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1 A list of work done

• extended the numerical solution of nonlinear Poisson Boltzmann (PB) equation from 1D

to 2D (radial symmetry) and 3D (spherical symmetry), applying the quasilinearization

technique

• prepared a talk for the project of pKa computation

• read a list of papers in reading order

– W. R. Bowen, A. O. Sharif, Long-range electrostatic attraction between like-charge

spheres in a charged pore, Nature 393 (1998)

– J. C. Neu, Wall-Mediated Forces between Like-Charged Bodies in an Electrolyte,

Physical Review 82 (1999)

– W. R. Bowen, A. O. Sharif, Adaptive Finite-Element Solution of the Nonlinear

Poisson-Boltzmann Equation: A Charged Spherical Particle at Various Distances

from a Charged Cylindrical Pore in a Planar Surface, Journal of Colloid Interface

Science 187 (1997)

– Z. Xu. Electrostatic interaction in the presence of dielectric interfaces and polarization-

induced like-charge attraction, Physical Review E87, 013307 (2013)

– W. Rocchia. Polsson-Boltzmann Equation Boundary Conditions for Biological Ap-

plications, Mathematical and computer modeling 41 (2005)

– P. Li, H. Johnston, R. Krasny. A Cartesian treecode for screened coulomb interac-

tions, Journal of Computational Physics 228 (2009)

– F. H. Stillinger. Interfacial solutions of the Poisson-Boltzmann Equation, Journal of

Chemical Physics 35 (1961)

• improved the pKa computation employing mean field & reduced site approximation, and

Monte Carlo sampling
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In this report, we will focus on the numerical method for solving nonlinear PB equation.

2 Introduction

Solvent

Molecule

Mobile Ions

Figure 1: molecular-solvent

system

A biomolecule in the body is naturally surrounded by biofuilds,

which forms a biomolecule-solvent system. In biochemistry, in-

teraction force, binding energies, and pKa computation are based

on the electrostatic potential in the biomolecule-solvent system.

The implicit Poisson-Boltzmann (PB) model has been developed

to compute the potential, partitioning the 3D space into molecule

part (Ωm) and solvent part (Ωs) by the molecular interface Γ

with ion concentration denoted by C. Dielectric constants ε is a

spaced-depended function which gives us different values between

molecule (εm) and solvent (εs). The Figure 1 shows charges are

distributed both in Ωm and Ωs. Charges in Ωm are fixed, coming

from partial charges allocated on the centers of atoms via force

fields. Charges in Ωs are mobile ions under the Boltzmann distribution. Given a position vari-

able x = (x1, x2, x3) in 3D space, applying Gauss’s law to the charge distribution both on the

molecular and in the solvent (assuming the equal monovalent cation and anion) leads the PB

model [1],

−εm∇2φm(x) = 4πC
N∑
k=1

qkδ(x− yk) x ∈ Ωm (1)

−εs∇2φs(x) + sinhκ2φ2(x) = 0 x ∈ Ωs (2)

with the continuous interface conditions of potentials and their normal derivatives (on Γ),

φm(x) = φs(x), εm
∂φm(x)

∂ν
= εs

∂φs(x)

∂ν
, (3)

where κ, named as inverse Debye screening length, measures the ionic strength. The electric

charge density in molecular part is the summation of the charged distribution involving Delta

function for N partial charges qk located at yk for k = 1,...,N. In Ωs, the Boltzmann distribution

introduces a nonlinear term sinhκ2φ(x). Keep the first term in Tayler Series, it can be treated

as a linear term κ2φ(x) when κ is a small value near zero, but the approximation makes the
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solution decay slower than the nonlinear one. Comparing the linear and nonlinear solution of

1D PBE, we also see the first derivative of potential, in physical representing the electric filed,

forms a discrepancy when x → 0. It is interesting to study the solution of nonlinear PBE

and compare the difference between it and the linear one. We apply the quasilinearization

technique to compute the electrostatic potential from 1D and 2D nonlinear PBE. The results

shows the scheme converges at the rate of O(N−2). Section 3 is mainly focus on the 1D

case comparing with exact solution to test the solid second order accuracy convergency rate.

Section 4 extends the quasilinearization technique into 2D case in polar coordinate with radius

symmetry. Section 5 is 3D nonlinear PBE in spherical symmetry. In section 6, we plotted

the1D, 2D, 3D results of the same boundary condition in one figure.

3 1D nonlinear Poisson-Boltzmann Equation (PBE)

3.1 solvent part

3.1.1 nondimensionalization

The 1D nonlinear PBE to study of electrostatics in salty solutions is showed [2]

d2φ(x)

dx2
=

2Cq

ε0ε
sinh

qφ(x)

kBT
, (4)

where φ is electric potential; C is equal concentration of monovalent cations and anions; q is

electric charge; T is temperature; ε0 is electrical permittivity of free space; ε is the dielectric

constant of solvent; kB is Boltzmann constants. To reduce units, substitute x̂ and φ̂ defined by,

x̂ = q

√
C

ε0εkBT
x, φ̂ =

q

kBT
φ, (5)

the nondimensionalized equation is obtained as,

φ̂′′(x̂) = sinh φ̂(x̂). (6)

3.1.2 analytical solution

Choose the domain x̂ ∈ [x0,∞) and two boundary conditions as φ̂(x0) = φ0, φ̂(∞) = 0.

Multipling both sides multiply by φ′, equation (6) becomes,

φ̂′′ · φ̂′ = sinh φ̂ · φ′. (7)
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Take the integral,
1

2
(φ̂′)2 = cosh φ̂+ A. (8)

Since φ̂(∞) = φ̂′(∞) = 0, A = −1. Taking a square root both side leads to,

φ̂′ =

√
2 cosh φ̂− 2 =

√
4 cosh2 φ̂

2
− 4 = −2 sinh

φ̂

2
. (9)

In order to fit in the boundary condition chosen, keep the negative square root,

− dφ̂

2 sinh φ̂
2

= dx̂. (10)

Substitute u and du,

u =
1

cosh φ̂
2

, du = −
sinh φ̂

2

2 cosh2 φ̂
2

dφ̂ = −u
2

2
sinh

φ̂

2
dφ̂. (11)

Left hand side can be simplified as

− dφ̂

2 sinh φ̂
2

= −
sinh φ̂

2
dφ̂

2 sinh2 φ̂
2

= −
sinh φ̂

2
dφ̂

2( 1
u2
− 1)

=
du

u2( 1
u2
− 1)

=
du

1− u2
. (12)

Turn equation (10) into the form,
du

1− u2
= dx̂ (13)

Take the integral,

tanh−1(u) +B = x̂ (14)

As φ̂(x0) = φ0, then B = x0 − tanh−1(φ0
2

) which leads to,

tanh−1(
1

cosh φ̂
2

)− tanh−1(
1

cosh φ0
2

) = x̂− x0, (15)

1

2
ln(

cosh φ̂
2

+ 1

cosh φ̂
2
− 1

)− 1

2
ln(

cosh φ0
2

+ 1

cosh φ0
2
− 1

) = x̂− x0, (16)

(
cosh φ̂

2
+ 1

cosh φ̂
2
− 1
·

cosh φ0
2
− 1

cosh φ0
2

+ 1
)
1
2 = e(x̂−x0). (17)

Apply cosh v + 1 = 2 cosh2(v/2), cosh v − 1 = 2 sinh2(v/2) to simplify the equation,

tanh φ0
4

tanh φ̂
4

= e(x̂−x0). (18)
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The solution is

φ̂(x̂) = 4 tanh−1(tanh(
φ0

4
)e−(x̂−x0)). (19)

If choosing the domain of x to be (−∞, xN ] and the boundary conditions φ(−∞) = 0, φ(xN) =

φN and following similar steps, we will get,

φ(x) = 4 tanh−1(tanh(
φN
4

)e(x−xN )). (20)

3.2 Numerical solution

3.2.1 quasilinearization [3]

N N-1
... ... ... ...

2 1 0

s
in

h

Quasilinearization

Exact

Quasilinearization

x
0
  . . . x

N-2
x

N-1
x

N

x

N

N-1

...

...

...

...

2

1

0

N-interval solution

Figure 2: Discretization, uniform φ mesh points with corresponding projected x points

Since we are going to apply quasilinearization technique solves nonlinear protein-solvent schema,

we can use the solvent part as a test case. It employs a piecewise linear approximation of the

nonlinear term in the differential equation. The mesh points are chosen by projecting uniform

values of the potential onto the domain, and matching conditions are enforced at the interior

mesh points. The Figure 2 gives a N -interval solution and its approximation of the right hand

side function.

Before looking the half-infinity domain problem, we solve for a two-point boundary value prob-

lem at first,

φ′′(x) = sinh(φ(x)), (21)

φ(a) = ψ, φ(b) = 4 tanh−1(tanh(
φ0

4
)e−b+a) (22)
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In this case, the right hand side function f(φ) is defined by,

f(φ) = sinh(φ). (23)

Apply the idea of quasilinearization, we replace the right hand side function, sinh(φ), by its

equally linear interpolation under a φ-mesh (φ0, φ1,..., φN) with corresponding x value (x0, x1,

..., xN), where

a = x0 < x1 < x2 < ... < xN = b. (24)

Define the ith interval by the boundary xi−1 ≤ x ≤ xi, for i = 1 : N . In ith interval, the

equation (21) and (22) turn to be,

φ′′i (x) = α2
i (φi(x)− φi−1) + f(φi−1), (25)

φi(xi−1) = φi−1, φi(xi) = φi, (26)

where the

α2
i =

f(φi)− f(φi−1)

φi − φi−1
. (27)

3.2.2 solution for each interval

Solution is a combination of homogeneous part and particular part. The homogeneous solution

satisfies the boundary condition (26). The particular solution satisfy the zero boundary condi-

tion. First, find a combination of the fundamental solutions, ui(x) and vi(x) that satisfy the

boundary condition,

ui(xi−1) = vi(xi) = 0, ui(xi) = vi(xi−1) = 1. (28)

The ui(x) and vi(x) are given by,

ui(x) =
sinhαi(x− xi−1)
sinhαi(xi − xi−1)

, vi(x) =
sinhαi(xi − x)

sinhαi(xi − xi−1)
. (29)

The solution is in the form,

φi(x) = φiui(x) + φi−1vi(x) + Pi(x). (30)

where the Pi(x) is the particular solution which satisfies the Pi(xi−1) = Pi(xi) = 0. Since the

Green’s function exists for the problem, the particular solution can be expressed into,

Pi(x) =
vi(x)

ci

∫ x

xi−1

ui(ξ)(f(φi−1)− α2
iφi−1)dξ +

ui(x)

ci

∫ xi

x

vi(ξ)(f(φi−1)− α2
iφi−1)dξ (31)
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where

ci =

∣∣∣∣∣∣ui vi

u′i v′i

∣∣∣∣∣∣ = uiv
′
i − u′ivi = − αi

sinhαi(xi+1 − xi)
. (32)

After simplification, the particular solution is,

Pi(x) = (φi−1 − βi)(1− ui(x)− vi(x)), (33)

where βi = f(φi−1)

α2
i

. Recalling the equation (30), the solution is,

φi(x) = φiui(x) + φi−1vi(x) + (φi−1 − βi)(1− ui(x)− vi(x)) (34)

3.2.3 matching condition

We match up all the piecewise solutions by setting the derivative of the solutions equal at the

interiors,

φ′i(xi) = φ′i+1(xi), i = 1 : N − 1. (35)

The derivative form of the solution is,

φ′i(x) = φiu
′
i(x) + φi−1v

′
i(x)− (φi−1 − βi)(u′i(x) + v′i(x)) (36)

where

u′i(x) =
αi coshαi(x− xi−1)
sinhαi(xi − xi−1)

, v′i(x) = −αi coshαi(xi − x)

sinhαi(xi − xi−1)
. (37)

The boundary for derivative of ui(x) and vi(x) is,

u′i(xi−1) =
αi

sinhαi(xi − xi−1)
, u′i(xi) =

αi
tanhαi(xi − xi−1)

(38)

v′i(xi−1) = − αi
tanhαi(xi − xi−1)

, v′i(xi) = − αi
sinhαi(xi − xi−1)

(39)

For the xi point, the equation (35), which is expressed by

φi−1v
′
i(xi) + φi(u

′
i(xi)− v′i+1(xi))− φi+1u

′
i+1(xi) =

(φi−1 − βi)(u′i(xi) + v′i(xi))− (φi − βi+1)(u
′
i+1(xi) + v′i+1(xi)). (40)

For the 2-interval solution, only having one middle point to update, which can be solved using

fixed-point iteration,

φ1 =
−β1(u′1(x1) + v′1(x1)) + β2(u

′
2(x1) + v′2(x1)) + φ0u

′
1(x1) + φ2u

′
2(x1)

u′1(x1) + u′2(x1)
. (41)
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Use the To form a row of a matrix, we cleaning the equation to a form,

aiφi−1 + biφi + ciφi+1 = Ri, i = 1, 2, ..., N − 1 (42)

where

ai = v′i(xi), bi = u′i(xi)− v′i+1(xi), ci = −u′i+1(xi), (43)

ri = (φi−1 − βi)(u′i(xi) + v′i(xi))− (φi − βi+1)(u
′
i+1(xi) + v′i+1(xi)), (44)

where A is a tridiagonal and symmetric matrix.

Combining all the matching condition, the equation (42), we can form them into a matrix,

A(x, φ)φ = R(x, φ), (45)

b1 c1 0 0 · · · 0

0 a2 b2 c2 · · · 0

0
. . . . . . . . . · · · 0

0 · · · 0 aN−2 bN−2 cN−2

0 · · · · · · 0 aN−1 bN−1


×



φ1

φ2

...

φN−2

φN−1


=



r1 − a1φ(0)

r2
...

rN−2

rN−1 − cN−1φ(L)


. (46)

If we choose a uniform mesh for φ, the error is bound by O(N−2) caused by solving the system

iteratively.

3.2.4 numerical implementation

To make sure the φ points are uniformly distributed in each iteration, we have an inner iteration

with index k and an outer iteration with index j. The inner iteration is to update φ values

with fixed x values to satisfy the matching condition,

A(xj, φk)φk+1 = R(xj, φk). (47)

Given a convergence criteria εφ, the inner iteration stop when

|φk+1 − φk| < εφ. (48)

Since the result of the inner iteration, the φ value will not be uniformly distributed. To reach

the optimal error, we project the evenly distributed φ value on to the latest numerical solution

that formed by the updated φ value obtained by the inner iteration to get new x points.

8
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Recalling the equation (34), we solve for the x value when we set the right hand side a uniform

mesh of φ,

φk+1(xj+1) = φe, (49)

where φe is a uniform mesh of φ with N intervals. The explicit item in the φe is given by,

φne = n
φ(0)− φ(L)

N
, n = 1 : N − 1. (50)

The outer iteration has a converge criteria εx. The whole iteration stop when,

|xj+1 − xj| < εx. (51)

Each time at the end of the outer iteration, we can multiple the number of intervals, N, by

2. The result turns out to be N = 1, 2, 4, ..., 2m. For each iteration, the initial guess come

form the previous solution. For example, the initial guess for the two intervals iteration comes

form the result of the one interval solution. The first initial guess can be obtained with the

result of one interval, where the right hand side function is approximated by one straight line.

We project new equispaced φ points onto x-axis to obtain the initial guess for new partitions.

Then, we go into the inner iteration to updated φ values and then the outer iteration to

update x values.

We can treat the outer iteration as a root finding problem and apply the numerical methods

like bisection method, Newton’s method to update new x points. The pseudocode is provided

as follow.

1 Provide the boundary information, x0, xN , φ0, φN . Let N be the current partition number of

intervals. Initially set to one.

2 Project the uniformly distributed φ point(s), denoted as φmid, onto the N -interval solution to

get the xmid, which is the initial partition for the inner iteration to get a matching 2N -interval

solution. Before projection, we need first judge which interval those φmid lie in and apply the

root-finding technique.

Note that, we skip the even point in projection, since it should stay the same as the result of

previous N -interval solution.

4 Do the inner iteration, using the matching condition to update φ values with fixed x values.

The matching condition applies the iterative method, the equation (47).

5 Update the x values by projecting the same euqispaced φmid onto the current 2N-interval

solution. The 2N-interval solution is generated by the current x values and updated phi values

from inner iteration.

9
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6 Go back to the inner iteration (step 4), and repeat doing the step 4 and 5 until the x values

converges. This is the outer iteration.

7 Update the N value to be 2N , N = 2N .

3.2.5 domain extension from [0,L] to [0, ∞]

The last interval is treated as a special case to make the domain of x extends to [0,∞]. The

boundary condition for the last interval becomes,

φN(xN−1) = φN−1, φN(∞) = 0. (52)

Recall the equation (25) and apply it for the last interval,

φ′′N(x) = α2
N(φN(x)− φN−1) + f(φN−1), (53)

Suppose the particular solution is a constant C, then make a substitution,

C = φN−1 − βN . (54)

The fundamental solutions are eαNx and e−αNx. Then, the solution is given by,

φN(x) = AeαNx +Be−αNx + φN−1 − βN . (55)

Solving coefficients A and B to satisfy the boundary conditions in equation (52),

φN(∞) = 0 =⇒ A = 0, φN−1 − βN = 0, (56a)

φN(xN−1) = φN−1 =⇒ B = φN−1e
αNxN−1 . (56b)

The solution, equation (55), and its derivative are as follows,

φN(x) = φN−1e
−αN (x−xN−1), φ′N(x) = −αNφN−1e−αN (x−xN−1). (57)

For the matching condition, inner iteration, the special case of the last interval turns to be,

φ′N−1(xN−1) = φ′N(xN−1). (58)

Apply the equation (36) and (132) to expand the equation as follows,

φN−1u
′
N−1(xN−1) +φN−2v

′
N−1(xN−1)− (φN−2−βN−1)(u′N−1(xN−1) + v′N−1(xN−1)) = −αNφN−1.

(59)

10
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Then last row of the matrix that applies the matching condition is,

−φN−2u′N−1(xN−1) + φN−1(u
′
N−1(xN−1) + αN) = −βN−1(u′N−1(xN−1) + v′N−1(xN−1)). (60)

Also, for the first φ midpoint, the explicit formula is given,

φ1 =
−β1(u′1(x1) + v′1(x1)) + φ0u

′
1(x1)

u′1(x1) + α2

. (61)

For the outer iteration, the process is quite direct,

φN−1e
−αN (x−xN−1) = φevenly ⇒ x = xN−1 +

1

αN
ln

φN−1
φevenly

. (62)

Alternatively, we make a revise on the bisection method to apply in the outer iteration. First

pick φN−1 as the right endpoint and check whether the sign of function values at two endpoints

are opposite. If opposite, then apply the normal bisection method, otherwise, double the right

endpoint iteratively.

Very similar process for the domain of (−∞, 0] to treat the first interval as a special case,

φ1(x) = φ1e
α1(x−x1), φ′1(x) = α1φ1e

α1(x−x1). (63)

The inner iteration turns to be,

(u′2(x1) + α1)φ1 − u′2(x1)φ2 = β2(u
′
2(x1) + v′2(x1)) (64)

The outer iteration, it is,

φ1e
αN (x−x1) = φevenly ⇒ x = x1 +

1

α1

ln
φevenly
φ1

. (65)

3.2.6 results

The Figure 3 shows how the numerical solutions gradually approach the exact solution up to

the eight-interval solution. The graph contains a original plot of solutions and a magnification

version of the plot near the middle point of φ.

The Table 1 contains the error analysis under the error tolerance equals 1e-12. The first two

columns are the number of intervals and the max error based on solution of such that number

of intervals. The max error is calculated by the max of absolute differences of numerical results

and exact solution on the mesh points. The third column indicates that the error is bound

by O(N−2). Note that each time increasing the number of interval, the 2N -solution, which is

closer to the exact solution, will be above the N -solution. Here is a simple proof.
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Figure 3: 1D numerical result: 8-Interval solution (left), its magnification around φ = 1 (right);

boundary condition: φ(0) = 2, φ(∞) = 0

N Max Error Max Error· N2

2 0.02688513 0.10754053

4 0.00688749 0.11019977

8 0.00180185 0.11531836

16 0.00045037 0.11529390

32 0.00011259 0.11529054

64 0.00002816 0.11534344

Table 1: Numerical results: errors analysis for 2k number of intervals, k = 1 : 6; boundary

condition : φ(0) = 2, φ(∞) = 0

With the same boundary condition, we define the difference of the two solution,

u = φ(x;N, φ0)− φ(x; 2N, φ0), u(0) = 0, u(∞) = 0 (66)

Then, the second derivative of u is given,

u′′ = φ′′(x;N, φ0)− φ′′(x; 2N, φ0) ≥ 0 (67)

With zero boundary condition and positive second derivative, the function u(x) can be draw

all below the x-axis, which means,

u ≤ 0⇒ φ(x;N, φ0) ≤ φ(x; 2N, φ0). (68)

12
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Under the same idea, we also can show that the nonlinear solution is always smaller than the

linear solution because the ∀φ > 0, sinhφ > φ.

3.3 1D solvent-protein system

3.3.1 linear version: analytic solution

In 1D, the equation (1) and (2) can be linearized as,

− εpφ′′(x) = qmδ(x− y) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (69a)

− εsφ′′(x) + κ2φ(x) = 0 x ≤ 0 or x ≥ 1, (69b)

with the boundary condition φ(±∞) = 0. The corresponding matching condition on the

interface (Γ) is,

φ(0−) = φ(0+), φ(1−) = φ(1+), (70a)

εsφ
′(0−) = εpφ

′(0+), εpφ
′(1−) = εsφ

′(1+). (70b)

For the middle interval, the φ2 is obtained by integration twice,

φ2(x) = − 1

εp
· [qH(x− y)(x− y) + Ax+B], (71)

where A and B are two constants that will be determined by the matching condition later.

For the two end intervals, let

α =
κ
√
εs
. (72)

Applying the boundary condition to each case, the φ1 and φ3 are in the form of

φ1(x) = Ceαx x ≤ 0, (73)

φ3(x) = De−αx x ≥ 1. (74)

Applying the matching conditions in equation (70a) and (70b), we get a linear system

B + εpC = 0 (75a)

A+ εsαC = 0 (75b)

A+B + εpDe
−α = −q(1− y) (75c)

A− εsαDe−α = −q (75d)

13
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The final solution is,

φ(x) =



Ceαx x ≤ 0

− 1
εp

(Ax+B) 0 ≤ x ≤ y

− 1
εp

(q(x− y) + Ax+B) y ≤ x ≤ 1

De−αx x ≥ 1,

(76)

where,

C =
q[εp + εsα(1− y)]

εsα(2εp + εsα)
, A = −εsαC, B = −εpC, D =

(A+ q)eα

εsα
. (77)
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s
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Figure 4: Analytic solution of linear protein-solvent system with different physical constants

The Figure 4 shows how the physical constant is related to solution. With a large κ value, the

potential in the solvent will decrease a little bit slower. With a small difference of εs and εp,

the solution is smoother. The sign of charge can makehe solution revseral. The 1D nonlinear

solvent and protein system is set the same except for replacing the solvent part by,

εsφ
′′(x) = sinhκ2φ(x) (78)
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3.3.2 nonlinear version: numerical solution

Apply the quasilinearization to the solvent part and add the matching condition at the molecular

surface into the whole matching condition.

When the number of interval, N = 1, the matching condition at the 0 and 1 is treated as a

special case. The one-interval solution equals to the linear solution of PBE. To enforce the

matching condition, we need first get the solution of the protein part and its derivative at two

endpoints. Solving by the homogeneous solution plus particular solution, the φ2(x) is given,

φ2(x) = φ+
0 x+ φ−N(1− x)− q

εp
(x− y)H(x− y) +

q

εp
(1− y)x, (79)

and its derivation,

φ′2(x) = φ+
0 − φ−N −

q

εp
H(x− y) +

q

εp
(1− y). (80)

The derivative att two endpoints,

εpφ
′
2(0) = εs(φ

+
0 − φ−N) + q(1− y), εpφ

′
2(1) = εs(φ

+
0 − φ−N)− qy. (81)

Recalling to equations (132), (63), and (81), we can derive,

εsα
−
1 φ
−
1 = εp(φ

+
0 − φ−1 ) + q(1− y) (82a)

−εsα+
1 φ

+
0 = εp(φ

+
0 − φ−1 )− qy (82b)

Write the two equations into a linear system, Aφ = b, where A is symmetric, εsα
−
1 + εp −εp
−εp εsα

+
1 + εp

 φ−1

φ+
0

 =

 q(1− y)

qy

 . (83)

As for N ≥ 2, recalling the equation (36) the matching condition at the 0 and 1 turns to be,

εs(φ
−
Nu

′−
N (0) + φ−N−1v

′−
N (0)− (φ−N−1 − β

−
N)(u

′−
N (0) + v

′−
N (0))) = εp(φ

+
0 − φ−N) + q(1− y) (84)

εs(φ
+
1 u
′+
1 (1) + φ+

0 v
′+
1 (1)− (φ+

0 − β+
0 )(u

′+
1 (1) + v

′+
1 (1))) = εp(φ

+
0 − φ−N)− qy (85)

Put the two equations into the whole matching conditions. Since not involving normal middle
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matching condition, also treat N = 2 as a special case as follows,
u
′−
2 (x−1 ) + α+

1 −u′−2 (x−1 ) 0 0

εsv
′−
N (0) εsu

′−
N (0) + εp −εp 0

0 −εp −εsv
′+
1 (1) + εp −εsu

′+
1 (1)

0 0 −u′+1 (x+1 ) u
′+
1 (x+1 ) + α−2




φ−1

φ−2

φ+
0

φ+
1



=


β−2 (u

′−
2 (x−1 ) + v

′−
2 (x−1 ))

εs(φ
′
N−1 − β−N)(u

′−
N (0) + v

′−
N (0)) + q(1− y)

−εs(φ+
0 − β+

0 )(u
′+
1 (1) + v

′+
1 (1)) + qy

−β+
1 (u

′+
1 (x+1 ) + v

′+
1 (x+1 ))

 . (86)

When N ≥ 4, the matching conditions are Ax = b, where

b1 c1 0 0 0 0 0 0 · · · 0

0 a2 b2 c2 0 · · · · · · · · · · · · 0

0
. . . . . . . . . . . . . . . . . . . . . . . . 0

0 · · · aN−1 bN−1 cN−1 0 · · · · · · · · · 0

0 · · · 0 aN bN cN 0 · · · · · · 0

0 · · · · · · 0 aN+1 bN+1 cN+1 0 · · · 0

0 · · · · · · · · · 0 aN+2 bN+2 cN+2 · · · 0

0 · · · . . . . . . . . . . . . . . . . . . . . . 0

0 · · · · · · · · · · · · · · · a2N−1 b2N−1 c2N−1 0

0 · · · · · · · · · · · · · · · · · · 0 a2N b2N





φ−1

φ−2
...

φ−N−1

φ−N

φ+
0

φ+
1

...

φ+
N−2

φ+
N−1



=



r1

r2
...

rN−1

rN

rN+1

rN+2

...

r2N−1

r2N



,

(87)

b1 = u
′−
2 (x−1 ) + α+

1 , c1 = −u′−2 (x−1 ),

a2 = v
′−
2 (x−2 ), b2 = u

′−
2 (x−2 )− v′−3 (x−2 ), c2 = −u′−3 (x−2 ),

aN−1 = v
′−
N−1(x

−
N−1), bN−1 = u

′−
N−1(x

−
N−1)− v

′−
N (x−N−1), cN−1 = −u′−N (x−N−1),

aN = εsv
′−
N (0), bN = εsu

′−
N (0) + εp, cN = −εp,

aN+1 = −εp, bN+1 = −εsv
′+
1 (1) + εp, cN+1 = −εsu

′+
1 (1),

aN+2 = v
′+
1 (x+1 ), bN+2 = u

′+
1 (x+1 )− v′+2 (x+1 ), cN+2 = −u′+2 (x+1 ),

a2N−1 = v
′+
N−2(x

+
N−2), b2N−1 = u

′+
N−2(x

+
N−2)− v

′+
N−1(x

+
N−2), c2N−1 = −u′+N−1(x

+
N−2),

a2N = −u′+1 (x+1 ), b2N = u
′+
1 (x+1 ) + α−2 ,

(88)
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r1 = β−2 (u
′−
2 (x−1 ) + v

′−
2 (x−1 )),

r2 = (φ−1 − β−2 )(u′−2 (x−2 ) + v′−2 (x−2 ))− (φ−2 − β−3 )(u′−3 (x−2 ) + v′−3 (x−2 )),

rN−1 = (φ−N−2 − β
−
N−1)(u

′−
N−1(x

−
N−1) + v′−N−1(x

−
N−1))− (φ−N−1 − β

−
N)(u′−N (x−N−1) + v′−N (x−N−1)),

rN = εs(φ
′
N−1 − β−N)(u

′−
N (0) + v

′−
N (0)) + q(1− y),

rN+1 = −εs(φ+
0 − β+

0 )(u
′+
1 (1) + v

′+
1 (1)) + qy,

rN+2 = (φ+
0 − β+

1 )(u′+1 (x+1 ) + v′+1 (x+1 ))− (φ−1 − β+
2 )(u′+2 (x+1 ) + v′+2 (x+1 )),

r2N−1 = (φ+
N−3 − β

+
N−2)(u

′+
N−2(x

+
N−2) + v′+N−2(x

+
N−2))− (φ+

N−2 − β
+
N−1)(u

′+
N−1(x

+
N−2) + v′+N−1(x

+
N−2)),

r2N = −β+
N−1(u

′+
N−1(x

+
N−1) + v

′+
N−1(x

+
N−1)).

(89)

In Figure 5, the numerical results are obtained with input test physical constants,

-100 -50 0 50 100

x

0

0.1

0.2

0.3

0.4

0.5

0.99998 1 1.00002

x

0.27950695

0.279507

0.27950705

Figure 5: Numerical results: 8-Interval solution (left), magnification around φ+
0 point (right)

εs = 80, εp = 2, q = 1, κ = 0.15, y = 0.5, (90)

and the error tolerance is set as 1e-12. The left graph in Figure 5 is the magnification around

the φ+
0 point, which only left with the exact solution with the plus symbol and the 8-interval

solution with a circle symbol. There are two curves on the right of the 8-interval solution are

4-interval solution and 2-intervals solution. The 4-interval solution is closer to the 8-interval

solution which means the algorithm converges monotonically.

The error analysis matches our expectation of O(N−2) in Table 2. Besides, the third column

in Table 2 also shows that the converged constant calculated by max error times N2 is a quite

small number under 1e-6 scale. Later, we will change different physical constants and see how

the max error changes.
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N Max Error Max Error· N2

1 0.0000089288 0.0000089288

2 0.0000021887 0.0000087550

4 0.0000005461 0.0000087380

8 0.0000001364 0.0000087349

16 0.0000000341 0.0000087342

32 0.0000000085 0.0000087339

64 0.0000000021 0.0000087334

Table 2: Numerical results: errors analysis for 2k number of intervals, k = 0 : 6

4 2D polar coordinate with radial symmetry

4.1 solvent part finite domain [a,b]

In 2D polar coordinate, the Laplacian becomes ∇2 = 1
r
∂
∂r

+ ∂2

∂r2
+ 1

r2
∂2

∂θ2
. With radius symmetry,

the nonlinear PBE in solvent part becomes,

φ′′ +
1

r
φ′ = sinhφ, (91)

with arbitrary boundary conditions φ(r0) = φ0, φ(rN) = φN , where r0 6= 0, rN 6= 0. Assume a

general right hand side function f(φ) = sinhφ and follow the steps in section 3.2.1, we solve

the linearized problem in each sub-interval,

φ′′i (r) +
1

r
φ′i(r) = α2

i (φi(r)− φi−1) + f(φi−1), (92)

with boundary condition,

φi(ri−1) = φi−1, φi(ri) = φi, (93)

where the

α2
i =

f(φi)− f(φi−1)

φi − φi−1
. (94)

To find the fundamental solution of the homogeneous equation φ′′i (r) + 1
r
φ′i(r) − α2

iφi(r) = 0

and apply the Theorem 5.5 in Folland’s book [4]. Choose p = q = 1, a = −α2
i < 0, b = 0, we

can obtain the general solution,

φ(r) = c1I0(αir) + c2K0(αir) (95)
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Then, find a combination of fundamental solutions ui(r), vi(r) satisfy the boundary condition,

ui(ri−1) = vi(ri) = 0, ui(ri) = vi(ri−1) = 1. (96)

Define

Qi =
1

I0(αiri−1)K0(αiri)− I0(αiri)K0(αiri−1)
(97)

The ui(r), vi(r) are given by,

ui(r) =
−I0(αir)K0(αiri−1) + I0(αiri−1)K0(αir)

Qi

, (98)

vi(r) =
I0(αir)K0(αiri)− I0(αiri)K0(αir)

Qi

. (99)

With the same principle in section 3.2.1, we can get the particular solution Pi(r) = (φi−1 −
βi)(1−ui(r)−vi(r)) satisfying zero boundary condition Pi(ri−1) = Pi(ri) = 0. Then the general

solution in each sub-interval is,

φi(r) = φiui(r) + φi−1vi(r) + (φi−1 − βi)(1− ui(r)− vi(r)) (100)

The derivative form of the solution is,

φ′i(r) = φiu
′
i(r) + φi−1v

′
i(r)− (φi−1 − βi)(u′i(r) + v′i(r)) (101)

where

u′i(r) = −αi
Qi

[I1(αir)K0(αiri−1) + I0(αiri−1)K1(αir)], (102)

v′i(r) =
αi
Qi

[I1(αir)K0(αiri) + I0(αiri)K1(αir)]. (103)

For the ri point, applying the matching condition (35) to the derivative of two adjacent piecewise

solutions,

φiu
′
i(ri) + φi−1v

′
i(ri)− (φi−1 − βi)(u′i(ri) + v′i(ri)) =

φi+1u
′
i+1(ri) + φiv

′
i+1(ri)− (φi − βi+1)(u

′
i+1(ri) + v′i+1(ri)). (104)

Then, follow the steps in section 3.2.1, we can solve the finite domain problem. For the outer

iteration, we update x values by implementing bisection method in projection.
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4.2 half-infinite domain [a,∞]

Follow the similar idea in section 3.2.5, but replace the fundamental solution with modified

bessel functions,

φN(r) = AI0(αNr) +BK0(αNr) + φN−1 − βN , (105)

where A and B are unknown coefficients determined by the boundary conditions. With the

boundary condition,

φN(xN−1) = φN−1, φN(∞) = 0. (106)

obtain the solution and its derivative for the last interval,

φN(r) =
φN−1

K0(αNrN−1)
K0(αNr), φ′N(r) = − αNφN−1

K0(αNrN−1)
K1(αNr). (107)

The inner iteration for the last interior point comes,

φN−1u
′
N−1(rN−1) + φN−2v

′
N−1(rN−1)− (φN−2 − βN−1)(u′N−1(rN−1) + v′N−1(rN−1)) =

− αNφN−1
K0(αNrN−1)

K1(αNrN−1). (108)

After simplification, the last row of the matrix is,

−φN−2u′N−1(rN−1)+φN−1[u
′
N−1(rN−1)+αN

K0(αNrN−1)

K1(αNrN−1)
] = −βN−1(u′N−1(rN−1)+v′N−1(rN−1)).

(109)

For the one-interval, we treat as a special fixed-point iteration,

φ1 =
−β1(u′1(r1) + v′1(r1)) + φ0u

′
1(r1)

u′1(r1) + α2
K0(α2r1)
K1(α2r1)

. (110)

while the outer iteration turns to be,

φN(r) =
φN−1

K0(αNrN−1)
K0(αNr) = φe (111)

It can be solved directly but the explicit formula does not work in general. Thus, we choose

the revised bisection method (continuously choose twice of the right point if the two end points

cannot satisfy the initial condition for bisection method).

4.3 results

The Figure 6 shows the numerical solutions converge monotonically up to the eight-interval

solution. The graph contains a original plot of solutions and a magnification version of the plot

near the middle point of φ.
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Figure 6: 2D numerical result: 8-Interval solution (left), its magnification around φ = 1 (right);

boundary condition: φ(0) = 2, φ(∞) = 0

N Max Error Max Error· N2

2 0.02296504 0.09186017

4 0.00582557 0.09320905

8 0.00147031 0.09409996

16 0.00036417 0.09322820

32 0.00008989 0.09204906

64 0.00002140 0.08764091

Table 3: Numerical results: errors analysis for 2k number of intervals, k = 1 : 6; boundary

condition : φ(1) = 2, φ(∞) = 0

The Table 4 contains the error analysis under the error tolerance equals 1e-10. Assume the

128-interval solution is a enough-accurate solution, we compute the max error by taking the

max of difference between current interval solution and 128-interval solution on x-mesh points.

The first two columns are the number of intervals and the max error based on solution of such

that number of intervals. The third and forth column indicates that the error is bound by

O(N−2) for the first several rows. Although the last row the error bound is invalid since the

64-interval solution is too closer to 128-interval solution, it is reasonable to see the quadratic

convergence in 2D case.
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4.4 include zero in the domain

Similarly as section 4.2, the general solution in the first interval is given,

φ1(r) = c1I0(α1r) + c2K0(α1r) + φ0 − β1, (112)

where β1 = sinhφ0
α2
1

we treat the first interval as a special case with the specified boundary

condition and solve for the two unknown coefficients in the solution,

φ′1(0) = 0, φ′1(L) = φ′L [6]. (113)

With c1 =
φ′L

α1I1(α1L)
, c2 = 0, we can represent the solution as a function of the two endpoints φ0

and φL. Then, we solve for φ0 and φL by enforcing the boundary condition itself φ1(0) = φ0,

φ1(L) = φL using fixed-point iteration before going into regular inner and outer iteration.

φi+1
0 =

φ′L
αi1I1(α

i
1L)

+ φi0 − βi1 (114)

φi+1
L =

φ′LI0(α
i
1L)

αi1I1(α
i
1L)

+ φi0 − βi1 (115)

where index i means the current step and i+ 1 represents the updated values.

5 3D spherical coordinate with shpecial symmetry

5.1 finite domain

In 3D spherical coordinate, the Laplacian becomes

∇2 =
1

ρ2
∂

∂ρ
(ρ2

∂

∂ρ
) +

1

ρ2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

ρ2 sin2 θ

∂2

∂ψ2
. (116)

Under spherical symmetry, the nonlinear PBE is given,

φ′′ +
2

ρ
φ′ = sinhφ [5], with boundary condition : φ(ρ0) = φ0, φ(ρN) = φN , (117)

where ρ0 6= 0 and ρN 6= 0. Following the same quasilinearization technique, we first solve the

linearized problem in each sub-interval,

φ′′i (ρ) +
2

ρ
φ′i(ρ) = α2

i (φi(ρ)− φi−1) + f(φi−1), (118)

with boundary condition,

φi(ρi−1) = φi−1, φi(ρi) = φi, (119)
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where the

α2
i =

f(φi)− f(φi−1)

φi − φi−1
. (120)

First, to find the fundamental solution of homogeneous equation

φ′′i (ρ) +
2

ρ
φ′i(ρ)− α2

iφi(ρ) = 0, (121)

we introduce a new function g(ρ) such that

φ =
g

ρ
, φ′ =

1

ρ
g′ − g

ρ2
, φ′′ =

2

ρ3
g +

1

ρ
g′′ − 2

ρ2
g′, (122)

and substitute into equation (121) to obtain,

g′′ − α2
i g = 0. (123)

Back solve to get the two fundamental solutions of equation (121) : e−αiρ

ρ
and eαiρ

ρ
. Then, find

a combination of fundamental solutions,

ui(ρ) =
ρi sinhαi(ρ− ρi−1)
ρ sinhαi(ρi − ρi−1)

, vi(ρ) =
ρi−1 sinhαi(ρi − ρ)

ρ sinhαi(ρi − ρi−1)
. (124)

satisfing the boundary condition,

ui(ρi−1) = vi(ρi) = 0, ui(ρi) = vi(ρi−1) = 1. (125)

Combine the particular solution satisfying zero boundary condition (same principle in sec-

tion 3.2.1), the general solution in linearized sub-interval is given,

φi(ρ) = φiui(ρ) + φi−1vi(ρ) + (φi−1 − βi)(1− ui(ρ)− vi(ρ)) (126)

The derivative form of the solution is,

φ′i(ρ) = φiu
′
i(ρ) + φi−1v

′
i(ρ)− (φi−1 − βi)(u′i(ρ) + v′i(ρ)), (127)

where

u′i(ρ) =
ρiαi coshαi(ρ− ρi−1)
ρ sinhαi(ρi − ρi−1)

− ρi sinhαi(ρ− ρi−1)
ρ2 sinhαi(ρi − ρi−1)

, (128)

v′i(ρ) = −ρi−1αi coshαi(ρi − ρ)

ρ sinhαi(ρi − ρi−1)
− ρi−1 sinhαi(ρi − ρ)

ρ2 sinhαi(ρi − ρi−1)
. (129)

Then, implement the inner and outer similarly.
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5.2 semi-infinite domain

Under similar idea, give the general solution of the special last interval and its corresponding

boundary conditions to solve unknown coefficients,

φN(x) = A
eαNρ

ρ
+B

e−αNρ

ρ
+ φN−1 − βN . (130)

φN(ρN−1) = φN−1, φN(∞) = 0. (131)

The special solution an its derivative for the last interval,

φN(ρ) = φN−1ρN−1
e−αN (ρ−ρN−1)

ρ
, φ′N(ρ) = φN−1ρN−1(−

αN
ρ
− 1

ρ2
)e−αN (ρ−ρN−1). (132)

For the matching condition, inner iteration, the special case of the last interval turns to be,

φ′N−1(xN−1) = φ′N(xN−1) (133)

⇒ φN−1u
′
N−1(xN−1) + φN−2v

′
N−1(xN−1)− (φN−2 − βN−1)(u′N−1(xN−1) + v′N−1(xN−1))

= (−αN −
1

ρN−1
)φN−1. (134)

Then last row of the matrix that applies the matching condition is,

−φN−2u′N−1(xN−1) + φN−1(u
′
N−1(xN−1) + αN +

1

ρN−1
) = −βN−1(u′N−1(xN−1) + v′N−1(xN−1)).

(135)

Also, for the first φ midpoint, the explicit formula is given,

φ1 =
−β1(u′1(x1) + v′1(x1)) + φ0u

′
1(x1)

u′1(x1) + α2 + 1
ρ1

. (136)

5.3 results

The Figure 7 shows the numerical solutions converge monotonically up to the eight-interval

solution. The graph contains a original plot of solutions and a magnification version of the plot

near the middle point of φ.

The Table 4 contains the error analysis under the error tolerance equals 1e-10. Assume the

128-interval solution is a enough-accurate solution, we compute the max error by taking the

max of difference between current interval solution and 128-interval solution on x-mesh points.

The first two columns are the number of intervals and the max error based on solution of such
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2 4 6 8 10

x

0

0.5

1

1.5

2

3D-1 interval sol

3D-2 interval sol

3D-4 interval sol

3D-8 interval sol

1.3 1.35 1.4 1.45 1.5

x

0.98

0.99

1

1.01

1.02 3D-1 interval sol

3D-2 interval sol

3D-4 interval sol

3D-8 interval sol

Figure 7: 3D Numerical result: 8-Interval solution (left), its magnification around φ = 1 (right);

boundary condition: φ(1) = 2, φ(∞) = 0

N Max Error Max Error· N2

2 0.01809091 0.07236365

4 0.00458612 0.07337786

8 0.00110604 0.07078673

16 0.00027151 0.06950628

32 0.00006680 0.06840531

64 0.00001587 0.06500015

Table 4: Numerical results: errors analysis for 2k number of intervals, k = 1 : 6; boundary

condition : φ(1) = 2, φ(∞) = 0

that number of intervals. The third and forth column indicates that the error is bound by

O(N−2) for the first several rows. Although the last several rows the error bound is invalid

since the 64-interval solution is too closer to 128-interval solution, it is reasonable to see the

quadratic convergence in 3D case.
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Figure 8: Comparison between 1D, 2D and 3D 64-interval numerically convergent solutions

with same boundary condition : φ(1) = 2, φ(∞) = 0

6 comparison of 1D, 2D, 3D cases

As we can see in the Figure 8, the solutions of 1D, 2D, and 3D nonlinear PBE under the same

boundary condition φ(1) = 2, φ(∞) = 0 have an order relation such that,

φ3D ≤ φ2D ≤ φ1D. (137)

It will be interesting to prove for the process.

7 Conclusion

In the report, we focus on solving the 1D, 2D, and 3D nonlinear PBE. Quasilinearization, a

numerical technique, is applied to the solve the nonlinear PBE which approximates the nonlinear

term by piecewise interpolated lines. The numerical result showing that the scheme converges

at the rate of O(N−2), where N is the number of the intervals in the approximation. We also

compared the solution of 1D, 2D, and 3D nonlinear PBE but leave the analysis for the next.

Currently, we are applying the quasilinearization technique to the 2D solvent/protein/solvent

model and do the corresponding analysis. We are also exploring to compare our numerical

method and Runge-Kutta shooting method on the test of charged surface modified PBE schema.

In the future, we will see how to extend the numerical method to get non-monotonical solution,
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especially figure out a robust way to figure out intervals and do the projection in outer iteration.
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