Under this map, the diagrams only differ by
adding a cell in position (5,5).

From this follows a more general observation. Suppose v is obtained from w by
deleting a pivot. Then, if v is duplicitous then so is w. Thus we can get many new
examples of duplicitous permutations by taking known duplicitous permutations
and adding new pivots. Of those new examples, we can then begin to generate a
new list of permutations that are both duplicitous and multiplicity free. We state
the following proposition without proof.

Proposition 1. Fiz w with a pivot in cell (a,b). If D(v) is obtained from the
diagram of D(w) by deleting cell (a,b), then:

(1) There is an injection ¢ : BPD(v) — BPD(w) such that
D((P)) = D(P) v {(a,b)}.
(2) If v is duplicitous, then so is w.

Part (1) of this proposition is similar to a special case of the diagrammatic
interpretation of transition found in |Las02| in terms of alternating sign matrices.

The hope is that we can generate many more such examples by adding new
pivots to other known duplicitous permutations. We note in particular that 321654
is a minimal pattern that causes permutations to be non-multiplicity-free [BP14],
and thus we use Billey and Pawlowski’s lists of minimal patterns in Sg, Sio, and
S11 to generate more examples.

We wrote a code that takes in a list of known duplicitous permutations and
deletes a pivot in all possible ways. We also ran an exhaustive check for all
duplicitous permutations in Sg and Sy. Both the exhaustive list and the adding
pivots method generated the same list of minimal duplicitous multiplicity-free
patterns in Sg. Thus, somewhat surprisingly, the method of adding pivots found
all minimal duplicitous and multiplicity free patterns in Ss. The two patterns
that we found are

9) 24137856 and 31427856.

Notice that the Rothe bumpless pipe dreams for these permutations are transposes
of one another.

6. CURRENT RESULTS

Our first large-scale check with the code was feeding it the exhaustive list of
duplicitous permutations in Sg and generating all possible examples in Sy via
this method. After removing all permutations containing the known duplicitous
patterns in Sg, S7 and Sg and any non-multiplicity-free permutations, we obtained
the following two permutations:

(10) 351289467 and 341728956.
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Note again that the Rothe bumpless pipe dreams for these permutations are trans-
poses of one another.

We can again ask the question: is this everything, or are there more examples
that we are missing via this method?

If our pattern containment hypothesis is true, then it must be the case that
all patterns in Sy containing the patterns 3216745,24137856, and 31427856 are
duplicitous. To check this statement, we generated a list of all permutations in
Sy containing each of these patterns and compared it to the exhaustive list of
duplicitous patterns in Sg. We concluded that pattern containment does hold for
S, for n < 9 and that the method of adding pivots is missing many duplicitous
permutations in Sy.

To get a sense of exactly how many permutations we are missing by adding
pivots: there were a total of 65 permutations in Sy containing 24137856, 24 of
which were missed by our methods. 10 of those permutations are multiplicity-
free, which leaves 14 minimal patterns that this method does not find, just based
on one pattern containment. This check tells us that this method is good for
finding examples but certainly not for finding all examples.

It is also worth noting that when we generated a new list of duplicitous per-
mutations from the non-multiplicity-free permutations in Billey and Pawlowski’s
list in Sy, we obtained two new permutations that are in Sy that we did not find
from the exhaustive list in Sg or from looking at permutations containing the
permutations in S; and Sg. The permutations are

(11) 341279856 and 341289576.

6.1. What are the largest minimal patterns? We are specifically interested
in permutations that are both duplicitous and multiplicity free, since we know that
non-multiplicity free patterns are governed by pattern containment by Theorem
from |BP14]. Based on our exhaustive checks through Sy, the current confirmed
list of minimal duplicitous and multiplicity patterns through Sy is given by the
permutations listed below.

3216745 341279856 341289657 341297856 341927856 351289647
24137856 341287956 341289675 341728956 351289467 351289674
31427856 341289576 341289756 341827956

We would like to answer the question of whether or not the list of minimal
patterns is finite, if the set is indeed governed by patterns. Thus it would be useful
to know how far we can keep pushing this method into larger symmetric groups
and obtaining new minimal patterns. From looking at the list of patterns that
Billey and Pawlowski conjecture to cause permutations to be non-multiplicity-
free, we used the code to generate classes of examples in S, for n = 9,10,11, 12.
We generated these lists sequentially and included all previous results in the list
of patterns to be thrown out in the next check. However, as was described above,
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we know that we do not have an exhaustive list of patterns in S, for n > 9. Thus,
just because a new permutation does not contain any of the patterns in our list
does not mean that it is minimal.

Using the method of adding pivots applied to Billey and Pawlowski’s list of
patterns in Si;, we found 6 candidates for minimal permutations. We wrote a
code that finds all patterns in S,,_; within a permutation in .S,,. We can deter-
mine whether any of the patterns in S7; contained in the Sis permutations are
duplicitous; if so, those are new candidates for minimal patterns; if not, we can
repeat the process until we arrive at Sg where we know all minimal patterns. The
code to find the smaller patterns runs efficiently, but unfortunately we do not
currently have an efficient code for determining whether large (n > 10) permuta-
tions are duplicitous, so we have not yet found conclusive results about the Sy
permutations.

6.2. Work towards proving pattern containment. In Section 6, we discussed
computational methods to verify that pattern containment holds for smaller ex-
amples and how we generated lists of minimal patterns that we conjecture cause
duplicitous behavior.

We have some ideas towards proving a statement about pattern containment,
though none are complete. We briefly summarize them here.

Definition 10. Given two permutations w € S,, and v € .S,,,, we say that w x v is
the permutation given by taking the permutation in S, ,,, that has w in the first
n entries and v in the last m entries, with n added to each of the last m entries.

Example 4. If w = 2143 and v = 321 then w x v = 2143765.

There are some cases of pattern containment that are straightforward. For
example, if we stabilize (meaning replace w with w x 1 or back-stabilize (replace
w with 1 x w) a permutation in D, we get another permutation in D.

Lemma 2. Fizwe S, andv e S,,. If w is duplicitous, then w x v and v X w are
duplicitous as well.

Proof. Note that the Rothe bumpless pipe dream for w will show up in the upper
left n x n subgrid of w x v, and we can use the same repeated diagram as we
would have used for w in the original case within this n x n grid to obtain a new
repeated diagram. A similar argument works for v x w. OJ

The first question that we explored was the following: in general, when we have
a permutation w containing a pattern v, can we find the pipes associated to v and
droop them in the same ways as we would in the Rothe bumpless pipe dream for
v to get a repeated diagram?

The answer is no; often you end up with a non-reduced bumpless pipe dream
when you do this procedure.

As an example, consider the permutation 2135476 that contains 214365, a
known duplicitous permutation whose duplicate diagrams are shown in Figure[3|(a).



14

However, if we naively apply the same droops in the larger permutation, we end
up with non-reduced bumpless pipe dreams, as is shown in Figure [

X[ XX X[ X[ X
X
X ® @
®
®
[ |

FIGURE 9. Applying droops to 2135476 the same way we would for
214365. The result is non-reduced.

Thus, this naive approach does not work as one might hope. We explored
trying to avoid the double-crossings in systematic ways, but we did not find any
consistent way to obtain a duplicate diagram given any such permutation, even
though we were always able to find a repeated diagram by pushing the pipes
upward and left in a variety of ways.

One future question to explore would be the following: If at each point where
the bumpless pipe dream is non-reduced we instead add a “double elbow” tile as
shown in Figure[10], then we could explore whether there is a way to systematically
push the top pipe up and left to obtain reduced diagrams.

X | X | X XX | X
X |
X X //.
|
/1
/
[ [

F1GURE 10. Replacing non-reduced diagrams with double-elbow tiles.
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6.3. Exploring diagram containment. Another method that we explored was
trying to determine how useful it is to look at the original diagram within the
diagram of the larger permutation. The following proposition deals with a special
case of permutations containing 321654. Although all permutations containing
321654 are known to be duplicitous since 321654 has repeated Edelman-Greene
diagrams, there is no explicit map that explains why the repeated Edelman-Greene
diagram shapes are preserved through pattern containment.

We look at a particular type of permutation in order to try to understand how
pattern containment might relate to diagram containment. The techniques used
here may be useful to prove more general results about why pattern containment
governs repeated diagrams (if it indeed does).

Definition 11. The longest permutation .S,, is given by

wi =nn—1n—-2...21.

We consider permutations of the form w(()") X w(()m), where m,n > 3. Note that
we know that such permutations are duplicitous because all such permutations
contain 321654 as a pattern. Here we give a construction for building the repeated

diagrams that is based on the repeated diagram for 321654 = w(()?’) X w(()g).

|
|
H

> s
+

L L _|__

FIGURE 11. (a) Original BPD for 321654. (b) Repeated diagrams
for 321654.

Take the Rothe diagram for w = w™ x w. In the bottom n x n subgrid,
there are @ blank tiles stacked as a right triangle; pick the three boxes in the
upper left corner as shown in Figure [12] to correspond to the three boxes marked
in Figure [L1j(a). We see an exact copy of the diagram for 321654 if we take the

subgrid in rows 1 to 3 and m + 1 to m + 3 and columns m — 2 to m + 3, as



16

I
|
el

FIGURE 12. Above is a generalized diagram for the Rothe diagram

of wl™ x wi.

shown in Then we can fill in the subgrid in exactly the same two ways as in
11(b). Within the subgrid, we will get a repeated diagram since we are copying
from repeated diagrams. Outside of the subdiagram, the key is that all of the
boxes between the two pieces of the subdiagram (specifically, rows 4 through m,
columns m — 2 to m + 3) are covered by the other fixed pipes. Thus it does not
matter that the pipes enter and exit the upper and lower halves of the subdiagram
in different ways because none of those boxes will be in the diagram anyways. We
conclude that wi™ x w™ is a duplicitous permutation for any m,n > 3.

As mentioned above, any time we have pattern containment in a permutation,
we can select the subgrid with columns given by the indices at which the pattern
occurs and rows given by the outputs of those indices in the permutation. We can
then perform the same sets of droops within the subdiagram, and get repeated
diagrams; the question then is whether or not:

(a) We can connect the parts of the subdiagram without introducing differ-
ences in the diagram. For example, we may get different diagram boxes if
pipes enter and exit parts of the subdiagram in different ways.

(b) The diagram remains reduced when we perform the same droops. In gen-
eral this does not happen, as we saw above.

7. CONCLUSIONS

In order to determine what conditions cause permutations to be duplicitous,
we used computational methods to find examples of duplicitous multiplicity-free
permutations and to check whether pattern containment holds for relatively small
permutations. In addition, we explored a variety of ideas relating to proving
pattern containment results about D in general. We verified using computer
checks that pattern containment holds through Sy (i.e. all permutations in Sg
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containing 3216745 are duplicitous, and all permutations in Sy containing the
three minimal patterns in S; and Sg are duplicitous). Thus, though we do not yet
have the full pattern containment result for the set D, we have ample evidence
that such a result may hold and ideas towards proving a complete statement.
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