

5 Reconstruction From Distances

5.1 One-Sided Error Algorithm

We want to see how likely it is to Construct Point Configurations, given the distance distributions.

Using [3] Theorem 1.3 and considering n-point configurations, we can select
(
n
3

)
different sets for

{i0, i1, i2},
(
n−3
2

)
for {j1, j2},

(
n−5
2

)
for {k1, k2},

(
n−7
2

)
for {l1, l2} and

(
n−9
2

)
for {m1,m2}. The total

number of possible such collections is:(
n− 3

2

)
·

4∏
ι=1

(
n− 3− 2ι

2

)
=
n(n− 1)(n− 2)

3!
·

4∏
ι=1

(n− 2ι− 1)(n− 2ι− 2)

2!

=
n!

(n− 11)!
· 1

96

Define N := n!
(n−11)! ·

1
96 .

Figure 3: N tends to behave like en, as n approaches 33

As shown above, the number of 11-tuples one has to check is very large and not practical even
though it’s relatively easy to implement. An alternative way to check if our configuration is in fact
reconstructible from distances is to run a one sided-error algorithm.

14

We make use of the polynomial defined in [3] which takes as inputs 6 distances:

g(U, V,W,X, Y, Z) :=
[
2U2Z+2UZ2+2V 2Y+2V Y 2+2X2W+2XW 2+2UV X+2UYW+2VWZ+2XY Z

]
+

+
[
−2UV Y−2UV Z−2UXW−2UXZ−2UY Z−2UWZ−2V XY−2V XW−2V YW−2V Y Z−2XYW−2XWZ

]
and the following facts:

• g(U, V,W,X, Y, Z) = 0 if and only if the inputs are the sides and diagonals of a well-defined
quadrilateral

• if g(d{i0,i1}, d{i0,i2}, d{j1,j2}, d{k1,k2}, d{l1,l2}, d{m1,m2}) 6= 0 for all such 11-tuples in P , then P
is reconstructible from distances

For the one-sided error algorithm we assume that P is reconstructible from distances, and select
at random an 11-tuple from P . If for the given 11-tuple we get that g(d{i0,i1}, ..., d{m1,m2}) = 0, we
conclude that P is in fact not reconstructible from distances. The issue here is that we may
falsely conclude that P is reconstructible from distances, with an error of |K1|

N , where:

K =
{
{i0, i1, ...,m2}|{i0, i1, ...,m2} ⊆ P

}
|K| = N

K1 =
{
{i0, i1, ...,m2}|g(d{i0,i1}, d{i0,i2}, d{j1,j2}, d{k1,k2}, d{l1,l2}, d{m1,m2}) 6= 0

}
K2 =

{
{i0, i1, ...,m2}|g(d{i0,i1}, d{i0,i2}, d{j1,j2}, d{k1,k2}, d{l1,l2}, d{m1,m2}) = 0

}

This obvious depends purely on P and the cardinality of K2, and there’s nothing that can be said
about it a priori. So depending on how many such bad 11-tuples exist in P , we will either have a
large or a small error. In order to reduce this we can randomly select x such tuples and check all
of if them, and if at least one satisfies g(d{i0,i1}, ..., d{m1,m2}) = 0, we safely conclude that P is not
reconstructible from distances. In the case where all the tuples we selected lie in K1 we will have

a false conclusion, where the error will be
(
|K1|
N

)x
� |K1|

N .

5.2 Generalizing The Results Of [3] For ε-distortions

Theorem 5.1. For a generic P,Q ⊂ R2, where the following conditions hold:

• if dist(P) = dist(Q), where dist(R) = {dist(ri, rj)|ri, rj ∈ R ⊂ R2}

• all
(
n
2

)
distances dist(pi, pj) are distinct and g(U, V,W,X, Y, Z) = 0

• if {e1, ..., e6} ∈ E for E := {(pi, pj)|i, j ∈ {i, ..., n}}, are not the diagonals of a quadrilateral
then g(e1, ..., e6) 6= 0

then P ∼= Q.

15

Definition 5.1. By dist(P) ≈ dist(Q), we mean that for each element in dist(P) there exists only

one element in dist(Q), such that (1− ε) ≤ dpij
dqi′j′

≤ (1 + ε) and vice versa.

For our case, we generalize the theorem as follows:

Theorem 5.2. For a generic P,Q ⊂ R2, if ∃ T ∈ A(D) such that |T (P) − Q| < ε, given ε > 0,
then the following inequalities hold:

• if dist(P) ≈ dist(Q), where dist(R) = {dist(ri, rj)|ri, rj ∈ R ⊂ R2}.

• all
(
n
2

)
distances dist(pi, pj) are distinct and[
g(U ′, ..., Z ′) · (1 + 3ε2)−H

]
≤ g(U, ..., Z) ≤

[
g(U ′, ..., Z ′) · (1 + 3ε2) +H

]
where H depends on ε, the polynomial g(·), and the distances {U ′, ..., Z ′}.

• if {e1, ..., e6} ∈ E for E := {(pi, pj)|i, j ∈ {i, ..., n}} are not the diagonals of a quadrilateral,
then

g(e1, ..., e6) /∈
[[(

g′1 · (1− ε)3 + g′2 · (1 + ε)3
]
,
[(
g′1 · (1 + ε)3 + g′2 · (1− ε)3

]]
.

Proof. We show the derivation of the analogous conditions for the ε-distortions

• The first bullet-point is essentially what we want for the ε-distortions.

• We have:

g(U, V,W,X, Y, Z) :=
[
2U2Z + 2UZ2 + 2V 2Y + 2V Y 2 + 2X2W + 2XW 2+

+ 2UV X + 2UYW + 2VWZ + 2XY Z
]
+

+
[
− 2UV Y − 2UV Z − 2UXW − 2UXZ − 2UY Z − 2UWZ−

− 2V XY − 2V XW − 2V YW − 2V Y Z − 2XYW − 2XWZ
]

=
[
g2

]
+
[
g1

]
and we know that select our 6-distance collections, in order to satisfy

∀α ∈ {U, V,W,X, Y, Z} ⊆ dist(P), ∃α′ ∈ {U ′, V ′,W ′, X ′, Y ′, Z ′} ⊆ dist(Q),

s.t. (1− ε) · α′ ≤ α ≤ (1 + ε) · α′

W.L.O.G., we label and reorder our 6− distance collections in the following way:

{U, V,X,X, Y, Z} 7→ {α1, α2, α3, α4, α5, α6} ⊆ dist(P)

{U ′, V ′, X ′, X ′, Y ′, Z ′} 7→ {α′1, α′2, α′3, α′4, α′5, α′6} ⊆ dist(Q)

We then get the following inequalities:

∀I ⊂ {α1, ..., α6} s.t.
(

2
∏
i∈I

ai

)
is a term of g(·), and the corresponding I’ to I

16

(
2
∏
i′∈I′

a′i′
)
· (1− ε)3 ≤

(
2
∏
i∈I

ai

)
≤
(

2
∏
i′∈I′

a′i′
)
· (1 + ε)3

−
(

2
∏
i′∈I′

a′i′
)
· (1 + ε)3 ≤ −

(
2
∏
i∈I

ai

)
≤ −

(
2
∏
i′∈I′

a′i′
)
· (1− ε)3

and it follows for g(α1, ..., α6) =
[
g2

]
+
[
g1

]
and g(α′1, ..., α

′
6) =

[
g′2

]
+
[
g′1

]
and Iι are the

collection of the 3-tuples of the terms of g(·) for ι ∈ {1, ..., 22} in the order presented above,
that:

10∑
ι=1

(
2
∏
i′∈I′ι

a′i′
)
· (1− ε)3 ≤

10∑
ι=1

(
2
∏
i∈Iι

ai

)
≤

10∑
ι=1

(
2
∏
i′∈I′

a′i′
)
· (1 + ε)3

=⇒ g′1 · (1− ε)3 ≤ g1 ≤ g′1 · (1 + ε)3

22∑
ι=11

(
− 2

∏
i′∈I′ι

a′i′
)
· (1 + ε)3 ≤

22∑
ι=11

(
− 2

∏
i∈Iι

ai

)
≤

22∑
ι=11

(
− 2

∏
i′∈I′

a′i′
)
· (1− ε)3

=⇒ g′2 · (1 + ε)3 ≤ g2 ≤ g′2 · (1− ε)3

=⇒
[
g′1 · (1− ε)3 + g′2 · (1 + ε)3

]
≤ g(U, ..., Z) ≤

[
g′1 · (1 + ε)3 + g′2 · (1− ε)3

]
[
g(U ′, ..., Z ′) · (1 + 3ε2) + (g′2 − g′1) · (3ε+ ε3)

]
≤ g(U, ..., Z) ≤

≤
[
g(U ′, ..., Z ′) · (1 + 3ε2) + (g′1 − g′2) · (3ε+ ε3)

]
g(U ′, ..., Z ′) · (1 + 3ε2)−H ≤ g(U, ..., Z) ≤ g(U ′, ..., Z ′) · (1 + 3ε2) +H

where H = (g′1 − g′2) · (3ε+ ε3)

• Follow the same steps shown in the proof of the second inequality, with the only difference
that the inequality signs are switched, since we want not almost equality. So if in the proof
above we had β1 ≤ α ≤ β2, we would now use : α < β1 or α > β2 ⇔ α /∈ [β1, β2].

17

5.3 Construction Of Points Given Distance Distribution

Question : Given dist(P) and the total volume V of the convex set of points P ⊂ R3, with P
unique, how do we reconstruct P ⊂ R3 upto a rigid motion?

In order to solve this problem, we can take the following steps, which directly relate to the
10-step algorithm:

1. List the distances in increasing order, and call this ordered list D, with E := |D| =
(
n
2

)
. All(

n
2

)
edges correspond to a side of

(
n
3

)
triangles of the P configuration.

2. Find all possible triangles for di ∈ D in increasing order, with di being the smallest edge of
the triangle. So essentially:

i← 1;
h← 1;
while i ≤ (E − 3) do

take all
(
n−i
2

)
ordered 3-tuples

{di, dj>i, dE≥k>j};
if (dk − dj) ≥ di then

T (i)
h ← {di, dj , dk};
T (i) = {T (i), T (i)

h };
h← h+ 1;

else
disregard 3-tuple {di, dj , dk};

end
i← i+ 1;

end

T (i) ←
⋃E−3
i=1 T (i);

T ← |T (i)|;

So T would look like T =
{
{d1, d2, d3}, {d1, d4, d5}, {d2, d4, d5}, ...

}
for instance, which is still

ordered in ascending order of the first element of the 3-tuple, then the second element and
then the third element.

3. Again in ascending order of di ∈ D take all triangle 3-tuples Tι ∈ T for ι ∈ {1, ..., T}, and then
construct all possible 6-tuples of edges which form a tetrahedron with di being the minimum
length of its edges, by essentially combining the triangles. This can be done as follows:

18

take T (i) for all i ∈ {1, ..., E − 3} from above;

i← 1; % index of set T (i), consisting of all triangles with di as its smallest
side
j ← 2; % index of T (j), for E > j > i
while i ≤ (E − 3) do

h← 1; % index for all elements of T (i)

δ ← 1; % index of 6-tuple tetrahedron considering T (i)

d′1 ← 1st element of T (i)
h ; h1 ← d′1’s original index;

d′2 ← 2nd element of T (i)
h ; h2 ← d′2’s original index;

d′3 ← 3rd element of T (i)
h ; h3 ← d′3’s original index;

h← h+ 1;

while h ≤ |T (i)| do

d̃′1 ← 1st element of T (j)
h ; h4 ← d̃′1’s original index;

d̃′2 ← 2nd element of T (j)
h ; h5 ← d̃′2’s original index;

d̃′3 ← 3rd element of T (j)
h ; h6 ← d̃′3’s original index;

if {dh2 , dh3} ∩ {dh4 , dh5} = ∅ then
find the triangles which have one of the following combinations of sides
(both can’t occur simultaneously, and we only need to search in

⋃
η∈Ĥ T

η

for H := {h2, h3, h4h5}, Ĥ := H\max{H}), and their corresponding 3rd

side is assigned below to xι∈{1,2}:
(i){dh2 , dh4 , x1} & {dh3 , dh5 , x2}
(ii){dh2 , dh5 , x1} & {dh3 , dh4 , x2}

if x1 = x2 then
h6 ← x1;

∆
(i)
δ ← {dh1 , dh2 , dh3 , dh4 , dh5 , dh6};

∆(i) ← {∆(i),∆
(i)
δ };

V(i)δ ← |
1

288

√√√√√√√√√det

0 1 1 1 1
1 0 (dh2)2 (dh3)2 (dh6)2

1 (dh2)2 0 (dh1)2 (dh4)2

1 (dh3)2 (dh1)2 0 (dh5)2

1 (dh6)2 (dh4)2 (dh5)2 0

|;
V(i) ← {V(i),V(i)δ };
δ ← δ + 1;

else
disregard current 6-tuple;

end

end
h← h+ 1;

end
i← i+ 1;

end

V ←
⋃E−3
ι=1 V(ι); % Set with all tetrahedron 6-tuples

∆←
⋃E−3
ι=1 ∆(ι); % Set with the corresponding volumes of the tetrahedrons

19

4. Now we want to find the collection of tetrahedrons which have a sum of volume equal to V .
In order to do this, we re-arrange out sets V and ∆ to V̂ and ∆̂, in ascending order with
respect to the mode of the faces of the tetrahedrons. We do this because it will be a lot faster
to identify whether a tetrahedron is not part of the overall n-point configurations, and we
will disregard it. We then go through the following steps:

(a) Take in order the tetrahedron δi ∈ ∆̂ and it’s corresponding volume νi ∈ V̂, and then

it’s 3-tuple ”triangle face” with the smallest mode, t
(i)
1 .

(b) Find the next tetrahedron in the ordered set ∆̂ which has t
(i)
1 as a face, and combine the

two potential tetrahedrons, to get a hexahedron and its volume.

(c) Considering the 6 3-tuple faces of the hexahedron we repeat step (b) and this is done
until we exceed the total volume an n-tuple or we have an n-tuple with a total volume
less than V.

(d) In this case, we take out the last tetrahedron which was added and add the next possible
candidate and check the conditions from step (c) and repeat until all possible candidate
tetrahedrons have been checked. If we are not successful, we then go ”2 steps back” and
take the next possible candidate for the our 2nd most recent selection of a tetrahedron.

(e) We then repeat steps (b)-(d) considering the appropriate shape we have after each iter-
ation.

(f) If we are not successful and have back-traced back to δi, we consider the next appropriate
tetrahedron from ∆̂ and repeat steps (b)-(e).

(g) Given the conditions on our set dist(P), this algorithm will terminate once it success-
fully finds the tuple set of the exterior faces of the overall convex shape formed by the
configuration P , and the set of tetrahedrons ∆final which form it.

5. At this point, we know the triangles on the exterior of the overall convex shape we are looking
for, as well as the which distances from our initial set dist(P) correspond to which point. From
here it is therefore only a matter of selecting an arbitrary tetrahedron from ∆final and placing
it in R3, and based on this initialization we construct 3 points P , consider the tetrahedrons in
∆final adjacent to the one we initially constructed and then construct 4 more points, repeat
this process until we have exhausted all elements of ∆final. This will therefore give us an
orthogonal transformation of P .

The construction of P is unique upto a rigid motion, by the setup of the problem.

Open Question : Given dist(P) for P ⊂ RD, how do we reconstruct P upto a rigid motion?

20

6 Examples And Constructions When P ∼ Q

6.1 Adjacency Matrix

Considering our previous problems from a graph point of view, will make computations a lot
easier. Given the point configurations P and Q, one can easily compute the Adjacency Matrices for
Undirected Graphs GP and GQ respectively. Some of the main properties of these graphs is that
they are symmetric n× n matrices, with zeros throughout their diagonals.

6.2 Congruent Configurations

In the case of congruent configurations, it need hold true:

• GP ∼ GQ ⇒ ∃ a permutation Pπ, s.t. GQ = Pπ
−1GPPπ

• GP ∼ GQ ⇒ λi(GP) = λi(GQ) , for all eigenvalues

Corollary 6.1. If A ∈ Rn×n has an n distinct eigen-values λ1(A) > λ2(A) > ... > λn(A), and
B ∈ Rn×n such that λi(A) = λi(B) ∀i ∈ {1, ..., n}, then A ∼ B.

Considering the eigen-decompositions A = QAΛQA
−1, B = QBΛQB

−1 and the permutation Pπ,
we get

A = PπBPπ
−1

QAΛQA
−1 = Pπ(QBΛQB

−1)Pπ
−1

= (PπQB)Λ(PπQB)−1

⇒ QA = PπQB

so the permutation Pπ is at the same time the change of basis of the eigen-space of A to that of B.

6.3 Find Permutation When GP ∼ GQ

Here we’ll consider the case where no bad points exist in our configurations P and Q, and that
the distance distributions consist of distinct elements. In addition, there exists a transformation
T ∈ O(D) and a translation ~t ∈ RD such that Q = T (P + ~t), for some reordering of the points in
Q, as the points are not initially labeled. The goal is to align the points in P with those in Q, and
the first thing we need to do is to find the permutation matrix between the points in P and Q.
Considering the adjacency matrices GP and GQ, we simply run the following algorithm:

21

G̃P ← sort(GP); % sort columns of the input
G̃Q ← sort(GQ); % sort columns of the input
Pπ = zeros(n, n);
for i = 1 : n do

~vP ← ith column of G̃P ;
for j = 1 : n do

~vQ ← jth column of G̃P ;
if ~vP = ~vQ then

Pπ(i, j) = 1;
end

end

end

Each row in the matrices P and Q are the coordinates of the points in the corresponding config-
urations with the initial orderings (if none is given, they could be assigned randomly). We have
therefore taken care of the unlabelled problem, and the matrices P and Q̂ := PπQ now only differ
by a rigid motion.

6.4 Kabsch’s Algorithm - Find Rotation And Translation [4],[5]

There’s a well known algorithm for finding the optimal rotation which minimizes the root mean
squared deviation between two paired sets of points. In our case there exists an exact rotation, so
by simply running this algorithm we get the exact rotation. This algorithm is broken up into the
following three steps:

• Shift by Center of Mass

CMP
(j) =

1

n

n∑
i=1

Pi
(j) CMQ

(j) =
1

n

n∑
i=1

Q̂
(j)
i j ∈ {1, ..., d}

P̃ = (P −~1CMP) Q̃ = (Q−~1CMQ) for ~1 ∈ Rn and P̃ , Q̃ ∈ Rn×d

• Find the Optimal Rotation
Here we use the singular value decomposition of the covariance matrix H = P̃ T Q̃.

H = UΣV T k = sign(det(V UT)) · 1 D =

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 k

R = V DUT

The D matrix is used to take care of any reflections which might have taken place.

• Find the Translation ~t

~t = (−R× CMP
T + CMQ

T)T ~t ∈ Rd

22

6.5 Example Results And Visualization

Below is an example where construct a random 60-point configuration P . Using P we then construct
Q, such that P ∼ Q. We then use the method described in section 6.3 to label the points, and that
in section 6.4 to confirm that the configurations align. Indeed, we got that (P − P−1π QPπ) = 0.

Figure 4: Visualization of Adjacency Matrices for n=60 before relabelling takes place

Figure 5: Visualization of constructed Pπ used for relabelling, using the algorithm in section 6.3

6.6 Alternative Way For Constructing Rotation After Relabelling And Shifting

After shifting our two configurations as shown in section 6.4, we constructed the matrices P̃ and Q̃
with entries the coordinates of all points of P and Q with center of mass being the origin. Assuming
that n ≥ D, we can randomly select D rows of P̃ and the corresponding rows in Q̃ (we have already

23

Figure 6: Plot with P and Q before and after alignment

relabelled them), and construct a change of basis. In order to do this we need to first confirm that
the vectors are linearly independent which is pretty simple using software, as you simply need to
make sure that the D × D matrices consisting of these vectors in their columns have a nonzero
determinant, or are full-rank. So if we have selected D linearly independent vector from P̃ , which
we denote as BP = {~p1, ..., ~pD}, and their corresponding vectors in Q̃, BQ = {~q1, ..., ~qD}, these
form a basis for Rd, and the rotation we are looking for is the change of basis between BP and
BQ. So we essentially do the following to construct the rotation R:

PD =
(
~p1 . . . ~pD

)
∈ RD×D QD =

(
~q1 . . . ~qD

)
∈ RD×D

RPD = QD =⇒ R = QDPD−1

6.7 SVD Approach After Relabelling

An alternative way of computing the permutation R is using the SV D and the fact that the
singular values of a matrix are unique. We are considering the case where n ≥ D and U ∈
RD×D,Σ ∈ RD×n, V ∈ Rn×n, so we can truncate the right singular vectors matrix V , as the first
D right-singular vectors for P =

(
~p1 . . . ~pn

)
∈ RD×n and Q =

(
~q1 . . . ~qn

)
∈ RD×n match up.

24

Notationally we use AD = A(1 : D, 1 : D) to denote the truncation of matrix A, by taking the
submatrix consisting of the columns and rows 1 through D of A.

For P = UPΣPVP
T and Q = UQΣQVQ

T , we know that ΣP = ΣQ and that ∃R ∈ O(D) s.t. RP = Q.
It then follows that for:

VPD := VP (1 : D, 1 : D) VQD := VQ(1 : D, 1 : D) ΣD := ΣP (1 : D, 1 : D) = ΣQ(1 : D, 1 : D)

RP = Q ⇒ R(UPΣPVP
T) = UQΣQVQ

T ⇒ (RUP)ΣDVPD
T = UQΣDVQD

T

If the singular values of P and Q are all distinct, then the SV D of the two matrices are unique.
If they are not distinct, then ∃UP , UQ and M a permutation matrix s.t. MUPD = UQD , which
implies that VPD = VQD . So for simplicity let’s consider this singular value decomposition, where
M = ID×D. It then follows that for all point configurations which are congruent upto a rigid
motion, there exist a singular value decomposition and R ∈ O(D), s.t.:

RUP = UQ VRD = VQD =⇒ R = UQUP
T

6.8 On Matching Point Configurations

Lemma 6.1. [6] Let P,Q ∈ RD×n as defined above. Then PTP = QTQ if and only if ∃A ∈ O(D)
such that AP = Q.

The above Lemma implies that a necessary and sufficient condition for two configurations to be
equivalent, is that their Gramian-matrices are equal, after translating them such that their center
of mass is at the origin.

6.9 Kabsch’s Algorithm On ε-diffeomorphisms

Kabsch’s algorithm also finds the rotation in order to align point configuration P with a point
configuration Q, where ∀i ∈ {1, ..., n} ∃i′ ∈ {1, ..., n} such that ||pi − qi′ || < ε

2 , for pi ∈ P , and
qi′ ∈ Q, with a given error. Note that for ε < 1 and the property required for ε-diffeomorphisms

(1 − ε) ≤ ||pi−pj ||
||qi′−qj′ ||

≤ (1 + ε), we get that
∣∣|pi − pj | − |qi′ − qj′ |∣∣ ≤ ε. Below we justify that the

condition on the points ||pi−qi′ || < ε
2 , satisfy the stated equivalent condition for ε-diffeomorphisms:∣∣|pi − qi′ | − |pj − qj′ |∣∣ =

∣∣εi − εj∣∣ ≤ ε

2
as εi, εj ∈

(
− ε

2
,
ε

2

)

|pi − qi′ | < εi |pj − qj′ | < εj ⇒
∣∣|pi − pj | − |qi′ − qj′ |∣∣ < ∣∣εi + εj

∣∣∣∣|pi − pj | − |qi′ − qj′ |∣∣ ≤ ∣∣|pi − pj |+ |qi′ − qj′ |∣∣
=⇒

∣∣|pi − pj | − |qi′ − qj′ |∣∣ ≤ ∣∣|pi − pj |+ |qi′ − qj′ |∣∣ ≤ ∣∣εi + εj
∣∣ ≤ ε

=⇒
∣∣|pi − pj | − |qi′ − qj′ |∣∣ ≤ ε

25

Since we have exact bounds on the difference |pi−qi′ |, we can easily implement simulation to confirm
that Kabsch’s algorithm works on random n-point configurations P with points in Q which satisfy
the above condition. The alignment will obviously not be exact.

Figure 7: Depiction of inequality
∣∣|pi − pj | − |qi′ − qj′ |∣∣ < ∣∣εi + εj

∣∣

Figure 8: Plot with P and Q before and after alignment, for ε-diffeomorphisms

6.10 Difference In Rotations On ε-diffeomorphisms Using Kabsch’s Algorithm

A simulation over multiple random P and corresponding Q configurations and their alignment
was implemented, which resulted in the error-plots provided on the next page. These were over
ε ∈ {0.01, 0.02, 0.04, .06, 0.08, 0.1} and n ∈ {10, 12, 12, ..., 150}. The error was calculated in means
of sum of squared differences for each coordinate over 30 averaged simulations, and then averaged

26

the coordinates. What the plots reveal is simply that for greater ε we have a greater averaged error
for the same number of points, while there is no obvious trend. This is also justified by figure 10,
where a Least-Squared Fit was used, and it’s obvious that as n increases, the error also tends to
increase.

An alternative, more detailed approach to such configurations, is described in [6].

Figure 9: Error plot over 30 random samples, with values of ε in the legend

Figure 10: Linear Fit on error, using Least-Squares Fit

27

Acknowledgements: Finally, I would like to thank Dr.Damelin and Pr.Speyer for their help,
encouragement and insights, as well as Cyrus Anderson, Michael Lu and Sean Kelly for their
discussions on various aspects of the problems. I would also like to thank the Math Department
for providing me with the opportunity to work on this project.

References

[1] S.B.Damelin, C.Fefferman, Extensions, interpolation and matching in RD

[2] M.Boutin, G.Kemper, On Reconstructing n-Point Configurations from the Distributions of Dis-
tances or Areas

[3] M.Boutin, G.Kemper, Which Point Configurations are Determined bythe Distribution of their
Pairwise Distances?

[4] Nghia Ho. (n.d.). Retrieved June 15, 2016, from http://nghiaho.com/?page id=671

[5] Kabsch algorithm. (n.d.). Retrieved June 15, 2016, from https://en.wikipedia.org/wiki/Kabsch algorithm

[6] D.Jimenez, G.Petrova, On Matching Point Configurations

28

