Galois Representations Valued in Reductive Groups and Their Centralizers

Nikolay Grantcharov and Wyatt Reeves

Abstract. For $\hat{G}$ a classical reductive group over $\mathbf{C}$, we describe representations of $\text{Gal}(\overline{\mathbb{Q}}_p, \mathbb{Q}_p)$ modulo its wild inertia such that the image of this quotient in $\hat{G}$ has finite centralizer. For each such centralizer, we also describe its representations.

1. Introduction

1.1. History. This project is motivated by a refined version of the local Langlands conjecture. Roughly speaking, the local Langlands conjecture provides a correspondence between representations of a $p$-adic group and certain maps from the Weil group into the dual group. These maps are called “Langlands parameters” and are conjectured to partition the $p$-adic group representations into finite sets called “L-packets”. We explain this conjecture in its basic form below and show how it relates to our problem. For a more complete exposition of the Langlands program and the further technical properties stated in the conjecture, we refer the reader for example to [Gel84], [Bor79], and [DR09].

To state the basic form of the conjecture, we need to set up some terminology. Let $W_{\mathbb{Q}_p}$ denote the Weil group for primes $p < \infty$. It is a dense subgroup of $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ generated by inertia subgroup $I$ and Frobenius element $\text{Frob} \in \text{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$. Let $W_{\mathbb{Q}/\mathbb{R}}$ denote the Weil group for $p = \infty$. It is defined as the unique nonsplit extension of short exact sequence

$$1 \to C^\times \to W_{\mathbb{Q}/\mathbb{R}} \to \text{Gal}(\mathbb{C}/\mathbb{R}) \to 1.$$ 

Now, define the Weil-Deligne group

$$L_p := \begin{cases} 
W_{\mathbb{C}/\mathbb{R}} & \text{if } p = \infty \\
W_{\mathbb{Q}_p} \times SL_2(\mathbb{C}) & \text{if } p < \infty.
\end{cases}$$

Then the simplified conjecture states that there is a finite-to-1 surjection

$$\left\{ L_p \xrightarrow{\phi} \hat{G} \right\} \leftarrow \text{Irr}(G(\mathbb{Q}_p))$$

where on the left we require $\phi$ to be a “tempered, admissible Langlands parameter” [Bor79]. The finite fibers of this map are called $L$-packets. The centralizer $S_\phi = \text{Cent}(\text{Im}(\phi), \hat{G})$ and its representations roughly parameterize these $L$-packets, thus giving rise to a “refined” local Langlands correspondence [Kal15]. Furthermore, we are interested in the trace and dimension of these representations due to the conjectural Langlands-Shelstad transfer factors [LS87]. Numerous efforts have been made in studying and constructing these $L$-packets, see for example [Kal16], [DR09], and [Yu01]. In particular, Kaletha reduced a refined version of the local conjecture to the case of “depth-zero Langlands parameters”, i.e when $\Phi$ is trivial on $SL_2(\mathbb{C})$ and wild inertia. Our project is to carefully study the depth-zero supercuspidal Langlands parameters.

Date: September 12, 2018.
1.2. Set-up of the problem. In what follows, let $\hat{G}$ denote a connected, reductive group with coefficients in $\mathbb{C}$. Let $\hat{G}_{\text{der}}$ denote its derived subgroup, and let $\hat{G}_{\text{sc}}, \hat{G}_{\text{ad}}$ denote the simply connected cover and adjoint quotient of $\hat{G}_{\text{der}}$, respectively. It is a fact that $\hat{G}_{\text{ad}}$ is in 1-1 correspondence with irreducible root systems, there are the classical types $A_n, B_n, C_n, D_n$, and the exceptional types $E_6, E_7, E_8, F_4, G_2$. In this paper, we focus on the classical types.

Let $F_p$ be the finite field of $p$ elements and let $\Gamma_p := \text{Gal}(\mathbb{Q}_p/\mathbb{Q}_p)$. Let $\phi$ denote the Frobenius element $\phi : x \rightarrow x^p$, which is a (topological) generator of $\text{Gal}(\overline{F}_p/F_p) = \hat{Z}$, the profinite completion of the integers. Define the inertia subgroup $I = \ker \left( \Gamma_p \rightarrow \text{Gal}(\overline{F}_p/F_p) \right)$. Then the wild inertia $I^+ \triangleleft I$ is the maximal pro-$p$ subgroup, and the tame inertia group is $I/I^+$. The tame inertia is (noncanonically) isomorphic to the direct product over all primes $q \neq p$ of the rings of $q$-adic integers $\mathbb{Z}^{(q)}$. We obtain a split short exact sequence

$$1 \rightarrow \mathbb{Z}^{(p)} \rightarrow I^+ \backslash \Gamma_p \rightarrow \hat{Z} \rightarrow 1.$$ 

Hence $I^+ \backslash \Gamma_p \cong \langle s \rangle \rtimes \langle \phi \rangle$ for some generator $s \in \mathbb{Z}^{(p)}$ with relation $\phi s \phi^{-1} = s^q$, where $q$ is some power of $p$. We will pursue two main goals in this paper.

1. List all representations $\Phi : I^+ \backslash \Gamma_p \rightarrow \hat{G}$ such that $S_\Phi := \text{Cent}(\text{Im}(\Phi), \hat{G})$ is a finite group.

2. For each such $\Phi$, list all irreducible representations $\rho : S_\Phi \rightarrow \text{GL}_n(V)$ and their character values.

Observe, the representation $\Phi$ defined here is related to the depth-zero Langlands parameter $\Phi : L_p \rightarrow \hat{G}$ defined in Subsection 1.1 above.

1.3. Main Results. To achieve goal (1), it is enough to specify the image of $(s, \phi)$ so that

- $s \in \hat{G}$ is “regular”, “semi-simple”, and of finite order coprime to $p$
- $\phi \in \hat{G}$ normalizes the torus $\hat{T}$, $\hat{T}^\phi$ is finite, and
- $\phi s \phi^{-1} = s^q$.

Let $w_0$ denote the projection of $\phi \in N(\hat{T})$ to $w_0 \in W$, the Weyl group. We now describe some elements of the Weyl group acting on the cocharacter lattice $X_*(\hat{T})$. This will help present a “normal form” of $w_0$, i.e. a nice presentation of $w_0$ in which $w_0$ is in general conjugate to. For a classical root system of rank $n$, define elements of $W$ with action on $X_*(\hat{T})$ by $\varepsilon_i : \varepsilon_i \rightarrow -\varepsilon_i$; and $\varepsilon'_j : \varepsilon_j \rightarrow -\varepsilon_{n+1-j}$. Namely, let $v'_0 = (1, \ldots, 1) \cdots (i_m-1, \ldots, i_m)$, $i_0 := 0 < i_1 < i_2 \cdots < i_m$. This notation means $w'_0 : \varepsilon_j \rightarrow \varepsilon_{n+1-j}$ for $j \notin \{i_1, \ldots, i_m\}$ and $w'_0 : \varepsilon_i \rightarrow -\varepsilon_{i-1}$. For $D_n$, due to simplifications of computation later on, define a slight variant of $w'_0$. Let $v'_0 = (1, \ldots, 1) \cdots (i_m, \ldots, i_{m+1}-1)$.

Let $s = (s_1, \ldots, s_n)$ be a representative of an element in $\hat{T} \cong (\mathbb{C} \otimes \mathbb{Z} X_*(\hat{T}))/X_*(\hat{T})$ in the $\varepsilon_i^*$ coordinates. Table (1.3.1) presents the pairs of $(s, \phi)$ which satisfy the first two conditions, where $\phi$ is some lift of a $w_0$ in normal form. Note that in the table we only specified the action of $\phi$ on the first ‘half’ of coordinates of $s$ in types $B_n, C_n, D_n$; the action on the second half is just a “big mirror” of the action. Also, if we further require $\phi s \phi^{-1} = s^q$, we direct the reader to item (3) of Section 4, to see what additional restrictions are placed.

To achieve goal (2), we use the short exact sequence

$$(1.3.1) \quad 1 \rightarrow \hat{T}_{\text{ad}}^\phi \rightarrow \text{Cent}(s, \phi; \hat{G}_{\text{ad}}) \rightarrow W^\phi_s \rightarrow 1$$

and Clifford theory to classify representations of $\text{Cent}(s, \phi, \hat{G}_{\text{ad}})$. We say the extension $\text{Cent}(s, \phi, \hat{G}_{\text{ad}})$ in (1.3.1) is split if the short exact sequence has a splitting. We say it is virtually split if its irreducible representations arise in the same way as if it were split. Section 3.4 provides a precise characterization of an extension being virtually split.
Table 1.3.1. Results for Part I

<table>
<thead>
<tr>
<th>Type</th>
<th>$s \in \hat{T}_{ad}$</th>
<th>$w_0 \in W$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_n$</td>
<td>$(e^{2\pi i t_{n+1}}, \ldots, e^{2\pi i t_1})$</td>
<td>$d/(n+1) &gt; t_d &gt; \cdots &gt; t_1 = 0, t_{d+i} = d/(n+1) + t_i$ for some $i.$</td>
</tr>
<tr>
<td>$B_n$</td>
<td>$(e^{2\pi i t_1}, \ldots, e^{2\pi i t_n}, 1, e^{-2\pi i t_n}, \ldots, e^{-2\pi i t_1})$</td>
<td>$w_0 = w'_0$</td>
</tr>
<tr>
<td>$C_n$</td>
<td>$(e^{2\pi i t_1}, \ldots, e^{2\pi i t_n}, e^{-2\pi i t_n}, \ldots, e^{-2\pi i t_1})$</td>
<td>$w_0 = ew'_0mw'_0m^{-1}$</td>
</tr>
<tr>
<td>$D_{2n}$</td>
<td>$(e^{2\pi i t_1}, \ldots, e^{2\pi i t_{2n}}, e^{-2\pi i t_{2n}}, \ldots, e^{-2\pi i t_1})$</td>
<td>$i_1 = 1, i_2 = 2, i_m &lt; i_{m+1} := n + 1$</td>
</tr>
<tr>
<td>$D_{2n+1}$</td>
<td>$(e^{2\pi i t_1}, \ldots, e^{2\pi i t_{2n+1}}, e^{-2\pi i t_{2n+1}}, \ldots, e^{-2\pi i t_1})$</td>
<td>$i_2 = 2, i_m &lt; i_{m+1} := n + 1$</td>
</tr>
</tbody>
</table>

We will also be interested in the representation theory for $T_+, C_+$, which are the preimages of $\hat{T}_{ad}, \text{Cent}(s, \phi, \hat{G}_{ad})$, respectively, into the simply-connected cover. Table 1.3.2 fully records the representation theory for both $\text{Cent}(s, \phi, \hat{G}_{ad})$ and $C_+$.

Table 1.3.2. Results for Part II

<table>
<thead>
<tr>
<th>Type</th>
<th>$T^\phi_{ad}$</th>
<th>$T_+$</th>
<th>$W_\psi$</th>
<th>$\text{Cent}(s, \phi; \hat{G})$</th>
<th>$C_+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{2n}$</td>
<td>$\mathbb{Z}/(2n + 1)\mathbb{Z}$</td>
<td>$(\mathbb{Z}/(2n + 1)\mathbb{Z})^2$</td>
<td>$\mathbb{Z}/(2n + 1)\mathbb{Z}$</td>
<td>split</td>
<td>split</td>
</tr>
<tr>
<td>$A_{2n+1}$</td>
<td>$\mathbb{Z}/(2n + 2)\mathbb{Z}$</td>
<td>$(\mathbb{Z}/(n + 1)\mathbb{Z}) \times \mathbb{Z}/(4n + 4)\mathbb{Z}$</td>
<td>$\mathbb{Z}/(2n + 2)\mathbb{Z}$</td>
<td>split</td>
<td>virtually-split</td>
</tr>
<tr>
<td>$B_n$</td>
<td>$(\mathbb{Z}/2\mathbb{Z})^m$</td>
<td>$(\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})^{m-1}$</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
<td>split</td>
<td>virtually-split</td>
</tr>
<tr>
<td>$C_n$</td>
<td>$(\mathbb{Z}/2\mathbb{Z})^m$ or $(\mathbb{Z}/2\mathbb{Z})^{m-1} \times \mathbb{Z}/4\mathbb{Z}$</td>
<td>$(\mathbb{Z}/2\mathbb{Z})^{m+1}$ or $(\mathbb{Z}/2\mathbb{Z})^{m-1} \times \mathbb{Z}/4\mathbb{Z}$</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
<td>split</td>
<td>virtually-split</td>
</tr>
<tr>
<td>$D_{2n}$</td>
<td>$(\mathbb{Z}/2\mathbb{Z})^m$ or $(\mathbb{Z}/2\mathbb{Z})^{m-2} \times \mathbb{Z}/4\mathbb{Z}$</td>
<td>$(\mathbb{Z}/2\mathbb{Z})^{m-2} \times \mathbb{Z}/4\mathbb{Z}$</td>
<td>$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$</td>
<td>split</td>
<td>virtually-split</td>
</tr>
<tr>
<td>$D_{2n+1}$</td>
<td>$(\mathbb{Z}/2\mathbb{Z})^m$ or $(\mathbb{Z}/2\mathbb{Z})^{m-2} \times \mathbb{Z}/4\mathbb{Z}$</td>
<td>$(\mathbb{Z}/2\mathbb{Z})^{m-2} \times \mathbb{Z}/4\mathbb{Z}$</td>
<td>$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$</td>
<td>$\mathbb{Z}/4\mathbb{Z}$</td>
<td>virtually split</td>
</tr>
</tbody>
</table>

1.4. Acknowledgements. We would like to graciously thank our advisor Dr. Tasho Kaletha. He generously devoted his time, throughout the extent of the program, in explaining the appropriate concepts and background needed for our project in a very clear and concise way. We would also like to thank the organizers of the University of Michigan REU for making this project possible.

2. Preliminaries

2.1. Notation. Let $\hat{T} \subset \hat{B}$ be a maximal torus and Borel subgroup of the reductive group $\hat{G}$ and let $\Phi$ be the corresponding root system of $\hat{T}$ in $\hat{G}$, with positive system $\Phi^+$ corresponding to $\hat{B}$. Let $\Delta = \{\alpha_1, \ldots, \alpha_n\}$ be the corresponding simple roots, where $n$ is the rank of $\hat{G}$.

Let $X^*(\hat{T})$ be the character lattice of algebraic homomorphisms from $\hat{T}$ to $\mathbb{C}^\times$, and $X_*(\hat{T})$ be the cocharacter lattice of algebraic homomorphisms from $\mathbb{C}^\times$ to $\hat{T}$. Composition defines a $\mathbb{Z}$-bilinear pairing

$$\langle , \rangle : X^*(\hat{T}) \times X_*(\hat{T}) \to \text{Hom}(\mathbb{C}^\times, \mathbb{C}^\times) = \mathbb{Z}.$$
Since \( \hat{T} \cong (\mathbb{C}^*)^n \), we know that both \( X^*(\hat{T}) \) and \( X_*(\hat{T}) \) are free abelian groups of rank \( n \) and that the pairing is nondegenerate.

Now define two vector spaces
\[
V = \mathbb{C} \otimes_{\mathbb{Z}} X_*(\hat{T})
\]
and
\[
V^* = \mathbb{C} \otimes_{\mathbb{Z}} X^*(\hat{T}).
\]
These are both \( n \)-dimensional \( \mathbb{C} \)-vector spaces, and we can extend \( \langle \cdot, \cdot \rangle \) to a nondegenerate \( \mathbb{C} \)-bilinear pairing \( V^* \times V \to \mathbb{C} \). Having done this, define the coweights \( \{ \hat{\omega}_1, \ldots, \hat{\omega}_n \} \) in \( V \) such that \( \hat{\omega}_i \) is dual to \( \alpha_i \) with respect to the pairing. Furthermore, we can naturally identify \( X^*(\hat{T}) \) and \( X_*(\hat{T}) \) with the subgroups \( \mathbb{Z} \otimes_{\mathbb{Z}} X^*(\hat{T}) \) of \( V^* \) and \( \mathbb{Z} \otimes_{\mathbb{Z}} X_*(\hat{T}) \) of \( V \), respectively. We conclude that \( X_*(\hat{T}) \) and \( X^*(\hat{T}) \) are dual to each other with respect to the pairing.

Given a root \( \alpha \in \Phi \), there is a unique element \( \hat{\alpha} \in V \) such that \( \langle \alpha, \hat{\alpha} \rangle = 2 \) and the map
\[
\sigma_\alpha : V^* \to V^* \quad x \mapsto x - \langle x, \hat{\alpha} \rangle \alpha
\]
preserves \( \Phi \). Collectively, these elements are called coroots, and are denoted \( \hat{\Phi} \).

For a general reductive group \( \hat{G} \), we have the relation
\[
\hat{Q} \subset X_*(\hat{T}) \subset \hat{P}
\]
where \( \hat{P} \) is the coweight lattice, i.e the \( \mathbb{Z} \)-span of coweights \( \hat{\omega} \), and \( \hat{Q} \) is the coroot lattice = \( \mathbb{Z}(\hat{\Phi}) \). Moreover it is known \( \hat{P} = X_*(\hat{T}) \) if and only if \( \hat{G} \) is adjoint and \( X_*(\hat{T}) = \hat{Q} \) if and only if \( \hat{G} \) is simply-connected.

Let \( N(\hat{T}) \) denote the normalizer of \( \hat{T} \) in \( \hat{G} \) and \( W := N(\hat{T})/\hat{T} \) denote the Weyl group. Note that \( W \) acts on \( \hat{T} \) by conjugation, making \( \hat{T} \) into a \( W \)-module. This defines a \( W \)-module structure on \( X_*(\hat{T}) \) which can be extended to one on \( \mathbb{C} \otimes_{\mathbb{Z}} X_*(\hat{T}) \) by letting \( W \) act trivially on \( \mathbb{C} \). With this action, \( V \) becomes a \( \mathbb{C} \)-linear \( W \) representation.

With these \( W \)-module structures, the \( \mathbb{Z} \)-bilinear map
\[
\mathbb{C} \times X_*(\hat{T}) \to \hat{T} \quad (t, \hat{\omega}) \mapsto \hat{\omega} (e^{2\pi i t})
\]
gives rise to a \( W \)-module homomorphism
\[
\exp : V \to \hat{T}.
\]
This map is surjective, and its kernel is \( \mathbb{Z} \otimes_{\mathbb{Z}} X_*(\hat{T}) \cong X_*(\hat{T}) \), so we obtain the following isomorphism of \( W \)-modules
\[
\hat{T} \cong V/X_*(\hat{T}).
\]

Finally, note that for any \( x \in V \) and any \( \alpha \in X_*(\hat{T}) \), we have
\[
(2.1.1) \quad \alpha(\exp(x)) = e^{2\pi i \langle \alpha, x \rangle}.
\]

2.2. Inner regular elements. In this section, we will be concerned with pairs \( (s, \varphi) \) of automorphisms of \( \hat{G}_{ad} \) which are in particular inner - i.e the \( s, \varphi \) action on \( \hat{G}_{ad} \) is given by conjugation by \( s, \varphi \), respectively. So \( \hat{G}_{ad}^* \) is understood as the \( \text{Ad}(s) \) invariants of \( \hat{G} \). We will see that on the Lie algebra level, an inner element is conjugate to an element of the standard alcove. Our following exposition closely follows that of [R09].

An element \( s \in \hat{G}_{ad} \) is semisimple if \( s \) acts diagonally on \( \mathfrak{g} := \text{Lie}(\hat{G}_{ad}) \). Any torsion element \( s \in \hat{G}_{ad} \) is semisimple and \( \hat{G}_{ad} \)-conjugate to an element of \( \hat{T}_{ad} \), and there is \( x \in V_Q := Q \otimes \hat{P} \) such that \( s = \exp(x) \). We have \( x, x' \in V_Q \) give rise to \( \hat{G} \)-conjugate elements \( \exp(x), \exp(x') \) if and only if \( x, x' \) are conjugate under the extended affine Weyl group
\[
\hat{W} := W \ltimes \hat{P}.
\]
Here, $\tilde{P}$ acts on $V$ by translations. The (unextended) affine Weyl group is the normal subgroup
\[ \tilde{W}^\circ := W \ltimes \tilde{Q} \subset \tilde{W}. \]
It can also be thought of as the group of reflections in $V$ about the affine root hyperplanes $\alpha = n$ for $\alpha \in \Phi$ and $n \in \mathbb{Z}$. We call $C$ an alcove if it is a connected component of the set of $x \in V$ not lying in any root hyperplane. A wall of $C$ is the intersection of a root hyperplane $H_{\alpha,n}$ with the alcove closure $\overline{C}$. Thus each alcove has $n + 1$ walls. From [Bou02, V.3.2], $\tilde{W}^\circ$ is a Coxeter group generated by the $n + 1$ hyperplanes about a fixed alcove and $\tilde{W}^\circ$ permutes the alcoves in $V$ freely and transitively. We now describe the standard alcove that will be used for our computations.

To the base $\Delta = \{\alpha_1, \ldots, \alpha_n\}$, let $\tilde{\alpha} = \sum^n_{i=0} a_i \alpha_i$ be the highest root. Let $\alpha_0 := 1 - \tilde{\alpha}$ be an affine linear function, so
\[ \sum^n_{i=0} a_i \alpha_i = 1, \]
where $a_0 := 1$. Then
\[ C = \{x \in V : \langle \alpha_i, x \rangle > 0 \quad \text{for} \quad 0 \leq i \leq n\} \]
is the standard alcove associated to base $\Delta$. In terms of barycentric coordinates,
\[ C = \left\{ \sum^n_{i=0} x_i \tilde{\omega}_i / a_i : x_i > 0 \quad \text{and} \quad \sum^n_{i=0} x_i = 1 \right\}, \]
where $\tilde{\omega}_0 := 0$. The following information can be also found in [Bou02, VI]. Since $\tilde{W}^\circ$ acts transitively on the set of alcoves, $\tilde{W}$ does too. Hence $\overline{C}$ intersects all $\tilde{W}$-orbits in $V$. This means each torsion element $s \in \hat{G}_{ad}$ is conjugate to $\exp(x)$ for some $x \in \overline{C} \cap V_\mathbb{Q}$. However, the extended affine Weyl group $\tilde{W}$ does not act freely on the alcoves in $V$ like $\tilde{W}^\circ$, so we consider the alcove stabilizer
\[ \Omega := \{\rho \in \tilde{W} : \rho \cdot C = C\}. \]
We have the decomposition
\[ \tilde{W} = \Omega \ltimes \tilde{W}^\circ. \]
It then follows for $x, x' \in \overline{C}$, $\exp(x)$ and $\exp(x')$ are $\hat{G}_{ad}$-conjugate if and only if $x$ and $x'$ are conjugate under $\Omega$.

It is useful to construct an explicit isomorphism
\[ \Omega \cong X_s(\hat{T})/\mathbb{Z}\Phi. \]

For each coset in $X_s(\hat{T})/\mathbb{Z}\Phi$, there exists a unique coweight $\tilde{\omega}$ which is a vertex of alcove $C$. We call such a coweight miniscule. For each miniscule coweight, there is exists a unique $\rho_i \in \Omega$ such that $\rho_i \cdot \tilde{\omega}_0 = \tilde{\omega}_i$. This bijection is a group homomorphism.

We call an element $s \in \hat{G}$ regular if the identity component of its centralizer $\text{Cent}(s; \hat{G})^\circ$ is a maximal torus. We call an element $s \in \hat{T}$ strongly regular if $\text{Cent}(s; \hat{G})$ is a maximal torus. By [R09 Prop 2.1],
\[ \text{Cent}(s; \hat{G})/\text{Cent}(s; \hat{G})^\circ \cong \Omega_x := \{\rho \in \Omega : \rho \cdot x = x\}, \]
so $s = \exp(x)$ is strongly regular precisely when $x$ is not fixed by an element of the affine Weyl group that stabilizes the alcove. Furthermore, $\Omega_x \cong W_s / W_s^\circ$, where $W_s$ is the stabilizer of $s$ in $W$ and $W_s^\circ$ is generated by reflections for the roots in $\{\alpha \in \hat{\Phi}^+ : \alpha(s) = 1\}$. To visualize the action of $\Omega$ on $x = \sum^n_{i=0} s_i \tilde{\omega}_i$, label the nodes of the extended Dynkin diagram $\hat{D}(\mathfrak{g})$ by $s_i$; $\Omega$ acts on $x$ via the symmetries of $\hat{D}(\mathfrak{g})$. This gives an efficient way of explicitly describing the regular, but not strongly regular elements.
Consider an element \( s \in \widehat{G} \) which is semisimple, regular, but not strongly regular. Then \( W^\varphi_s \) is trivial, \( \Omega_s = W_s, \operatorname{Cent}(s; \widehat{G})^\varphi = \widehat{T} \), and we have the short exact sequence
\[
0 \to \widehat{T} \to \operatorname{Cent}(s; \widehat{G}) \to W^\varphi_s \to 0
\]
Let \( \varphi \in N(\widehat{T}) \) be such that \( \widehat{T}^\varphi \) is finite and \( \varphi s \varphi^{-1} = s^q \) for \( q \) a power of a prime. Denote by \( u_0 \) the projection of \( \varphi \in N(\widehat{T}) \) onto the Weyl group \( W \). Then \( \operatorname{Cent}(s; \widehat{G})^\varphi = \operatorname{Cent}(s, \varphi; \widehat{G}) \) and we have the exact sequence
\[
0 \to \widehat{T}^\varphi \to \operatorname{Cent}(s, \varphi; \widehat{G}) \to W^\varphi_s \to H^1(\langle \varphi \rangle, \widehat{T}) \to \cdots
\]
Explicitly,
\[
\phi \quad \quad \phi
\]
for some \( n \). We know that \( \ker(\phi - 1) = p_\varphi(1) \), where \( p_\varphi \) is the characteristic polynomial of \( \varphi \).

\textbf{Proof.} Explicitly, \( \widehat{T}^\varphi = \{ t \in \widehat{T} \mid (\varphi \cdot t)t^{-1} = 1 \} \). Since \( \exp : V \to \widehat{T} \) is a surjective group homomorphism, \( \widehat{T}^\varphi \cong F_\varphi/X_*(\widehat{T}) \), where \( F_\varphi \) is the preimage of \( \widehat{T}^\varphi \) under \( \exp \). Because \( \exp \) is \( \varphi \)-equivariant, we can write \( F_\varphi \) explicitly as \( \{ x \in V \mid \varphi \cdot x - x \in X_*(\widehat{T}) \} \). Now consider the linear operator \( \varphi - 1 \) acting on \( V \). If for some \( x \in V \) we know \( x \in \ker(\varphi - 1) \), then \( x \) is surely in \( F_\varphi \). If \( F_\varphi/X_*(\widehat{T}) \) is finite, \( F_\varphi \) must be covered by a finite number of translates of \( X_*(\widehat{T}) \). Since \( \ker(\varphi - 1) \leq F_\varphi \), we know \( \ker(\varphi - 1) \) is covered by those same translates. We also know that \( \ker(\varphi - 1) \cong \mathbb{C}^n \) for some \( n \), so \( n = 0 \). Since \( \varphi - 1 \) is injective and sends \( V \to V \), it must be an isomorphism.

On the other hand, suppose that \( \varphi - 1 \) is invertible. Then we can describe \( F_\varphi \) explicitly as \( (\varphi - 1)^{-1}X_*(\widehat{T}) \), so \( F_\varphi \) is also a free abelian group of rank \( n \). Since \( \varphi \) maps \( X_*(\widehat{T}) \) into itself, we see that \( (\varphi - 1) \) is an injective endomorphism of \( F_\varphi \) with image \( X_*(\widehat{T}) \). As a result, \( F_\varphi/X_*(\widehat{T}) \) is finite. Furthermore, using the Smith Normal Form for \( \varphi - 1 \), we see that \( |\widehat{T}^\varphi| = |F_\varphi/X_*(\widehat{T})| = \det(\varphi - 1) = p_\varphi(1) \).

\textbf{Corollary 2.2.2.} Whether \( \widehat{T}^\varphi \) is finite depends only on the conjugacy class of \( \varphi \) in \( W \).

\textbf{Corollary 2.2.3.} Whether \( \widehat{T}^\varphi \) is finite doesn't depend on the choice of group in a given isogeny class.
2.3. Basic properties of $\tilde{G}$. The tables below provide fundamental properties of $\tilde{G}$. The root system provided is for $\text{Lie}(\tilde{G})$. Here, $\Delta = \{\alpha_1, \ldots, \alpha_n\}$, $\check{\Delta} = \{\check{\alpha}_1, \ldots, \check{\alpha}_n\}$, and $\check{\alpha}$ is the highest root with respect to $\Delta$.

<table>
<thead>
<tr>
<th>Type</th>
<th>$\Phi$</th>
<th>$\Delta, \check{\Delta}$</th>
<th>$\check{\alpha}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_n$</td>
<td>${\varepsilon_i - \varepsilon_j : i \neq j}$</td>
<td>${\varepsilon_1 - \varepsilon_2, \ldots, \varepsilon_{n-1} - \varepsilon_n, \varepsilon_n }$</td>
<td>$\alpha_1 + \cdots + \alpha_n$</td>
</tr>
<tr>
<td>$B_n$</td>
<td>${\pm \varepsilon_i, \pm (\varepsilon_i \pm \varepsilon_j) : i \neq j}$</td>
<td>${\varepsilon_1 - \varepsilon_2, \ldots, \varepsilon_{n-1} - \varepsilon_n, 2\varepsilon_n}$</td>
<td>$\alpha_1 + 2\alpha_2 + \cdots + 2\alpha_n$</td>
</tr>
<tr>
<td>$C_n$</td>
<td>${2\varepsilon_i, \pm (\varepsilon_i \pm \varepsilon_j) : i \neq j}$</td>
<td>${\varepsilon_1 - \varepsilon_2, \ldots, \varepsilon_{n-1} - \varepsilon_n, 2\varepsilon_n}$</td>
<td>$2\alpha_1 + 2\alpha_2 + \cdots + 2\alpha_{n-1} + \alpha_n$</td>
</tr>
<tr>
<td>$D_n$</td>
<td>${\pm (\varepsilon_i \pm \varepsilon_j) : i \neq j}$</td>
<td>${\varepsilon_1 - \varepsilon_2, \ldots, \varepsilon_{n-1} - \varepsilon_n, \varepsilon_n }$</td>
<td>$\alpha_1 + 2\alpha_2 + \cdots + 2\alpha_{n-2} + \alpha_{n-1} + \alpha_n$</td>
</tr>
</tbody>
</table>

Table 2.3.2. Weyl Groups

<table>
<thead>
<tr>
<th>$\tilde{G}_{\text{ad}}$</th>
<th>$\tilde{G}_{sc}$</th>
<th>$W$</th>
<th>$\Omega$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{PSL}<em>{n+1} = \text{SL}</em>{n+1}/\mu_{n+1}$</td>
<td>$\text{SL}_{n+1}$</td>
<td>$\Sigma_{n+1}$</td>
<td>$\mathbb{Z}/(n+1)\mathbb{Z}$</td>
</tr>
<tr>
<td>$\text{SO}_{2n+1}$</td>
<td>$\text{Spin}_{2n+1}$</td>
<td>$(\mathbb{Z}/2\mathbb{Z})^n \rtimes \Sigma_n$</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
</tr>
<tr>
<td>$\text{PSp}<em>{2n} = \text{Sp}</em>{2n}/\mu_2$</td>
<td>$\text{Sp}_{2n}$</td>
<td>$(\mathbb{Z}/2\mathbb{Z})^n \rtimes \Sigma_n$</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
</tr>
<tr>
<td>$\text{PSO}<em>{2n} = \text{SO}</em>{2n}/\mu_2$</td>
<td>$\text{Spin}_{2n}$</td>
<td>$(\mathbb{Z}/2\mathbb{Z})^{n-1} \rtimes \Sigma_n$</td>
<td>$n$ even: $(\mathbb{Z}/2\mathbb{Z})^2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$n$ odd: $\mathbb{Z}/4\mathbb{Z}$</td>
</tr>
</tbody>
</table>

3. Representation theory for Group Extensions

3.1. Group Extensions. In this section we state the theory needed to describe irreducible representations of $\text{Cent}(s, \varphi, \tilde{G}_{\text{ad}})$ and $\text{Cent}(s, \varphi, \tilde{G}_{\text{ad}})^\ast$, both of which are extensions of a finite abelian group by a finite abelian group.

First let us recall some basic results of group extensions and Clifford theory. Given a group $G$, and an abelian group $K$, we say $E$ is an extension of $K$ by $G$ if it fits in the short exact sequence

$$1 \rightarrow K \rightarrow E \rightarrow G \rightarrow 1$$

Choose a set-theoretic section $s : G \rightarrow E$. This defines a $G$ action on $K$ by

$$g \cdot k := s(g)ks(g)^{-1}.$$ 

Also, $s$ determines a 2-cocycle

$$\xi_s(g_1, g_2) := s(g_1)s(g_2)s(g_1g_2)^{-1} \in Z^2(G, K),$$

which “measures” how far $s$ is from being a group homomorphism. Changing the section $s$ replaces $\xi$ by a cohomologous 2-cocycle, so the class $[\xi] \in H^2(G, E)$ is independent of choice of section.

Given a group $G$, a $G$-module $K$, and a normalized 2-cocycle $\xi \in Z^2(G, K)$, we can construct the group $K \boxtimes_{\xi} G$ whose underlying set is the Cartesian product $K \times G$, and has the group law

$$(k_1, g_1)(k_2, g_2) := (k_1^{\xi_1}k_2^1\xi(g_1, g_2), g_1g_2).$$
(here $g_1k_2 = g_1 \cdot k_2$). Now if we have an extension $E$ of $K$ by $G$, with a chosen section $s$, we see there is an isomorphism $E \to K \otimes_{\xi_s} G$ given by sending $e = ks(g) \in E$ to $(k, g)$.

A short lemma now shows the section determines the group structure on $E$ completely.

**Lemma 3.1.1.** [Bro82, Section 4.3] There is a $1 - 1$ correspondence

$$\{ \text{Equivalence classes of extensions of } K \text{ by } G \text{ with prescribed } G\text{-action on } K \} \leftrightarrow H^2(G, K)$$

given by

$$[E] \mapsto [\xi_s]$$

$$K \otimes_{\xi_s} G \leftarrow [\xi]$$

where the “prescribed action” is the one determined by a choice of section. $E$ and $E'$ are said to be equivalent extensions if there exists a commutative diagram of short exact sequences.

3.2. Clifford theory. Clifford theory is the study of representations of a finite group extension $G$ in terms of that of its normal subgroup $N$ and quotient $H$. We will now quote two lemmas from [Kal18] on the subject. In what follows, $\text{Irr}(G)$ will denote the isomorphism classes of irreducible $G$-representations.

**Lemma 3.2.1.** Suppose we have an exact sequence of finite, not necessarily abelian groups

$$1 \to N \to G \to H \to 1$$

Let $\pi \in \text{Irr}(G)$ and $S_\pi \subset \text{Irr}(N)$ denote the irreducible $N$-representation occurring in $\pi|_N$. Then

1. $S_\pi$ is a single $H$ orbit and each member of $S_\pi$ occurs with the same multiplicity, denoted $m_\pi$.
2. The map

$$\text{Irr}(G) \to \text{Irr}(N)/H$$

defined by $\pi \to S_\pi$ is surjective.

**Lemma 3.2.2.** Suppose $H$ is abelian and $\sigma \in \text{Irr}(N)$. Let $G_\sigma := \text{Stab}(\sigma, G)$ and $G'_\sigma \subset G_\sigma$ be the largest subgroup to which $\sigma$ extends, i.e $\tilde{\sigma}$ is a (linear) representation of $G'_\sigma$ such that $\tilde{\sigma}|_N = \sigma$. Then

$$\text{Ind}_{G'_\sigma}^{G_\sigma} \tilde{\sigma}$$

is an irreducible $G$-representation and every irreducible $G$-representation arises this way.

It is easy to show that when $H_\sigma = \text{Stab}(\sigma, H)$ is cyclic, then $G'_\sigma = G_\sigma$. Using the previous lemma, we can recover the classical classification of irreducible representations for a semi-direct product of abelian normal group by quotient:

**Corollary 3.2.3.** [Ser71, Section 8.2] Suppose $G = N \rtimes H$ for an abelian normal subgroup $N$ and subgroup $H$ of $G$. Let $\chi : N \to \mathbb{C}^\times$ be a character and let

$$H_\chi = \{ h \in H : \chi(hnh^{-1}) = \chi(n), \forall n \in N \}.$$ 

Then extend $\chi$ to the character $\overline{\chi} : N \rtimes H_\chi \to \mathbb{C}^\times$ by setting $\overline{\chi}(nh) = \chi(n)$. For any irreducible representation $\rho$ of $H_\chi$, composing with the standard projection $N \times H_\chi \to H_\chi$ gives an irreducible representation $\rho'$ of $G_\chi := N \rtimes H_\chi$. Then

$$\text{Ind}_{G_\chi}^{G}(\overline{\chi} \otimes \rho')$$

is an irreducible $G$-representation and every irreducible $G$-representation is uniquely determined this way.

We now want to generalize this result to the case when the extension is not split.
Lemma 3.2.4. Suppose we have the exact sequence of groups $1 \to A \to B \to C \to 1$ where $A$ is abelian, and a given representation $\chi$ of $A$. Choose a set-theoretic section $s : C \to B$ and identify $B \cong A \rtimes_s C$. Then $\tilde{\chi}$ is an extension of $\chi$ to $B$ if and only if $\tilde{\chi}(a,c) = \chi(a)\sigma(c)$, where $\sigma$ is a set-theoretic function $C \to C^\times$ that satisfies $\chi \circ \xi_s = \xi_\sigma$.

Proof. Given an extension $\tilde{\chi}$ of $\chi$ to $B$, define $\sigma : C \to C^\times$ to be the function $c \mapsto \tilde{\chi}(1,c)$. Then because $\tilde{\chi}$ extends $\chi$, we have that

$$\tilde{\chi}(a,c) = \tilde{\chi}(a,1)\tilde{\chi}(1,c) = \chi(a)\sigma(c).$$

Also, since $\tilde{\chi}$ is a group homomorphism $B \to C^\times$, we know that

$$1 = \tilde{\chi}(a_1,c_1)\tilde{\chi}(a_2,c_2)\tilde{\chi}(a_1\xi_2, c_1c_2)^{-1} = \chi(a_1)\sigma(c_1)\chi(a_2)\sigma(c_2)\sigma(c_1c_2)^{-1}\chi(a_1\xi_2)\xi_2\xi_s(c_1, c_2))^{-1}.$$

Since $C^\times$ is abelian and $\chi$ is a homomorphism, this implies that

$$(3.2.1) \quad 1 = \sigma(c_1)\sigma(c_2)c_1c_2^{-1}\chi(a_2)c_1^{-1}c_2^{-1}\chi(c_1c_2))^{-1},$$

but because $(\alpha a_2, 1) = (1, c_1)(a_2, 1)(1, c_1)^{-1}$, we see that

$$\chi(c_1a_2) = \chi((1, c_1)(a_2, 1)(1, c_1)^{-1}) = \tilde{\chi}(a_2, 1) = \chi(a_2),$$

so equation $3.2.1$ becomes

$$(3.2.2) \quad \chi \circ \xi_s(c_1, c_2) = \xi_\sigma(c_1, c_2).$$

On the other hand, if we choose a $\sigma : C \to C^\times$ that satisfies equation $3.2.2$ and define the function $\tilde{\chi} : B \to C^\times$ by $\tilde{\chi}(a,c) = \chi(a)\sigma(c)$, then the calculation we just did shows that $\tilde{\chi}$ is a group homomorphism. Also,

$$\chi(1) = \xi_\sigma(1, 1) = \chi \circ \xi_s(1, 1) = 1,$$

so $\tilde{\chi}$ extends $\chi$. \hfill \Box

With the notation being the same as in lemma 3.2.4, we make the following definition:

Definition 3.2.5. Suppose $1 \to A \to B \to C \to 1$ is an exact sequence where $A$ and $C$ are abelian. Then, with notation as in 3.2.3 for a given character $\chi$ of $A$, we obtain an exact sequence $1 \to A \to B_\chi \to C_\chi \to 1$. If there exists a set-theoretic section $s : C_\chi \to B_\chi$ such that $\chi \circ \xi_s = 1$, then we call $\chi$ a virtually split character. If all of the characters of $A$ are virtually split in this way, then we say that $B$ is a virtually split extension of $A$ by $C$.

All split extensions are virtually split. When $B$ is a virtually split extension, by lemma 3.2.4 we can extend any character $\chi$ of $A$ trivially to $\tilde{\chi}$ by setting $\tilde{\chi}(as(c)) = \chi(a)$. Then by lemma 3.2.2 all irreducible representations of $B$ are given by

$$\text{Ind}_{B_\chi}^{B} \tilde{\chi} \otimes \sigma$$

for characters $\chi$ of $A$ and $\sigma$ of $C$ (here we regard $\sigma$ as a character of $B$ by pulling it back along the map $B \to C$). In particular, the irreducible representations of virtually split extensions arise in the exact same way as irreducible representations of split extensions (by lemma 3.2.2).

3.3. Langlands-Shelstad section. It is a result of Langlands and Shelstad [LS87] that for a connected reductive group $\hat{G}$, a pinning $(\hat{T}, \hat{B}, \{X_\alpha\})$ of $\hat{G}$ gives a section $n : W \to N(\hat{T})$ with a particularly nice 2-cocycle formula. The construction is as follows:

For a simple root $\alpha$, write $H_\alpha$ for the image of $\alpha$ under the identification of $V$ with $\text{Lie}(\hat{T})$. Next, choose $X_{-\alpha} \in \text{Lie}(\hat{G})$ to be the unique element such that $[X_\alpha, X_{-\alpha}] = H_\alpha$. The subspace of $\text{Lie}(\hat{G})$ spanned by $\{X_\alpha, H_\alpha, X_{-\alpha}\}$ is a Lie subalgebra of $\text{Lie}(\hat{G})$ which is isomorphic to $\mathfrak{sl}_2(\mathbb{C})$. Because $\hat{G}$
is connected, there is a unique homomorphism of algebraic groups \( \varphi : SL_2(C) \to \hat{G} \) whose tangent map at the identity is this inclusion \( \mathfrak{sl}_2(C) \hookrightarrow \text{Lie}(G) \). Furthermore,

\[
\varphi \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
\]

acts on \( \hat{T} \) in the same way as \( \sigma_\alpha \in W(\hat{T}) \), so define \( n(\sigma_\alpha) \) to be equal to this element of \( N(\hat{T}) \). Then for a typical element \( \sigma \in W \), express \( \sigma \) as a reduced composition of reflections about simple roots \( \sigma = \sigma_{\alpha_1} \ldots \sigma_{\alpha_n} \) and define \( n(\sigma) = n(\sigma_{\alpha_1}) \ldots n(\sigma_{\alpha_n}) \). This is well defined, because \( n(\sigma) \) is independent of the choice of reduced expression for \( \sigma \). Finally, set \( n(1) = 1 \).

**Lemma 3.3.1. [LS87] Lemma 2.1A** The 2-cocycle \( \xi(\sigma_1, \sigma_2) = n(\sigma_1)n(\sigma_2)n(\sigma_1\sigma_2)^{-1} \) in \( Z^2(W, \hat{T}) \) is given by the formula

\[
\xi(\sigma_1, \sigma_2) = \prod_{\alpha > 0} \hat{\alpha}(-1),
\]

where \( \alpha > 0 \) means \( \alpha \) is a root in \( \hat{B} \) and \( \hat{\alpha} \in X_*(\hat{T}) \) is the coroot associated to \( \alpha \).

### 3.4. Concrete Conditions for Virtual Splitness

Given some \( \varphi \in N(\hat{T}_{ad}) \) with \( |\hat{T}_\varphi| < \infty \), we can project \( \varphi \) to some \( w_0 \in W \) and lift \( w_0 \) to \( N(\hat{T}_{sc}) \). Since \( \hat{T}_\varphi \) is finite, any lift of \( w_0 \) to \( N(\hat{T}_{sc}) \) can be conjugated to any other by an element of \( \hat{T}_{sc} \). Conjugating \( N(\hat{T}_{sc}) \) by an element of \( \hat{T}_{sc} \) replaces the extension to an isomorphic one. As a result, if we have some section \( n : W \to N_{sc} \) and we write \( p \) for the projection \( \hat{G}_{sc} \to \hat{G}_{ad} \) we may without loss of generality lift \( w_0 \) to \( n(w_0) \) and replace \( \varphi \) with \( p \circ n(w_0) \).

We now describe a procedure for lifting an element from \( W_\varphi \) to \( \text{Cent}(\varphi; \hat{G}_{ad})^+ \) and provide conditions for this lift to give a splitting or “virtual splitting”. For commuting \( w, v \in W \), let

\[
c(w, v) := n(w)n(v)n(w)^{-1}n(v)^{-1} = \xi(w, v)\xi(v, w)^{-1}
\]

denote the commutator. Now choose a lift \( \hat{c}(w, w_0) \) of \( c \) to \( V \) such that \( \exp_{sc} \circ \hat{c} = c \). Since \( \varphi - 1 \) acts invertibly on \( V \) by \((2.2.1)\), we can form

\[
(i_w = (\varphi - 1)^{-1}\hat{c}(w, w_0) \in V.
\]

Define \( t_w := \exp_{ad}(i_w) \). If we apply \( \exp_{ad} \) to the equation \( (\varphi - 1)i_w = \hat{c}(w, w_0) \) and keep in mind \( \exp_{ad} = p \circ \exp_{sc} \), we see that \( \varphi t_w = p \circ c(w, w_0)t_w \).

Now define the section

\[
s : W_\varphi \to N(\hat{T}_{ad}) \quad w \mapsto t_w(p \circ n(w)),
\]

and note that

\[
\varphi s(w) = \varphi t_w \varphi(p \circ n(w))
= t_w(p \circ c(w, w_0))(p \circ c(w_0, w))(p \circ n(w))
= t_w(p \circ n(w))
= s(w),
\]

so \( s \) actually maps \( W_\varphi \) into \( \text{Cent}(\varphi, \hat{G}_{ad}) \).

In what follows, we will use the convention \( s \) for a section from Weyl group to centralizer, and \( n \) for section from Weyl group into normalizer. If we now define \( t'_w = \exp_{sc}(i'_w) \) and define

\[
s' : W_\varphi \to \hat{G}_{sc} \quad w \mapsto t'_w n(w),
\]

we see that \( p \circ s'(w) = s(w) \), so that \( s' \) actually maps into \( \text{Cent}(\varphi; G_{ad})^+ \).
If we now choose a lift $\hat{\xi}$ of $\xi_n$ to $V$ along $\exp_{sc}$, for any two $w, v \in W^\phi$, we can define

$$\hat{A}(w, v) := \hat{c}(w, w_0) + w \cdot \hat{c}(v, w_0) - \hat{c}(wv, w_0) + (\varphi - 1)\hat{\xi}(w, v)$$

and define $\hat{B}(w, v) := (\varphi - 1)^{-1}\hat{A}(w, v)$. Note that

$$\hat{\xi}_s(w, v) = s(w) \hat{\xi}_s(w, v) s^{-1}(wv) - \hat{\xi}_s(wv, w_0) + (\varphi - 1)\hat{\xi}(w, v)$$

and similarly, $\hat{\xi}'_s = \exp_{sc} \hat{B}$. As a result, if $\hat{B}(w, v) \in \hat{P}$ for all $w, v \in W^\phi_s$, we see that $\hat{\xi}_s$ is trivial on $W^\phi_s$, so $s$ gives a splitting of the exact sequence $1 \to T^\phi \to \text{Cent}(s, \varphi; \hat{G}_{ad}) \to W^\phi_s \to 1$.

Now suppose that

$$\hat{A}(w, v) = (\varphi - 1) \cdot q + (w - 1) \cdot p'$$

for some $p' \in \hat{P}$ and $q \in \hat{Q}$. Define $\hat{f} := (\varphi - 1)^{-1}p'$ and note that since $(\varphi - 1)\hat{f} = p'$, we have $\exp_{ad}(\hat{f}) \in \hat{T}_{ad}^\phi$ and therefore $\exp_{sc}(\hat{f}) \in \hat{T}_+$. If we act on (3.4.2) by $(\varphi - 1)^{-1}$ and note that $(\varphi - 1)^{-1}$ and $(w - 1)$ commute, we see that $(w - 1)\hat{f} = \hat{B}(w, v) - q$.

Now let $\chi$ be a character of $\hat{T}_+$ and let $w$ and $v$ be elements of $(W^\phi_s)_\chi$, the subgroup of $W^\phi_s$ which stabilizes $\chi$. If we define $f' = \exp_{sc}(\hat{f})$, we find

$$\chi(\hat{\xi}'_s(w, v)) = \chi(\exp_{sc}(\hat{B}(w, v)))$$

$$= \chi(\exp_{sc}((w - 1)f))$$

$$= \chi(wff^{-1})$$

$$= \chi(wf)\chi(f^{-1})$$

$$= \chi(f)\chi(f)^{-1}$$

$$= 1,$$

so that $\chi$ is virtually split. Since if (3.4.2) holds, this is true for all characters of $\hat{T}_+$, we see that in this case $\text{Cent}(s, \varphi; \hat{G}_{ad})_+$ is virtually split. A similar argument using $\xi_s$ and $f = \exp_{ad}(\hat{f})$ shows that if (3.4.2) holds, then $\text{Cent}(s, \varphi; \hat{G}_{ad})$ is virtually split.
4. Case Study

We will systematically perform the following computations using the theory developed from sections 2 and 3:

1. Describe the regular, but not strongly regular elements \( s \in \hat{G}_{\text{ad}} \).
2. Describe the \( \varphi \in N(\hat{G}_{\text{ad}}) \) such that \( \hat{T}_{\text{ad}}^\varphi \) is finite and \( W_s^\varphi \) is non-trivial.
3. Describe pairs \((s, \varphi)\) satisfying (1), (2) and \( \varphi s \varphi^{-1} = s^q \) for \( q \) a power of a prime.
4. Describe \( \text{Cent}(s, \varphi; \hat{G}_{\text{ad}}) \) for such pairs \((s, \varphi)\) and its irreducible representations.
5. Describe \( \text{Cent}(s, \varphi; \hat{G}_{\text{ad}})_+ \) for such pairs \((s, \varphi)\) and its irreducible representations.

For root systems of the classical type, we will begin by introducing a convenient coordinate system to simplify the computation.

4.1. Type \( A_n \). Since there is an isomorphism \( PGL_n(\mathbb{C}) \cong PSL_n(\mathbb{C}) \), we will work with \( PGL_n(\mathbb{C}) \) for notational convenience.

(1) Choose the standard maximal torus of diagonal matrices and the standard Borel subgroup of upper-triangular matrices. In this case, \( \alpha_i \in \Delta \) is the character \( \alpha_i(t) = t_i/t_{i+1} \).

In type \( A_n \), we know the highest root is \( \alpha_1 + \ldots + \alpha_n \), so \( v_i = \hat{\omega}_i \) for all \( i \). The extended Dynkin diagram for type \( A_n \) is

\[
\begin{array}{c}
\bullet \\
\cdots \\
\bullet
\end{array}
\]

The alcove stabilizer \( \Omega \) acts on \( \hat{D}(g) \) via rotations, so \( \Omega \cong \mathbb{Z}/(n+1)\mathbb{Z} \). Write \( w \) for the generator of \( \Omega \) which sends \( v_i \mapsto v_{i+1} \). The semisimple elements of \( V \) fixed by a nontrivial rotation \( w^d \in \Omega \) are given by

\[ x = \sum_{i=0}^{n} s_i v_i \]

such that \( s_i = s_{i+d} \) for all \( i = 0, 1, \ldots, n \), and \( \sum_0^n s_i = 1 \) and \( s_i > 0 \) for all \( i \). Then by Equation \( 2.1.1 \) and Table \[2.3.1\]

\[
(e^{2\pi it_1}, \ldots, e^{2\pi it_1}) \in PGL_{n+1}(\mathbb{C}), \quad \text{where and the } t_i \text{ satisfy } d/(n+1) > t_d > \cdots > t_1 = 0 \text{ and } t_{d+i} = d/(n+1) + t_i \text{ for all } i.
\]

(2) Since \( \varphi \) acts on the space \( W \) spanned by \( \varepsilon_1^{\star} \ldots \varepsilon_n^{\star} \) as a permutation matrix, its characteristic polynomial is \( p_{\varphi,W}(\lambda) = \prod \lambda^{\ell_i} - 1 \), where \( \ell_i \) is the length of the \( i \)th cycle of \( \varphi \). Since this action decomposes into an action on \( V \) and an action on \( \mathbb{C}(\varepsilon_1^{\star} + \ldots + \varepsilon_n^{\star}) \) (the second of which \( \varphi \) acts on trivially) we see that \( p_{\varphi,W}(\lambda) = p_{\varphi,V}(\lambda)(\lambda - 1) \). If \( \hat{T}_\varphi \) is finite, then \( p_{\varphi,V}(1) \neq 0 \), so \( p_{\varphi,W}(\lambda) \) can contain only a single factor of \( \lambda^{\ell_i} - 1 \), so \( w_0 \) must be a single cycle in \( \Sigma_{n+1} \). In this case, \( p_{\varphi,V}(\lambda) = \lambda^n + \lambda^{n-1} + \cdots + 1 \), so \( |\hat{T}_\varphi| = p_{\varphi,V}(1) = n + 1 \). If necessary, conjugate \( w_0 \) so that it is the cycle \((1 \ 2 \ldots n+1) \in \Sigma_{n+1} \). Having done this, we can write the elements of \( \hat{T}_\varphi \) explicitly: write \( \zeta = e^{2\pi i/(n+1)} \). Then the \( i \)th element of \( \hat{T}_\varphi \) is \( t_i = [\text{diag}(1, \zeta^i, \ldots, \zeta^{i(n-1)})] \). From this, we see that

\[
\hat{T}_\varphi \cong \mathbb{Z}/(n+1)\mathbb{Z}
\]

via the isomorphism \( t_i \mapsto i \).

If \( W_s^\varphi \neq \{1\} \), there exists \( w' \neq 1 \) such that \( w_0 \) commutes with it and

\[
W_s^\varphi = \langle w' \rangle \cong \mathbb{Z}/(n+1)\mathbb{Z},
\]

where \( w' = w^{dd'}/d'(n+1)/d \). Lastly, since \( w_0 \) is a cycle which commutes with \( w' \), there exists \( i \) such that \( w_0 = w' \) and \( \gcd(i, n+1) = dd' \). For simplicity, we assume \( d' = 1, w' = w_d \) in the following steps.
(3) We wish to solve the equation
\[ w_0, (s_{n+1}, \ldots, s_1) = (s_{n+1}^p, \ldots, s_1^p) \in PGL_{n+1}(\mathbb{C}) \]
for \( s = (s_{n+1}, \ldots, s_1) \) as given in (4.1.1). This amounts to solving
\[ s_1 = s_{w_0(1)}^0 z, \ldots, s_{w_0^{-1}(1)}^0 z = s_{d+1}^0 z \]
where \( z \in \mathbb{C}^\times \). Since our solution is in \( PGL_{n+1}(\mathbb{C}) \), we may as well take \( s_1 = 1 \). Since \( w_0 \) is a cycle, all the \( s_j \) are now determined once we specify \( z \). After composing the equations \( i \) times, we have
\[ s_j = s_{j+d}^p z^{\frac{p-1}{p}} \]
and, using the fact that \( s_{j+d} = \zeta^d s_j \), we see that
\[ s_j = s_j^p z^{\frac{p-1}{p-1}} \zeta^p d \]
for all \( j = 1, \ldots, n+1 \). In particular for \( j = 1 \), we have \( s_j = 1 \) which implies \( (\dagger) \)
\[ z^{\frac{p-1}{p}} = \zeta^{-p}. \]
Observe
\[ \zeta^d = s_{d+1} = s_{w_0(1)} \]
\[ = s_{w_0^{-1}(1)} z \]
\[ = \zeta d s_{w_0(1)} z^{\frac{p-1}{p}} \]
which implies \( d(1 - p) \equiv 0 \mod n + 1 \), or equivalently, \( p \equiv 1 \mod (n + 1)/d \). So we can simplify
\( (\dagger) \) to get \( z^{\frac{p-1}{p-1}} = \zeta^{-d} \), so \( z \) is some \( \frac{p-1}{p-1} \) root of \( \zeta^{-d} \).

Now, it just remains to check for a given \( z \) whether we have the string of inequalities \( \arg(s_{n+1}) > \arg(s_n) > \cdots > \arg(s_1) = 0 \). We see our work fully classify triples \( (s, \phi, p) \) satisfying steps (1), (2), (3). Furthermore once we specify \( p \), we see there are only finitely many pairs \( (s, \phi) \), which can all be found systematically using a computer program.

(4) The map \( n : W \rightarrow N(\hat{T}) \) which maps every element of \( W \) to the equivalence class of its permutation matrix, \( w \mapsto [P(w)] \), is a splitting of \( W \) into \( N(\hat{T}) \). Since \( \hat{T}^\varphi \) is finite, by conjugating \( \varphi \) by an element of \( \hat{T}^\varphi \), we can fix \( \varphi = n(w_0) \). Then the restriction of \( n \) to \( W^\varphi \) gives a splitting of \( W^\varphi \) into \( \text{Cent}(s, \varphi; \hat{G}_{ad}) \). Since each element \( w \in W^\varphi \) is a power of \( w_0 \), it acts trivially on \( \hat{T}^\varphi \). As a result,
\[ \text{Cent}(s, \varphi; \hat{G}_{ad}) \cong \mathbb{Z}/(n + 1) \mathbb{Z} \times \mathbb{Z}/\frac{n+1}{k} \mathbb{Z}. \]

(5) We now want to understand the pullback \( C_+ \) of \( \text{Cent}(s, \varphi; \hat{G}_{ad}) \) to \( \hat{G}_{sc} = SL_{n+1}(\mathbb{C}) \). First, note that
\[ \det(\text{diag}(1, \zeta^i, \ldots, \zeta^{i(n-1)}) = \prod_{j=0}^{n-1} \zeta^{ij} = \prod_{j=1}^{n} \zeta^{ij} = \zeta^{in(n+1)/2}. \]
Also note that
\[ \det(P(\varphi)) = \text{sign}(1 2 \ldots n + 1) = (-1)^n. \]

Case 1: \( n + 1 \) odd.
In this case, \( \zeta^{in(n+1)/2} = 1 \), so the map \( r : \hat{T}^\varphi \rightarrow \hat{T}_+ \) sending \( t_i \mapsto \text{diag}(1, \zeta^i, \ldots, \zeta^{i(n-1)}) \) gives a splitting of \( \hat{T}^\varphi \) into \( \hat{T}_+ \). Since \( \hat{T}_+ \) is abelian, we conclude
\[ \hat{T}_+ \cong (\mathbb{Z}/(n + 1) \mathbb{Z})^2. \]
Also, since \( \det(P(w_0^i)) = \det(P(w_0))^i = 1 \), the map \( s : W^\varphi \rightarrow C^+ \) sending \( w \mapsto P(w) \) gives a splitting of \( W^\varphi \) into \( C_+ \), so that
\[ C_+ \cong (\mathbb{Z}/(n + 1) \mathbb{Z})^2 \times \mathbb{Z}/\frac{n+1}{k} \mathbb{Z}. \]
Explicitly, since \(w_0^{-1} \cdot r(t_i) = \zeta^i r(t_i)\), we see that an element \(w = w_0^{\ell} \in W^\varphi_s\) acts on \(\hat{T}_+\) by sending \(\zeta^j r(t_i)\) to \(w \cdot \zeta^j r(t_i) = \zeta^{j+i} r(t_i)\).

**Case 2:** \(n + 1\) even.

In this case, \(\zeta^{n(n+1)/2} = (-1)^i\). As a result, the map \(r : \hat{T}^\varphi_{ad} \to \hat{T}_+\) which sends

\[
t_i \mapsto \begin{cases} 
\text{diag}(1, \zeta^i, \ldots, \zeta^{i(n-1)}) & 2 \nmid i \\
\zeta^{1/2} \text{diag}(1, \zeta^i, \ldots, \zeta^{i(n-1)}) & 2 \nmid i 
\end{cases}
\]

gives a set-theoretic section \(\hat{T}^\varphi_{ad} \to \hat{T}_+\). Its cocycle is

\[
\xi_r(t_i, t_j) = \begin{cases} 
\zeta & 2 \nmid i \text{ and } 2 \nmid j \\
1 & \text{otherwise.}
\end{cases}
\]

Because of this, we see \(r(t_1)^i = \zeta^{[i/2]} r(t_i)\), so \(r(t_1)\) has order \(2(n + 1)\). On the other hand \(r(t_2)^j = r(t_2)\), so \(r(t_2)\) has order \((n + 1)/2\). Since \(r(t_2)^j\) always has a 1 in its first coordinate, and since the first coordinate of \(r(t_1)^i\) is \(\zeta^{[i/2]}\), we see that \(\langle r(t_1) \rangle \cap \langle r(t_2) \rangle = 1\). Since \(\hat{T}_+\) is abelian, we then have

\[
\hat{T}_+ \cong \langle r(t_1) \rangle \times \langle r(t_2) \rangle \cong \Z/(2n + 2) \Z \times \Z/2\Z,
\]

where the isomorphism sends \((i, j) \in \Z/(2n + 2) \Z \times \Z/2\Z\) to \(\zeta^{[i/2]} \cdot r(t_i+2j) \in \hat{T}_+\). From here on, we will use this isomorphism freely.

Since \(w_0^{-1} \cdot r(t_i) = \zeta^i r(t_i)\), we see that

\[
w_0^{-1} \cdot (i, j) = w_0^{-1} \cdot \zeta^{[i/2]} r(t_i+2j) \\
= \zeta^{[i/2]+i+2j} r(t_i+2j) \\
= \zeta^{[(3i+4j)/2]} r(t_3 + (4j + 2(-i-j))) \\
= (3i + 4j, -i - j).
\]

Also note that

\[
\begin{pmatrix} 3 & 4 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 2n + 1 & 4n \\ -n & -2n + 1 \end{pmatrix} = \begin{pmatrix} 2(n + 1) + 1 & 4(n + 1) \\ -(n + 1) & -2(n + 1) + 1 \end{pmatrix},
\]

so explicitly, \(w_0^{-\ell} \cdot (i, j) = ((2\ell + 1)i + 4\ell j, -\ell i + (2\ell + 1)j)\).

Now for a given character \(\chi\) of \(A\), write \(B\) for the maximal subgroup of \(C_+\) to which \(\chi\) extends, and write \(E\) for the image of this subgroup in \(W^\varphi_s\). As a subgroup of \(W^\varphi_s\), we know that

\[
E \cong \langle w_0^{k'} \rangle \cong \Z/n^{k'}\Z
\]

for some \(k'|n + 1\). Define \(v := w_0^{k'}\).

First, suppose that \(2 \nmid k'\). In this case, \(\text{det}(P(v)) = (-1)^{k'} = 1\), so the map \(s : E \to B\) sending \(v^\ell \mapsto P(v^\ell)\) gives a splitting of \(E\) into \(B\). As a result, \(\chi\) is virtually split.

On the other hand, suppose that \(2 \nmid k'\). Since \(\chi \in X(\Z/(2n + 2) \Z \times \Z/2\Z),\) we know that \(\chi(i, j) = x_1^i x_2^j\), where \(x_1 \in \mu_{2(n+1)}\) and \(x_2 \in \mu_{(n+1)/2}\). Since \(\chi\) is fixed by \(E\), we know in particular that \(\chi(1, 0) = v^{-1} \cdot \chi(1, 0)\). As a result,

\[
x_1 = x_1^{2k'+1} x_2^{-k'},
\]

so

\[(4.1.2) \quad x_2^{k'} = x_1^{2k'}.
\]
Since \( \det(\zeta^{1/2}P(w_0)) = 1 \), the map \( s : E \to B \) sending \( v^\ell \mapsto (\zeta^{1/2}P(w_0))^{k\ell} \) gives a set-theoretic section of \( E \) into \( B \). The cocycle of this section is:

\[
\xi_s(v^i, v^j) = \begin{cases} 
1 & i + j < \frac{n+1}{k'} \\
-1 & i + j \geq \frac{n+1}{k'}.
\end{cases}
\]

Note that \(-1 \in \hat{T}_+\) corresponds to \((n+1,0) \in \mathbb{Z}/(2n+2)\mathbb{Z} \times \mathbb{Z}/\frac{n+1}{2}\mathbb{Z}\). Since \(2|n+1\) but \(2 \nmid k'\), we know that \(2^{n+1/k'}\). Raising Equation 4.1.2 to the power of \(\frac{n+1}{2k'}\) and remembering that \(x_2 \in \mu_{(n+1)/2}\), we see that \(x_1^{n+1} = x_2^{(n+1)/2} = 1\).

As a result, \(\chi \circ \xi_s = 1\), so in this case, \(\chi\) is also virtually split. As a result, the sequence \(1 \to \hat{T}_+ \to C_+ \to W_\phi^* \to 1\) is virtually split.

4.2. **Type \(B_n\).** (1) Let

\[
J = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & 1 & 0 \\ \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix} \in \text{Mat}_{2n+1}.
\]

Then in this coordinate system,

\[
\hat{G}_{ad} = \text{SO}_{2n+1} = \{X \in \text{Mat}_{2n+1} : \det(X) = 1 \text{ and } X^T J X = J\}
\]

and

\[
\hat{T}_{ad} = \{t = \text{diag}(t_1, \ldots, t_n, 1, t_{n+1}^{-1}, \ldots, t_n^{-1}) \in \text{SO}_{2n+1} : t_i \neq 0\}.
\]

Then \(\alpha_i(t) = t_n, \alpha_i(t) = t_i/t_{i+1}\) if \(i \neq n\) gives the basis for \(\Delta\). The extended Dynkin diagram for type \(B_n\) is:

\[\begin{array}{c}
\cdot \\
\cdots \\
\cdot \\
\end{array}\]

The alcove stabilizer \(\Omega\) acts on \(\hat{D}(\mathfrak{g})\) via reflecting \(\alpha_0\) and \(\alpha_1\), so the elements fixed by a nontrivial reflection \(\varpi \in W_\phi^*\) are given by

\[x = \sum_{i=0}^n s_i v_i\]

such that \(s_0 = s_1, \sum_{i=0}^n s_i = 1\). In type \(B_n\), \(v_1 = \varpi_1\) and \(v_i = \varpi_i/2\) if \(i \neq 1\). Then a nontrivial \(\varpi \in W_\phi^*\) which fixes \(x\) is

\[\varpi = (1,0,\cdots,0) \times \text{id} \in (\mathbb{Z}/2\mathbb{Z})^n \rtimes \Sigma_n.\]

Furthermore, we see

\[W_\phi^* = \langle \varpi \rangle = \mathbb{Z}/2\mathbb{Z},\]

and the regular, but not strongly regular elements are of the form

\[(4.2.1)\quad s = \text{diag}(s_1, \cdots, s_n, 1, s_n^{-1}, \cdots, s_1^{-1}),\]

where

\[s_i = \exp \pm 2\pi i t_i, \quad t_1 = 1/2 > t_2 > \cdots > t_n > 0.\]

(2) Let \(w_0 = \tau \times \sigma \in (\mathbb{Z}/2\mathbb{Z})^n \rtimes \Sigma_n\) denote image of \(\varphi\) in \(W\). Observe, \(T^\varphi\) is finite if and only if \(w_0\) is a product of negative cycles. Furthermore, \(W_\phi^* \neq \{1\}\) if and only if \(ww_0 = w_0w\), which implies the first cycle of \(\varphi\) is length 1. Assume, after some conjugation, that \(\varphi = \varphi_{i_1} \sqcup \cdots \sqcup \varphi_{i_m}\) where \(i_1 = 1, \varphi_{i_k+1} = (i_{k+1} + 1, \ldots, i_{k+1})\) is a negative cycle whose action on \(\hat{T}\) is given by

\[
\varepsilon^*_{i_k+1} \to \varepsilon^*_{i_k+1} - \varepsilon^*_{i_k+1}, \quad \varepsilon^*_{i_{k+1}+1} \to \varepsilon^*_{i_{k+1}}, \quad \varepsilon^*_{i_{k+1}} \to -\varepsilon^*_{i_{k+1}}.
\]
With these restrictions on \( \varphi \), we see

\[
\widehat{T}_\text{ad}^\varphi \cong (\mathbb{Z}/2\mathbb{Z})^m,
\]

where \( m \) is the number of (negative) cycles of \( \varphi \).

(3) Taking the general form of \( \varphi = \tau \times \sigma \in (\mathbb{Z}/2\mathbb{Z})^n \times \Sigma_n \) and \( s = \text{diag}(s_1, \ldots, s_n, 1, s_n^{-1}, \ldots s_1^{-1}) \) where \( s_j = e^{2\pi i t_j} \), and \( t_1 = 1/2 > t_2 > \cdots t_n > 0 \) found in (1), (2), we see

\[
w_0.s = \text{diag}( -1, s_1^{\tau(1)}, s_2^{\tau(2)}, \ldots, s_n^{\tau(n)}, 1, \ldots, -1) = \varphi.s.\varphi^{-1},
\]

and we want this to equal

\[
s^p = ((-1)^p, s_1^p, \ldots, s_n^p, 1, \ldots, (-1)^p).
\]

This places the restrictions

(4.2.2) \[ t_j = \frac{l_j}{p^{k_j} + 1}, \] where \( k_j = \) order of cycle in \( \varphi \) containing \( j \)

for \( l_j \) integers which must make \( \{t_j\} \) satisfy \( 1/2 = t_1 > t_2 > \cdots > t_n > 0 \), meaning

\[
\frac{\tau(j)l_{\sigma(j)} - plc_j}{p^{k_j} + 1} \in \mathbb{Z}.
\]

The key takeaway is given a prime \( p \) and the rank(\( \widehat{G} \))=n, there are only finitely many pairs \((s,\varphi)\) which satisfy (1),(2),(3), and the restriction on \( s \) described in 4.2.2 allows for one to write a computer program which outputs all possible pairs.

(4) We will show the Langlands-Shelstad section directly gives a splitting of \( W_\sigma^s \to \text{Cent}(s, \varphi; \widehat{G}_\text{ad}) \).

The set of roots \( \alpha \in \Phi^+ \) such that \( w^{-1}\alpha < 0 \) is given in the following table:

**Table 4.2.1. B\(_n\) Roots**

<table>
<thead>
<tr>
<th>( \alpha &gt; 0 )</th>
<th>( \varepsilon_1 )</th>
<th>( \varepsilon_1 - \varepsilon_j, j &gt; 1 )</th>
<th>( \varepsilon_1 + \varepsilon_j, j &gt; 1 )</th>
<th>( -\varepsilon_1 - \varepsilon_j, j &gt; 1 )</th>
<th>( -\varepsilon_1 + \varepsilon_j, j &gt; 1 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( w^{-1}\alpha &lt; 0 )</td>
<td>(-\varepsilon_1 )</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using Table 2.3.1 and 4.2.1 we easily compute

\[
n(w)^2 = \xi(w, w) = 1/2[2\varepsilon_1^* + \sum_{j=1}^{\Phi^+}((\varepsilon_j^* + \varepsilon_j^*) + (\varepsilon_j^* - \varepsilon_j^*))] = n\varepsilon_1^* \in \widehat{P}.
\]

Recall \( \widehat{T}_\text{ad} = V/\widehat{P} \), so \( w^2 = 1 \in \widehat{T}_\text{ad} \) which shows the Langlands-Shelstad section is a splitting. Using that \( \varphi(1) = -1 \) and \( \varphi \) is product of negative cycles, we see

\[
\{\alpha \in \Phi^+ : w^{-1}\alpha < 0 \text{ and } w_0^{-1}w^{-1}\alpha > 0\} = \{\varepsilon_1, \varepsilon_1 \pm \varepsilon_j, 1 < j\},
\]

and

\[
\{\alpha \in \Phi^+ : w_0^{-1}\alpha < 0 \text{ and } w^{-1}w_0^{-1}\alpha > 0\} = \{\varepsilon_1, \varepsilon_1 \pm \varepsilon_j, 1 < j\}.
\]

Since

\[
[n(w), n(w_0)] = \xi_s(w, w_0)\xi(w_0, w)^{-1} = n\varepsilon_1^* + n\varepsilon_1^* = 2n\varepsilon_1^* \in \widehat{Q},
\]

the lift of \( w \) lives in both \( \widehat{T}_\text{ad}^\varphi \) and \( \widehat{T}_\text{ad}^\varphi \). Finally, observe that \( w \) acts trivially on \( \widehat{T}_\text{ad}^\varphi \), hence we have shown

\[
\text{Cent}(s, \varphi, \widehat{G}_\text{ad}) = \widehat{T}_\text{ad} \times W_\sigma^s = (\mathbb{Z}/2\mathbb{Z})^m \times \mathbb{Z}/2\mathbb{Z},
\]

where \( m \) is the number of cycles in \( \varphi \).

(5) We first prove

\[
\widehat{T}_+ \cong (\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})^{m-1}.
\]
We see a basis of \( \widehat{T}^e_{ad} \) is given by \( \langle 1/2\varepsilon_1^*, 1/2\varepsilon_2^* + \cdots + 1/2\varepsilon_{m-1}^*, \cdots, 1/2\varepsilon_{i_m+1}^* + \cdots + 1/2\varepsilon_{i_m}^* \rangle \). Then the pre-image in the simply-connected cover has basis given by \( \langle f, e_2, \ldots, e_m \rangle \) where
\[
\begin{align*}
f &= 1/2\varepsilon_1^*, \\
e_k &= 1/2\varepsilon_{i_k+1}^* + \cdots + 1/2\varepsilon_{i_{k+1}^*}^* \quad \text{if } i_k \text{ even}, \\
e_k &= 1/2\varepsilon_{i_k+1}^* + 1/2\varepsilon_{i_{k+1}^*}^* + \cdots + 1/2\varepsilon_{i_{k+1}^*}^* \quad \text{if } i_k \text{ odd}.
\end{align*}
\]
We can see this indeed gives a basis and implies \( \widehat{T}^e_+ \cong \mathbb{Z}/4\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z})^{m-1} \). Now it is straightforward to verify \( w.f = f^3 \) and \( w.e_k = e_k \) if \( i_k \) even and \( w.e_k = f^3 e_k \) if \( i_k \) odd.

By Table 4.2.1, \( \xi(w, w) \in \hat{Q} \) if \( n \) is even, so we again have a splitting: \( \text{Cent}(s, \varphi; \widehat{G}_{ad})_+ \cong \widehat{T}^e_+ \times \mathbb{Z}/2\mathbb{Z} \) and we know its representations. If \( n \) is odd, then \( n(w) \) has order 4. Let \( \chi : \widehat{T}^e_+ \rightarrow \mathbb{C}^\times \) be a character. Then \( w.\chi(f) = x_1 = \chi(w.f) = x_1^3 \) implies \( x_1 = \pm 1 \). Thus, \( \chi_s(w, w) = \chi(-1) = \chi(f^2) = 1 \) and thus from 3.2.4 we see \( \sigma : (W^e_s)^\chi = W^e_s \) must be a character. This means all irreducible representations of \( \text{Cent}(s, \varphi; \widehat{G}_{ad})_+ \) are either of the form
\[
\text{Ind}^{\text{Cent}(s, \varphi; \widehat{G}_{ad})_+}_{\widehat{T}^e_+} \chi
\]
when \( w.\chi \neq \chi \) or of the form
\[
\widetilde{\chi} : \text{Cent}(s, \varphi; \widehat{G}_{ad})_+ \rightarrow \mathbb{C}^\times,
\]
defined by
\[
\widetilde{\chi}(tn(w)) = \chi(t)\sigma(w)
\]
for a character \( \sigma \) of \( W^e_s \).

4.3. **Type \( C_n \).** Define the group homomorphism \( P : \Sigma_k \rightarrow GL_k(\mathbb{C}) \) which sends an element \( \sigma \in \Sigma_k \) to its corresponding permutation matrix \( P(\sigma) \), i.e. the matrix such that for all \( M \in \text{Mat}_k(\mathbb{C}) \) we have \( (P(\sigma)MP(\sigma)^{-1})_{ij} = M_{\sigma^{-1}(i)\sigma^{-1}(j)} \). Also, given a function \( f : \{1, \ldots, k\} \rightarrow \mathbb{C} \), define the matrix \( \Lambda(f) \) such that
\[
\Lambda(f)_{ij} = \begin{cases} 
f(i) & i = j \\
0 & i \neq j. \end{cases}
\]
With these definitions, note that
\[
P(\sigma)\Lambda(f)P(\sigma)^{-1} = \Lambda(f \circ \sigma^{-1}).
\]
Now consider the alternating bilinear form
\[
J = \begin{pmatrix}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & -1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 1 & \cdots & 0 & 0 \\
-1 & 0 & \cdots & 0 & 0
\end{pmatrix} = \Lambda((-1)^i)P(\rho) \in \text{Mat}_{2n}(\mathbb{C}),
\]
where \( \rho \in \Sigma_{2n} \) is the permutation sending \( i \mapsto 2n + 1 - i \). Having chosen this \( J \), we can present \( Sp_{2n}(\mathbb{C}) \) as
\[
Sp_{2n}(\mathbb{C}) = \{ X \in GL_n(\mathbb{C}) \mid X^TJX = J \}.
\]
In this presentation, we can choose the maximal torus
\[
\widehat{T}_{sc} = \{ \text{diag}(t_1, \ldots, t_n, t_n^{-1}, \ldots, t_1^{-1}) \}.
\]
Then in the adjoint case we get
\[
\widehat{G}_{ad} = PSp_{2n}(\mathbb{C}) = Sp_{2n}(\mathbb{C})/\mu_2
\]
and

\[ \widetilde{T}_{ad} = \widetilde{T}_{sc}/\mu_2. \]

Now write \( \{b_1, \ldots, b_n\} \) for the standard basis of \((\mathbb{Z}/2\mathbb{Z})^n\) and define a homomorphism \( q_1 : (\mathbb{Z}/2\mathbb{Z})^n \to \Sigma_{2n} \) which sends \( b_i \mapsto (i, 2n + 1 - i) \). Note that \( q_1((\mathbb{Z}/2\mathbb{Z})^n) \) commutes with \( \rho \). There is an embedding \( \Sigma_n \hookrightarrow \Sigma_{2n} \) given by having an element \( \sigma \in \Sigma_n \) act on only the first \( n \) coordinates of \( \{1, \ldots, 2n\} \). With this identification in mind, define the function \( q_2 : \Sigma_n \to \Sigma_{2n} \) which sends \( \sigma \mapsto \rho \sigma \rho \sigma \). Note that for any elements \( \sigma, \tau \in \Sigma_n \), we know that \( \sigma \) and \( \rho \tau \rho \) commute, so that \( \rho \) commutes with \( q_2(\sigma) \) and \( q_2 \) is a homomorphism. Finally, note that for any \( x \in (\mathbb{Z}/2\mathbb{Z})^n \) and any \( \sigma \in \Sigma_n \), we have that \( q_2(\sigma)q_1(x) = q_1(\sigma x) \), where \( \Sigma_n \) acts on \((\mathbb{Z}/2\mathbb{Z})^n\) by permuting coordinates. We therefore obtain an injective group homomorphism \( q : W \hookrightarrow \Sigma_{2n} \) which sends \( x \times \sigma \mapsto q_1(x)q_2(\sigma) \).

Note that \( q(W) \) commutes with \( \rho \).

For \( \sigma \in \Sigma_{2n} \), define the function \( s_\sigma : \{1, \ldots, 2n\} \to \mathbb{C} \) by

\[ s_\sigma(i) = \begin{cases} \frac{(-1)^{i+\sigma^{-1}(i)}}{1} & i \leq n \\ 1 & i > n. \end{cases} \]

Note that if \( \sigma \) and \( \rho \) commute, we have

\[ s_\sigma \circ \rho = \begin{cases} \frac{(-1)^{\rho(i)+\sigma^{-1}(\rho(i))}}{1} & \rho(i) \leq n \\ 1 & \rho(i) > n \end{cases} \]

\[ = \begin{cases} \frac{(-1)^{i+\sigma^{-1}(i)}}{1} & i > n \\ 1 & i \leq n \end{cases} \]

\[ = (-1)^{i+\sigma^{-1}(i)}s_\sigma. \]

Now define the map \( R : \Sigma_{2n} \to GL_{2n}(\mathbb{C}) \) which sends \( \sigma \mapsto \Lambda(s_\sigma)P(\sigma) \). Note that for \( \sigma \in \Sigma_2^n \), we have that

\[ R(\sigma)^TJR(\sigma) = P(\sigma^{-1})\Lambda(s_\sigma)\Lambda((-1)^i)P(\rho)\Lambda(s_\sigma)P(\sigma) \]

\[ = P(\sigma^{-1})\Lambda(s_\sigma)\Lambda((-1)^i)\Lambda(s_\sigma \circ \rho)\Lambda(\rho \sigma) \]

\[ = P(\sigma^{-1})\Lambda((-1)^{i+1})P(\rho \sigma) \]

\[ = \Lambda((-1)^i)P(\rho) \]

\[ = J, \]

so \( R \) maps \( \Sigma_{2n}^\rho \) into \( Sp_{2n}(\mathbb{C}) \). As a result, \( n = R \circ q \) is an injective map from \( W \to Sp_{2n}(\mathbb{C}) \). Since \( n(w) \) acts on our chosen \( \widehat{T}_{sc} \) in the same way as \( w \), we see that \( n \) is a set-theoretic section of the exact sequence \( 1 \to \widehat{T}_{sc} \to N(\widehat{T}_{sc}) \to W \to 1 \). Since \( n = R \circ q \), where \( q \) is a group homomorphism, we see that \( \xi_n = \xi_R \circ q \). Now we compute \( \xi_R \):

\[ \xi_R(\sigma, \tau) = \Lambda(s_\sigma)P(\sigma)\Lambda(s_\tau)P(\tau)(\Lambda(s_\sigma \circ \sigma^{-1})P(\sigma \tau))^{-1} \]

\[ = \Lambda(s_\sigma)\Lambda(s_\tau \circ \sigma^{-1})P(\sigma)P(\tau)P(\sigma \tau)^{-1}\Lambda(s_\sigma \circ \sigma^{-1}). \]

Observe

\[ s_\sigma \cdot s_{\sigma \tau} = \begin{cases} (-1)^{i+\sigma^{-1}(i)+i+\tau^{-1}\sigma^{-1}(i)} & i \leq n \\ 1 & i > n \end{cases} \]

\[ = \begin{cases} (-1)^{i+\sigma^{-1}(i)+i+\tau^{-1}\sigma^{-1}(i)} & i \leq n \\ 1 & i > n \end{cases} \]
and
\[ s_{\tau} \circ \sigma^{-1} = \begin{cases} (-1)^{\sigma^{-1}(i) + \tau^{-1}\sigma^{-1}(i)} & \sigma^{-1}(i) \leq n \\ 1 & \sigma^{-1}(i) > n, \end{cases} \]
so that
\[ s_{\sigma} \cdot (s_{\tau} \circ \sigma^{-1}) \cdot s_{\sigma^{T}} = \begin{cases} (-1)^{\sigma^{-1}(i) + \tau^{-1}\sigma^{-1}(i)} & (\sigma^{-1}(i) \leq n) \oplus (i \leq n) \\ 1 & \text{otherwise}, \end{cases} \]
where here \( \oplus \) denotes logical exclusive or. Now let \( m \in \Sigma_{n} \) denote the permutation sending \( i \mapsto n + 1 - i \). Note that \( q_{1}(m) \) is the permutation sending \( i \mapsto n + 1 - i \) if \( i \leq n \) and \( i \mapsto 3n + 1 - i \) if \( i > n \). If we suppose that \( \sigma \) and \( \tau \) commute with \( q_{1}(m) \), then we see that
\[ (s_{\sigma} \cdot (s_{\tau} \circ \sigma^{-1}) \cdot s_{\sigma^{T}}) \circ q_{1}(m) = \begin{cases} (-1)^{q_{1}(m)\sigma^{-1}(i)+q_{1}(m)\tau^{-1}\sigma^{-1}(i)} & (\sigma^{-1}(i) \leq n) \oplus (i \leq n) \\ 1 & \text{otherwise}. \end{cases} \]

Note that \( q_{1}(m)\sigma^{-1}(i) + q_{1}(m)\tau^{-1}\sigma^{-1}(i) \) always equals \( \sigma^{-1}(i) + \tau^{-1}\sigma^{-1}(i) \) mod 2, so
\[ (s_{\sigma} \cdot (s_{\tau} \circ \sigma^{-1}) \cdot s_{\sigma^{T}}) \circ q_{1}(m) = s_{\sigma} \cdot (s_{\tau} \circ \sigma^{-1}) \cdot s_{\sigma^{T}}. \]

We conclude that if we compose \( n \) with the projection \( p : S_{p_{2n}}(C) \rightarrow PSp_{2n}(C) \), we obtain a section of the exact sequence \( 1 \rightarrow \hat{T}_{ad} \rightarrow N(\hat{T}_{ad}) \rightarrow W \rightarrow 1 \) whose cocycle is \( p \circ s \).

(1) The highest root of a root system of type \( C_{n} \) is \( 2\alpha_{1} + \ldots + 2\alpha_{n-1} + \alpha_{n} \) so the vertices of the fundamental alcove are \( v_{i} = \hat{\omega}_{i}/2 \) for \( i < n \) and \( v_{n} = \check{\omega}_{n} \). The extended Dynkin diagram for \( C_{n} \) is
\[ \cdots \bullet \cdots \]
Hence \( \Omega \cong \mathbb{Z}/2\mathbb{Z} \), where the nontrivial element acts by reflecting the diagram, i.e sending \( v_{i} \mapsto v_{n-i} \).

As a result, when written in barycentric coordinates, the nontrivial elements of the fundamental alcove which are fixed by this element are of the form
\[ x = \sum_{i=0}^{n} s_{i} v_{i} \]
such that \( s_{n-i} = s_{n-i}, \sum_{i=0}^{n} s_{i} = 1, \) and \( s_{i} > 0 \) for all \( i \). Since \( \check{\omega}_{i} = \sum_{j=1}^{i} \varepsilon_{j}^{*} \) for \( i < n \) and \( \check{\omega}_{n} = \sum_{j=1}^{n} \varepsilon_{j}^{*}/2 \), we see that
\[ \exp(x) = (e^{\pi it_{1}}, \ldots, e^{\pi it_{n}}, e^{-\pi it_{n}}, \ldots, e^{-\pi it_{1}}), \]
where \( t_{i} = \sum_{j=1}^{n} s_{j} \), so in particular \( t_{i} + t_{n+1-i} = 1 \) and \( t_{i} > t_{i+1} \).

(2) Since any element \( \varphi \in W \) can be conjugated into an element which is a product of signed cycles, and since in \( S_{p_{2n}}(C) \) it is obvious that a product of signed cycles has a finite set of fixed points in \( \hat{T}_{sc} \) if and only if it is a product of negative cycles, by \( \text{2.2.2} \) and \( \text{2.2.3} \) we see that \( \hat{T}^{\varphi} \) is finite if and only if \( \varphi \) is conjugate to a product of negative cycles.

Write \( w \) for the projection of the nontrivial element of \( \Omega \) to \( W \). Then
\[ w = (1, 1, \ldots, 1) \times m. \]
Since \( \mathbb{Z}/2\mathbb{Z}^{n} \) is abelian and \( (1, 1, \ldots, 1) \) is fixed by every element of \( \Sigma_{n} \) under its action on \( \mathbb{Z}/2\mathbb{Z}^{n} \), we see that
\[ w_{0}w_{0}^{-1} = w_{0}(1, 1, \ldots, 1)w_{0}^{-1}, \]
so \( w_{0} \) commutes with \( w \) if and only if \( w_{0} \) commutes with \( m \). If it is the case that both \( w_{0} \) commutes with \( m \) and \( \hat{T}^{w_{0}} \) is finite, then we can conjugate \( w_{0} \) by elements of \( W \) which commute with \( m \) so that it is of the form \( em_{\psi}m_{\psi} \), where \( e \) sends \( \varepsilon_{[n/2]}^{*} \) to \( -\varepsilon_{[n/2]}^{*} \) when \( n \) is odd and \( \psi \)
is a product of negative cycles acting only on the coordinates $\{1, \ldots, \lfloor \frac{n}{2} \rfloor \}$. Explicitly, there exist $1 \leq i_1 < i_2 < \ldots < i_m \leq \lfloor \frac{n}{2} \rfloor$ such that

$$\psi(e_j) = e_{j+1}^*$$

for $j \notin \{i_1, i_2, \ldots, i_m\}$ and $\psi(e_{i_j}^*) = -e_{i_{j-1}+1}^*$.

On the other hand, if we can conjugate $w_0$ into such a form by elements of $W$ which commute with $m$, then $\hat{T}^{\psi}$ is finite and $\varphi$ commutes with $m$. As a result, we will now assume that $w_0$ is of the form $em^s \varphi \psi$.

Write $l$ for the number of cycles of $\phi$. We will now show that

$$T_{ad}^{\phi} \cong \begin{cases} (\mathbb{Z}/2)^l & \text{all cycles have even length or all have odd length} \\ (\mathbb{Z}/2)^{l-2} \times \mathbb{Z}/4 & \text{otherwise.} \end{cases}$$

Since $T_{sc}^{\phi} \cong (\mathbb{Z}/2)^l$, we know that $|T_{ad}^{\phi}| = 2^l$. We will write out a basis for $T_{ad}^{\phi}$ to describe it explicitly. For notational convenience, we will present basis elements via elements of $V$ which exponentiate to desired basis element. If $w_0$ has at least one cycle of even length and one of odd length, then we can conjugate $w_0$ so that the first cycle has odd length and the second cycle has even length. In this case, if $n$ is even, a basis for $T_{ad}^{\phi}$ is given by $\{e_3, \ldots, e_m, e_m', \ldots e_1', f\}$, where

$$e_k = \frac{1}{2} e_{i_k}^* + \ldots + \frac{1}{2} e_{i_{k+1}-1}^*,$$

$$e_{k'} = \frac{1}{2} e_{i'_{k+1}+1}^* + \ldots + \frac{1}{2} e_{i'_k}^*,$$

$$f = \sum_{i_{k+1} - i_k \text{ even}} \left[ \sum_{j=0}^{i_{k+1} - i_k - 1} \frac{1}{2} e_{i_k+j}^* + \frac{1}{2} e_{i_k-j}^* \right] + \sum_{i_{k+1} - i_k \text{ odd}} \left[ \sum_{j=0}^{i_{k+1} - i_k - 1} \frac{(-1)^j}{4} e_{i_k+j}^* + \frac{(-1)^j}{4} e_{i'_k-j}^* \right].$$

Here, $i_k'$ denotes $m(i_k) = n+1-i_k$. Note that $\phi e_k \phi^{-1} = e_k$ and $\phi f \phi^{-1} = -f = f$, so these elements all lie in $T_{ad}^{\phi}$. We know $e_k$ has order 2, and since there is at least one even cycle and at least one odd cycle, $f$ has order 4. Because all of the basis elements we have written down are linearly independent, we see by a counting argument that they span $T_{ad}^{\phi}$. As a result, in this case $T_{ad}^{\phi} \cong (\mathbb{Z}/2)^{l-2} \times \mathbb{Z}/4$. The case when $n$ is odd is only slightly different: just take the basis $\{e_3, \ldots, e_m, e_m'+1, e_{m'}', \ldots e_{1}'', f\}$, where $e_{m+1} = \frac{1}{2} e_{n/2}^*$.

On the other hand, if either all of the cycles of $w_0$ have odd length, or if they all have even length, then $f$ has order 2. In this case, if $n$ is even, take the basis $\{e_2, e_3, \ldots, e_m, e_m'+\ldots e_{1}'', f\}$ and if $n$ is odd, take the basis $\{e_2, e_3, \ldots, e_m, e_m'+e_{m'}', \ldots e_{1}'', f\}$. Since all basis elements have order 2, we see $T_{ad}^{\phi} \cong (\mathbb{Z}/2)^l$.

(3) Assume $s$ is as given in (insert equation) and $w_0$ is in the normal form discussed in step (2). Let $w_0^{-1} (s_1, \ldots, s_n) = (s_2, s_3, \ldots, s_i, s_1^{-1}, \ldots)$, so we will actually compute pairs $(s, \phi) : \phi^{-1}s\phi = s^p$ because it makes the notation easier. We follow the same procedure as in step (3) for type $A_n, B_n$ to find $s = (s_1, \ldots, s_n)$ must satisfy $s_i^{p^{i+1}+1} = e^{1+1}$, where $e^2 = 1$ and we get a string of
inequalities:

\[
\frac{k_1(i_1 + 1)}{2p^{i_1+1}} > \left\{ \frac{pk_1(i_1 + 1)}{2(p^{i_1} + 1)} \right\} > \cdots > \left\{ \frac{p^{i_1-1}k_1(i_1 + 1)}{2(p^{i_1} + 1)} \right\} > \cdots > \left\{ \frac{p^{i_j-i_j-1}k_j(i_j - i_j-1 + 1)}{2(p^{i_j-i_j-1} + 1)} \right\} > \cdots > \left\{ \frac{p^{i_j-i_j-1}k_j(1)}{2(p^{i_j-i_j-1} + 1)} \right\} > 1/4,
\]

where \( k_j \in \mathbb{Z}, j \in \{1, \ldots, m\}, m \) = number of cycles of \( w_0 \), are the free parameters chosen to make this inequality hold, and \( \{x\} \) denotes the fractional part of \( x \). The key takeaway again is for a given prime \( p \), there exists only finitely many pairs \((s, \phi)\) which can be determined systematically on a case-by-case basis using a computer program.

(4) In order to apply the machinery of section 3.4 to \( n \), we need to pick lifts of \( c(id, w_0), c(w, w_0), \xi(1, 1), \xi(w, 1) \), and \( \xi(w, w) \). Lift \( c(id, w_0), \xi(1, 1), \xi(1, w) \), and \( \xi(w, 1) \) to \( 0 \). Note that

\[
\xi_s(w, w) = \begin{cases} \left( \frac{(-1)^{w(i)+i}}{1} \right) & (w(i) \leq n) \oplus (i \leq n) \\ \Lambda((-1)^{w(i)+i}) & \text{otherwise} \end{cases}
\]

so we can lift \( \xi(w, w) \) to \( n \hat{\omega}_n \). Finally, note that \( c(w, w_0) = \Lambda((-1)^{f(i)}) \), where \( f : \{1, \ldots, 2n\} \rightarrow \{0, 1\} \). We can then lift \( c(w, w_0) \) to \( \sum_{i=1}^{n} f(i)x_i^+ / 2 \). Since both \( w_0 \) and \( w \) commute with \( m \), we know that \( m \cdot c(w, w_0) = c(w, w_0) \), so \( f \circ m = f \). From this, we can see that \( w \cdot \hat{c}(w, w_0) = -\hat{c}(w, w_0) \). As a result, for any \( w_1, w_2 \in \hat{W}_s^\varphi \), we see that

\[
\hat{c}(w_1, w_0) + w_1 \cdot \hat{c}(w_2, w_0) - \hat{c}(w_1w_2, w_0) = 0.
\]

We can then conclude that

\[
\hat{c}(w_1, w_0) + w_1 \cdot \hat{c}(w_2, w_0) - \hat{c}(w_1w_2, w_0) + (\varphi - 1)\hat{\xi}(w_1, w_2) = (\varphi - 1)\hat{\xi}(w_1, w_2)
\]

is equal to \( (\varphi - 1)p \) for some \( p \in \hat{P} \) (either 0 or \( n\hat{\omega}_n \)). As a result, the sequence \( 1 \rightarrow \hat{T}^\varphi \rightarrow \text{Cent}(s, \varphi; \hat{G}_{ad}) \rightarrow \hat{W}_s^\varphi \rightarrow 1 \) splits.

(5) First we will show that

\[
\hat{T}_+ \cong \begin{cases} \left( \mathbb{Z}/2 \right)^{l+1} & \text{all cycles of } w_0 \text{ have even length} \\ \left( \mathbb{Z}/2 \right)^{l-1} \times \mathbb{Z}/4 & \text{otherwise}, \end{cases}
\]

where \( l \) is the number of cycles of \( w_0 \). First note that \( \hat{T}_+ \) is the pullback of \( \hat{T}_{ad}^\varphi \) along a map with kernel of size 2, so \( |\hat{T}_+| = 2^{l+1} \). Using the same notation as in part 2, if all of the cycles of \( w_0 \) have even length then we can pick a basis for \( \hat{T}_+ \) given by \( \{e_1, \ldots, e_m, e_{m'}, \ldots, e_{l'}, f\} \) (Whereas before, \( e_k \) was the image of \( \frac{1}{2} e_{i_k}^+ + \ldots + \frac{1}{2} e_{i_{k+1}-1}^+ \) under the exponential map from \( V \) to \( \text{PSh} \), it is now the image of the same element of \( V \) under the exponential map from \( V \) to \( \text{S_{2n}} \)). All of these elements lie in \( \hat{T}_+ \) and they all have order 2. Since they are independent, we see by a counting argument that they generate \( \hat{T}_+ \). As a result, \( \hat{T}_+ \cong \left( \mathbb{Z}/2 \right)^{l+1} \).

On the other hand, if \( w_0 \) has at least one cycle with odd length, then we can conjugate \( w_0 \) so that this is the first cycle of \( w_0 \), and take the basis \( \{e_2, \ldots, e_m, e_{m'}, \ldots, e_{l'}, f\} \) when \( n \) is even and
\{e_2, \ldots, e_m, e_{m+1}, e_{m'}, \ldots, e_f, f\} \text{ when } n \text{ is odd. In this case, } f \text{ has order 4, while all other basis elements have order 2. As before, all of these basis elements lie in } \hat{T}_+, \text{ and they are all independent, so they generate } \hat{T}_+. \text{ As a result, we see that } \hat{T}_+ \cong (\mathbb{Z}/2)^{l-1} \times \mathbb{Z}/4.

Now note that writing \( \varphi = y \times \sigma \) for \( y \in \mathbb{Z}/2^m \) and \( \sigma \in \Sigma_n \), we see that \( \varphi \cdot \tilde{\omega}_n = y \cdot \tilde{\omega}_n \), and if we (again employing the standard basis for \( \mathbb{Z}/2^m \)) write \( y = \sum_{i \in I} b_i \) for some \( I \subseteq \{1, \ldots, n\} \), then \( y \cdot \tilde{\omega}_n = \tilde{\omega}_n - \sum_{i \in I} x_i^s \). As a result, \( (\varphi - 1)\tilde{\omega}_n = -\sum_{i \in I} x_i^s \). Now consider \( p \in V \) given by

\[
p = \sum_{i \in I} \frac{x_i^s}{2} + \sum_{i \notin I, i \leq [n/2]} \frac{x_i^s - x_m(i)}{2}.
\]

Since \( \varphi \) commutes with \( m \), we know that \( I \) is preserved by \( m \), so

\[
w \cdot p = -\sum_{i \in I} \frac{x_i^s}{2} + \sum_{i \notin I, i \leq [n/2]} \frac{x_i^s - x_m(i)}{2},
\]

so that \( (w - 1)p = (\varphi - 1)\tilde{\omega}_n \). Since \( (p + \tilde{\omega}_n) \in \mathbb{Z}\{x_1^s, \ldots, x_n^s\} \), we see that \( p \in \hat{P} \). Because \( (\varphi - 1)\xi(w_1, w_2) \) is always some integer multiple of \( \tilde{\omega}_n \), we can then conclude that

\[
\hat{c}(w_1, w_0) + w_1 \cdot \hat{c}(w_2, w_0) - \hat{c}(w_1w_2, w_0) + (\varphi - 1)\hat{\xi}(w_1, w_2) = (w - 1)p'
\]

for any \( w_1, w_2 \) and some corresponding \( p' \in \hat{P} \). As a result, the sequence \( 1 \to \hat{T}_+ \to \text{Cent}(s, \varphi; \hat{G}_{ad})_+ \to W^{\rho}_n \to 1 \) is virtually split.

4.4. **Type \( D_n \).** Since \( \Omega = \mathbb{Z}/2^2 \times \mathbb{Z}/2^2 \) if \( n \) is even and \( \mathbb{Z}/4 \mathbb{Z} \) if \( n \) is odd, we split into cases of parity of \( n \).

**Case \( D_{2n} \)**

(1) Let

\[
J = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & 1 & 0 \\ \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix} \in \text{Mat}_{4n}.
\]

Then in this coordinate system,

\[
\hat{G}_{ad} = \text{PSO}_{4n} = \{X \in \text{Mat}_{4n} \colon \det(X) = 1 \text{ and } X^TJX = J\}/\mu_2
\]

and

\[
\hat{T}_{ad} = \{t = \text{diag}(t_1, \ldots, t_{2n}, t_{2n}^{-1}, \ldots, t_1^{-1}) \in \text{PSO}_{4n} : t_i \neq 0\}.
\]

Then \( \alpha_{2n}(t) = t_{2n-1} + t_{2n}, \alpha_i(t) = t_i/t_{i+1} \) if \( i \neq n \) gives the basis for \( \Delta \). The extended Dynkin diagram for type \( D_{2n} \) is

![Dynkin diagram](image)

The non-trivial symmetries of this Dynkin diagram are

\[
\Omega = \langle w_1 \rangle \times \langle w_2 \rangle = \mathbb{Z}/2^2 \times \mathbb{Z}/2^2,
\]

where

\[
w_1 : \alpha_j \leftrightarrow \alpha_{2n-j} \text{ for all } 0 \leq j \leq 2n
\]

and

\[
w_2 : \alpha_0 \leftrightarrow \alpha_{2n-1} \quad \alpha_1 \leftrightarrow \alpha_{2n} \quad \alpha_j \leftrightarrow \alpha_{2n-j} \text{ for } 2 \leq j \leq 2n - 2.
\]
In type $D_{2n}$, $v_1 = \tilde{\omega}_1, v_i = \tilde{\omega}_i/2$ for $i = 2, \ldots, 2n - 2$, $v_{2n-1} = \tilde{\omega}_{2n-1}, v_{2n} = \tilde{\omega}_{2n}$. So the regular but not strongly regular elements are ones fixed by a subgroup of $\langle w_1 \rangle \times \langle w_2 \rangle$. We treat the nontrivial case when it is fixed by both $w_1, w_2$ so that $W_\varphi^e$ is not cyclic. Then
\[ x = \sum_{i=0}^{2n} s_i v_i, \]
where $s_0 = s_1 = s_{2n-1} = s_{2n}$ and $s_i = s_{2n-i}$ for $2 \leq i \leq 2n - 2$. Thus
\[ \exp(x) = \text{diag}(e^{2\pi i t_1}, \ldots, e^{2\pi i t_{2n}}, e^{-2\pi i t_{2n}}, \ldots, e^{-2\pi i t_1}), \]
where $t_1 = 1/2 > t_2 > \cdots > t_{2n-1} > t_{2n} = 0$ and $t_i + t_{2n-i+1} = 1/2$ for all $i$. We can now describe the $w_1, w_2$ action on $\hat{T}$: $w_1 = e_1 e_{2n}$ and $w_2 = (-1).m$, where $e_i : \varepsilon_i^* \rightarrow -\varepsilon_i^*$ and fixes $\varepsilon_j^*$ for $j \neq i$ and $m : \varepsilon_j^* \rightarrow \varepsilon_{2n+1-j}^*$ for all $j$.

(2) In order for $w_0$ to commute with $w_1, w_2$ and to make $\hat{T}_\varphi^{ad}$ finite, it is shown, in the same way as for type $B_n, C_n$, that $w_0$ must be conjugate to a “normal form” $w_0' = mw_0'm^{-1}$, where
\[ w_0' = \varphi_i \cdots \varphi_i, i = 1 < i_2 = 2 < i_3 < \cdots < i_m < i_{m+1} := n+1, \]
is a signed permutation in $\{e_1^*, \ldots, e_n^*\}$ given by
\[ (w_0')^{-1} : \varepsilon_j^* \rightarrow \varepsilon_{j-1}^* \text{for} j \notin \{i_1, i_2, \ldots, i_m\} \text{and} (w_0')^{-1} : \varepsilon_{i_a}^* \rightarrow -\varepsilon_{i_{a+1}}^* \]
We further say $w_0'$ acts as identity on $\{e_{n+1}^*, \ldots, e_n^*\}$ to make this an action on $\hat{T}_\varphi^{ad}$. Notice this $\varphi$ has the same normal form as that for type $C_n$, so $\hat{T}_\varphi^{ad}$ is the same:

\[ \begin{array}{c}
\hat{T}_\varphi^{ad} = \left\{ \begin{array}{ll}
(Z/2Z)^m & \text{if all cycle lengths}\ i_{k+1} - i_k \text{ are odd} \\
(Z/2Z)_{m-2} \times Z/4Z & \text{else}.
\end{array} \right.
\end{array} \]

(3) The restrictions that $\phi s_\psi^{-1} = s^p$ makes on $(s, \phi, p)$ for type $D_n$ are very similar to that of type $B_n$ and $C_n$. We omit it for that reason and invite the reader to attempt it. Let us know if you find a (nicer) characterization!

(4) Let us record the tables arising while computing the Langlands-Shelstad section:

<table>
<thead>
<tr>
<th>$w_1^{-1} \alpha$</th>
<th>$\varepsilon_1 \pm \varepsilon_{2n}$</th>
<th>$\varepsilon_1 \pm \varepsilon_j, j &lt; 2n$</th>
<th>$\varepsilon_i \pm \varepsilon_{2n}, i &gt; 1$</th>
<th>$\varepsilon_i \pm \varepsilon_j, 1 &lt; i &lt; j &lt; 2n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varepsilon_1 \pm \varepsilon_{2n}$</td>
<td>$-\varepsilon_1 \pm \varepsilon_2n$</td>
<td>$-\varepsilon_1 \pm \varepsilon_j$</td>
<td>$\varepsilon_i \pm \varepsilon_{2n}$</td>
<td>$\varepsilon_i \pm \varepsilon_j$</td>
</tr>
</tbody>
</table>

For the action of $w_0^{-1}$, we only need to record which positive roots get sent to negative. Let
\[ B = \{i_a : a = 1, \ldots, k\} \cup \{i'_a : a = 1, \ldots, k\}, \]
where $i'_a = 2n + 1 - i_a$.

We compute $n(w_1)^2 = \xi_\alpha(w_1, w_1) = 2n \varepsilon_1^* \in \hat{Q}$ and $n(w_2)^2 = 1/2((2n-1)\varepsilon_1^* + \cdots + (2n-1)\varepsilon_{2n}^*) \in \hat{P}$ shows both lifts have order two in $\hat{T}_\varphi^{ad}$.

Now, consider the lift the section into the centralizer as described in \((3.4.1)\). Then $s(w_1) = t_{w_1} n(w_1), s(w_2) = t_{w_2} n(w_2)$, and since we are using the Langlands-Shelstad lift, the commutator $c(w_2, w_0)$ is represented by the half sum of the coroots for all roots occurring in $\Lambda_{w_2, w_0}$, where
\[ \Lambda_{\alpha, \nu} := \{\alpha > 0, (uv)^{-1} \alpha > 0\} \bigcap \{u^{-1} \alpha < 0, v^{-1} \alpha > 0\} \cup \{u^{-1} \alpha > 0, v^{-1} \alpha < 0\}. \]
Table 4.4.2. $w_0^{-1}$ action on $D_{2n}$ roots

<table>
<thead>
<tr>
<th>$\alpha$</th>
<th>$w_0^{-1}(\varepsilon_i - \varepsilon_j), i &lt; j$</th>
<th>$w_0^{-1}(\varepsilon_i + \varepsilon_j, i &lt; j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i, j \notin B$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>$i = i_a, j &lt; i_{a+1}$</td>
<td>$-$</td>
<td>+</td>
</tr>
<tr>
<td>$i &gt; i_{a+1}', j = i'$</td>
<td>+</td>
<td>$-$</td>
</tr>
<tr>
<td>$i = i_a, j \geq i_{a+1}$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>$i = i_{a}'$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>$i_{a} &lt; i &lt; i_{a+1}, j \geq i_{a+1}$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>$i_{a+1}' &lt; i &lt; i_{a}', j &gt; i_{a}'$</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Using tables 4.4.1, we find $\Lambda_{w_1,w_0} = \emptyset$, hence $n(w_1)$ is Ad-$\phi$ fixed and $t_{w_1} = 1$. Next we compute $\Lambda_{w_2,w_0}$:

$$\Lambda_{w_2,w_0} = \{\varepsilon_i \pm \varepsilon_j : i = i_a, j < i_{a+1}\}$$

$$\cup \{\varepsilon_i - \varepsilon_j : i = i_a, j \geq i_{a+1}, j \notin B\}$$

$$\cup \{\varepsilon_i - \varepsilon_j : i = i_{a}', j \notin B\}$$

$$\cup \{\varepsilon_i + \varepsilon_j : j = i_a, i \notin B\}$$

$$\cup \{\varepsilon_i + \varepsilon_j : j = i_{a}', i \leq i_{a+1}', i \notin B\}.$$

Since we chose the section to be the Langlands-Shelstad section, the lift of

$$c(w_2, w_0)(-1) = \prod_{\alpha \in \Lambda_{w_2,w_0}} \hat{\alpha}(-1) \in \hat{T}$$

to $V$ is represented by

$$\frac{1}{2} c(w_2, w_0) = \frac{1}{2} \sum_{\alpha \in \Lambda_{w_2,w_0}} \hat{\alpha}.$$

To compute $c(w_2, w_0)$, we check the contributions for $\varepsilon_{i_b}^*$ and $\varepsilon_{i_b}'$ for $i_b < i < i_{b+1}$:

$$c(w_2, w_0)|_{i_b} = \sum_{i_{b} < j < i_{b+1}} [(\varepsilon_{i_b}^* + \varepsilon_{i_b}^{'*}) + (\varepsilon_{i_b}^* - \varepsilon_{i_b}^{'*})] +$$

$$\sum_{j \geq i_{b+1}, j \notin B} (\varepsilon_{i_b}^* - \varepsilon_{i_b}^{'*}) + \sum_{i \notin B, i < i_{b}} (\varepsilon_{i_b}^* + \varepsilon_{i_b}^{'*}),$$

where $c|_i$ denotes restrict summation to terms including $\varepsilon_i^*$. So the coefficient for $\varepsilon_{i_b}^*$ is $2(i_{b+1} - i_b - 1) + (2n - i_{b+1} + 1 - (|B| - b)) + (i_b - 1 - (b - 1)) = i_{b+1} - i_b + 2n - |B| - 1$

By doing the same thing for $\varepsilon_{i_b}'$, we see its coefficient is $i_{b} - i_{b+1} + 2n - |B| + 1$.

Next, we consider $i_b < i < i_{b+1}$:

$$c(w_2, w_0)|_{i} = \sum_{a : i < i_{a+1}} (\varepsilon_{i_b}^* \pm \varepsilon_i) + \sum_{a : i \geq i_{a+1}} (\varepsilon_{i_a}^* - \varepsilon_i^*) +$$

$$\sum_{a : i < i_{a}'} (\varepsilon_i^* + \varepsilon_{i_a}^{'*}) + \sum_{a : i \leq i_{a+1}'} (\varepsilon_i^* + \varepsilon_{i_a}^{'*}).$$

So the coefficient of $\varepsilon_i^*$ is $(1 - 1) - (b - 1) + (k - b) + k = |B| - 2b + 1.$
In much a similar way, one finds coefficient for \( \varepsilon_i^*, i^*_b + 1 < i < i^*_b \) is \( 2b - |B| - 1 \). In conclusion, 

\[
\hat{C}(w_2, w_2)_i := 1/2(w_2.c(w_2, w_0) + c(w_2, w_0))_i = \begin{cases} 
i_{b+1} - i_b - 1 & \text{if } i = i_b \\
-i_{b+1} + i_b + 1 & \text{if } i = i^*_b \\
2k - 2b + 1 & \text{if } i_b < i < i^*_b \\
-2k + 2b - 1 & \text{if } i^*_b + 1 < i < i^*_b, 
\end{cases}
\]

where \( \hat{C}_i \) denotes the \( i \)-th coordinate of \( \hat{C} \) in the \( \varepsilon_i^* \) coordinates.

Finally, it is immediate to check \( \hat{C}(w_2, w_2) = (\phi - 1)p \), where \( p \in \hat{P} \) is defined as \( p = (p_k) \), with \( p_{i_{b+1} - 1} = (i_{b+1} - i_b - 1)(k-1) \), and \( p_{i_b - 1} = p_{i_b - 1} + l(2k - 2b + 1) \) for \( 1 < l < i_{b+1} - i_b \). Thus we have shown \( s(w_2)^2 = (t_w n(w_2))^2 = 1 \).

To summarize: \( s(w_1) = n(w_1), s(w_2) = t_w n(w_2) \) and the computation for \( \hat{C}(w_2, w_2) \) shows \( s(w_2)^2 = (t_w n(w))^2 = 1 \). Observe \( |s(w_1), s(w_2)| = (t_w^{-1}, [n(w_1), n(w_2)]) \) and \( \Lambda_{w_1, w_2} = \{ \varepsilon_i \pm \varepsilon_j : 1 < j < 2n \} \) implies \( 1/2c(w_1, w_2) = 1/2(2n-2)(\varepsilon_1 \pm \varepsilon_2) \in \hat{Q} \), thus \( n(w_1), n(w_2) \) = 1. We compute directly \( (i_{w_1}^{-1}, w_2 t_{w_1}) = |B/2\varepsilon_1| / |B/2\varepsilon_2| \in \hat{Q}, \) thus \( (t_{w_1}^{-1}, w_1 t_w) = 1 \) and \( [s(w_1), s(w_2)] = 1 \). Finally, \( s(w_1)^2 = n(w_1)^2 = 2n \varepsilon_1 \in \hat{Q} \). This all shows \( s \) is a splitting map, so \( \text{Cent}(s, \varphi; \hat{G}_{ad}) = \hat{T}_{ad}^\phi \times W_\phi^S \).

(5) First, we will show that

\[
\hat{T}_+ \cong (\mathbb{Z}/2)^{l-2} \times (\mathbb{Z}/4)^2,
\]

where \( l \) is the number of cycles of \( w_0 \). First note that since \( |\hat{T}_{ad}^\phi| = 2^l \) and since \( |Z(G_{sc})| = 4 \), we know that \( |\hat{T}_+| = 2^{l+2} \). Now we give an explicit basis for \( \hat{T}_+ \): \( \{f_1, e_2, \ldots e_k, e_{k'}, \ldots, e_{2'}, f_2 \} \), where

\[
f_1 = \frac{1}{2} \varepsilon_i^*,
\]

\[
e_{b} = \begin{cases} 
\frac{1}{2} \varepsilon_i^* + \ldots + \frac{1}{2} \varepsilon_{i_{b+1} - 1}^* & \text{if } i_{b+1} - i_b \text{ even}, \\
\frac{1}{2} \varepsilon_i^* + \ldots + \frac{1}{2} \varepsilon_{i_{b+1} - 1}^* + \frac{1}{2} \varepsilon_n^* & \text{if } i_{b+1} - i_b \text{ odd}, 
\end{cases}
\]

\[
f_2 = \sum_{i_{b+1} - i_b \text{ even}} \sum_{j=0}^{i_{b+1} - i_b - 1} \left( \frac{1}{2} \varepsilon_{i_b + j}^* + \frac{1}{2} \varepsilon_{i_b - j}^* \right) + \sum_{i_{b+1} - i_b \text{ odd}} \sum_{j=0}^{i_{b+1} - i_b - 1} \frac{(-1)^j}{4} \varepsilon_{i_b + j}^* + \frac{(-1)^j}{4} \varepsilon_{i_b - j}^*,
\]

and \( e_{k'} = m(e_b) \). These elements are all in \( \hat{T}_+ \), and they are all linearly independent. Furthermore, \( f_1 \) and \( f_2 \) have order 4, while \( e_b \) has order 2 for all \( b \). As a result, these elements generate \( \hat{T}_+ \), so we know \( \hat{T}_+ \cong (\mathbb{Z}/2)^{l-2} \times (\mathbb{Z}/4)^2 \).

We find

\[
(w_0 - 1)\xi(w_2, w_2)_i = \begin{cases} 
-(2n - 1) & \text{if } i \in B \\
0 & \text{else},
\end{cases}
\]

so take \( p'_i = \begin{cases} 
\frac{2n-1}{2} & \text{if } i \in B \\
\frac{2n-1}{2} & \text{if } i \notin B, i \leq n \\
\frac{-2n-1}{2} & \text{if } i \notin B, i > n.
\end{cases} \)

The \( p \) coming from \( \hat{C} = (w_0 - 1)p \) is actually in \( \hat{Q} \), so \( p = q \). Then \( \hat{A}(w_2, w_2) = \hat{C}(w_2, w_2) + (w_0 - 1)\xi(w_2, w_2) = (w_0 - 1)q + (w_2 - 1)p' \) for some \( q \in \hat{Q}, p' \in \hat{P} \), which shows \( \text{Cent}(s, \varphi; \hat{G}_{ad})_+ \) is virtually split.

**Case** \( D_{2n+1} \)
(1) Notes: Ω = \ratex 2\Z \to \langle w \rangle$, $w$ acts on extended Dynkin Diagram of type $D_{2n+1}$, by
\[
\begin{align*}
\alpha_0 &\to \alpha_{2n+1} & \alpha_{2n+1} &\to \alpha_1 \\
\alpha_1 &\to \alpha_{2n} & \alpha_{2n} &\to \alpha_0 \\
\alpha_j &\leftrightarrow \alpha_{2n+1-j} & \text{for } 2 \leq j \leq 2n-1.
\end{align*}
\]

(Note: there is a typo in \cite[Bou02, Plate IV]) We assume a regular element is fixed by all of $\Omega = \langle w \rangle$. Then one finds it is of the form:
\[x = \sum_{i=0}^{2n} s_i v_i,
\]
where $s_0 = s_1 = s_2n = s_{2n+1}$ and $s_i = s_{2n+1-i}$ for $2 \leq i \leq 2n - 1$. Thus
\[\exp(x) = \text{diag}(e^{2\pi it_1}, \ldots, e^{2\pi it_{2n+1}}, e^{-2\pi it_{2n+1}}, \ldots, e^{-2\pi it_1}),\]
where $t_1 = 1/2 > t_2 > \cdots > t_{2n} > t_{2n+1} = 0$ and $t_i + t_{2n-i+2} = 1/2$ for all $i$. Then $w$ acts on $\TT$ by
\[\varepsilon_i \mapsto -\varepsilon_{2n+2-i}^* \text{ for } i < 2n + 1, \varepsilon_{2n+1} \mapsto \varepsilon_1^*.
\]

(2) For the same reasons as in $C_n$, we see that
\[\TT^0_{ad} \cong (\ratex Z/2)^{l-2} \times \ratex Z/4.
\]
The normal form for $w_0$ is similar to that for $D_{2n}$, with the exception of the action on the $\varepsilon_1, \varepsilon_{2n+1}$ coordinates. Let $i_1 = 1 < i_2 = 2 < \cdots < i_m < i_{m+1} := n + 1 < i_{m+2} := n + 2$. Define the action
\[(w_0')^{-1}: \varepsilon_i \mapsto \varepsilon_{i-1}, \text{ if } i \notin \{i_2, \ldots, i_m\} \text{ and } \varepsilon_{i_0} \mapsto -\varepsilon_{i_0+1},
\]
\[e_{n+1}: \varepsilon_{n+1} \mapsto -\varepsilon_{n+1},
\]
\[(e_1')^{-1}: \varepsilon_1 \mapsto \varepsilon_{2n+1}, \varepsilon_{2n+1} \mapsto -\varepsilon_1.
\]
Then $w_0 = e_1' e_{n+1} w_0' m w_0'^{-1}$ is the normal form that we will consider below.

(3) The restrictions that $\phi, s^0$ makes on $(s, \phi, p)$ for type $D_n$ are very similar to that of type $B_n$ and $C_n$. We omit it for that reason and invite the reader to attempt it. Let us know if you find a (nicer) characterization!

(4)

\begin{table}[h]
\centering
\caption{\textit{W}_s action of $D_{2n+1}$ roots}
\begin{tabular}{c|c|c|c|c}
\hline
\alpha & $\varepsilon_1 - \varepsilon_j$ & $\varepsilon_1 + \varepsilon_j$ & $\varepsilon_i - \varepsilon_j, 1 < i$ & $\varepsilon_i + \varepsilon_j, 1 < i$ \\
\hline
\hline
$w^{-1}\alpha$ & $\varepsilon_{2n+1} + \varepsilon_{2n+2-j}$ & $\varepsilon_{2n+1} - \varepsilon_{2n+2-j}$ & $\varepsilon_{2n+2-j} - \varepsilon_{2n+2-i}$ & $-(\varepsilon_{2n+2-j} + \varepsilon_{2n+2-i})$ \\
\hline
$w^2\alpha$ & $-$ & $-$ & $+$ & $+$ \\
\hline
\end{tabular}
\end{table}

We first show $s(w)^2 = s(w^2)$, or equivalently
\[1/2(w_0 - 1)^{-1}[c(w, w_0) + w.c(w, w_0) - c(w^2, w_0) + \xi(w, w)] \in \hat{P},
\]
and then we finish by showing $s(w^2)$ has order 2 in $\TT_{ad}$.
We find
\[n(w)^2 = \xi(w, w) = (2n - 1)/2\varepsilon_2^* + (2n - 1)/2\varepsilon_3^* + \cdots + (2n - 1)/2\varepsilon_{2n+1}^*.
\]
Thus,

\[
\frac{1}{2}(\phi - 1)\xi(w, w)_i = \begin{cases} 
\frac{2n-1}{2} & \text{if } i = 1 \\
-(2n-1) & \text{if } i \in B'' \text{ or } i = n + 1 \\
-\frac{2n-1}{2} & \text{if } i = 2n + 1 \\
0 & \text{else.}
\end{cases}
\]

Let \( B'' = \{i_2, \ldots, i_k, i'_2, \ldots, i'_k\}, B' = B'' \cup \{n + 1\}, B = B' \cup \{2n + 1\}, i_{k+1} := n + 1, i_{k+2} := n + 2, \varepsilon_0 := \varepsilon_{2n+1}. \) Then the \( D_{2n+1} \) table is the union of the subset of the \( D_{2n} \) table for \( B'' \) in \( V'' = \text{span}\{\varepsilon_2, \ldots, \varepsilon_n, \varepsilon_{n+2}, \ldots, \varepsilon_{2n}\} \) (so the \( w_0^{-1} \) for \( D_{2n+1} \) coincides with the \( w_0^{-1} \) from \( D_{2n} \) when restricted to \( V'' \)) and the following exceptions:

Table 4.4.4. \( w_0^{-1} \) action on \( D_{2n+1} \) (exception) roots

<table>
<thead>
<tr>
<th>( \alpha )</th>
<th>( w_0^{-1}(\varepsilon_i - \varepsilon_j) )</th>
<th>( w_0^{-1}(-\varepsilon_i + \varepsilon_j) )</th>
<th>( w_0^{-1}w_0^{-1}(\varepsilon_i - \varepsilon_j) )</th>
<th>( w_0^{-1}w_0^{-1}(-\varepsilon_i + \varepsilon_j) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( i = 1, j \notin B )</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>( i = 1, j \in B, j \neq 2n + 1 )</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>( i = 1, j = 2n + 1 )</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>( i \notin B, i \neq 1, j = 2n + 1 )</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>( i \in B, j = 2n + 1 )</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>( i = n + 1, j \notin B )</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>( i = n + 1, j \in B, j \neq 2n + 1 )</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>( i \notin B, i \neq 1, j = n + 1 )</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>( i \in B, j = n + 1 )</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

We conclude

\[ \Lambda_{w^2,w_0} = \{\varepsilon_1 + \varepsilon_j, j \notin B\} \cup \{\varepsilon_1 - \varepsilon_j, j \in B, j \neq 2n + 1\} \]
\[ \cup \{\varepsilon_i + \varepsilon_{2n+1}, i \notin B, i \neq 1\} \cup \{\varepsilon_i + \varepsilon_{2n+1}, i \in B\}. \]

Thus

\[
1/2c(w^2, w_0)_i = [1/2 \sum_{\alpha \in \Lambda_{w^2,w_0}} \alpha]_i = \begin{cases} 
(2n - 1)/2 & \text{if } i = 1, 2n + 1 \\
0 & \text{if } i \in B'' \text{ or } i = n + 1 \\
1 & \text{if } i \notin B, i \neq 1,
\end{cases}
\]

where as usual, \( c_i \) denotes ith coordinate of \( c \) in \( \varepsilon_i^* \) basis. Thus,

(4.4.2) \[ -1/2c(w^2, w_0) + 1/2(\phi - 1)\xi(w, w)_i = \begin{cases} 
(2n - 1) & \text{if } i = 1 \\
0 & \text{if } i = 2n + 1 \\
-(2n - 1) & \text{if } i \in B'' \text{ or } i = n + 1 \\
1 & \text{else.}
\end{cases} \]

We further find

\[ \Lambda_{w,w_0} = \{\varepsilon_i \pm \varepsilon_j : i = i_a \in B', j < i_{a+1}\} \]
\[ \cup \{\varepsilon_i - \varepsilon_j : i = i_a, j \geq i_{a+1}, j \notin B'\} \]
\[ \cup \{\varepsilon_i - \varepsilon_j : i = i'_a, j \notin B'\} \]
\[ \cup \{\varepsilon_i + \varepsilon_j : j = i_a, i \notin B'\} \]
\[ \cup \{\varepsilon_i + \varepsilon_j : j = i'_a, i \leq i'_{a+1}, i \notin B'\}. \]
This implies,

\[
\hat{C}(w, w) := \frac{1}{2}(w.c(w, w_0) + c(w, w_0)) = \begin{cases} 
0 & \text{if } i = 1, n + 1, 2n + 1 \\
i_b + 1 - i_b - 1 & \text{if } i = i_b \in B'' \\
-i_b + 1 + i_b + 1 & \text{if } i = i'_b \in B'' \\
2k - 2b + 1 & \text{if } i_b < i < i_b + 1 \\
-2k + 2b - 1 & \text{if } i'_b < i < i'_b. 
\end{cases}
\]

(4.4.3)

We see \(\hat{A}\) is the sum of equations (4.4.2), (4.4.3) and it is not equal to \((w_0 - 1)p\) for any \(p \in \hat{P}\), which shows \(s\) is not a section. However, we still do have the decomposition \(A(w, w) = (w_0 - 1)q + (w_2 - 1)p\) by the following. Equation 4.4.2 is of the form \((w - 1)p\) for \(p = (p_i)\) and

\[
p_i = \begin{cases} 
-(2n - 1)/2 & \text{if } i = 1 \\
(2n - 1)/2 & \text{if } i = n + 1, 2n + 1, \text{ or } i \in B'' \\
-1/2 & \text{else.}
\end{cases}
\]

Equation 4.4.3 is of the form \((w_0 - 1)q\) for \(q \in \hat{Q}\) for the same reason \(\hat{C}\) occurring in \(D_{2n}\) was of this form. This shows that \(\text{Cent}(s, \varphi; \hat{G}_{ad})\) is virtually split.

(5) We will show that

\[
\hat{T}_+ \cong (\mathbb{Z}/2)^{l-1} \times \mathbb{Z}/8,
\]

where \(l\) is the number of cycles of \(w_0\). First note that since \(|Z(G_{sc})| = 4\) and \(|\hat{T}_{ad}^\phi| = 2^l\), we must have \(|\hat{T}_+| = 2^{l+2}\). Now we give an explicit basis for \(\hat{T}_+\): \(\{f_1, e_2, \ldots, e_k, e_{k'}, \ldots, e_2', f_2\}\), where

\[
f_1 = \frac{1}{2} \varepsilon_1^* + \frac{1}{2} \varepsilon_{2n+1}^*,
\]

\[
e_b = \begin{cases} 
i_b + 1 - i_b & \text{if } i_b + 1 - i_b \text{ even} \\
i_b + 1 - i_b + 1 & \text{if } i_b + 1 - i_b \text{ odd},
\end{cases}
\]

\[
f_2 = \sum_{i_b + 1 - i_b \text{ even}} \left( \sum_{j \text{ even}} \frac{1}{2} \varepsilon_{i_b + j}^* + \frac{1}{2} \varepsilon_{i'_b - j}^* \right) + \sum_{i_b + 1 - i_b \text{ odd}} \left( \sum_{j \text{ even}} \frac{1}{4} \varepsilon_{i_b + j}^* + \frac{1}{4} \varepsilon_{i'_b - j}^* \right).
\]

and \(e_{w} = m(e_b)\). These are all elements of \(\hat{T}_+\), and they are all linearly independent. Furthermore, \(f_2\) has order 8, while \(f_1\) and \(e_b\) have order 2. As a result, these elements generate \(\hat{T}_+\), and so \(\hat{T}_+ \cong (\mathbb{Z}/2)^{l+1} \times \mathbb{Z}/8\).

\(\text{Cent}(s, \varphi; \hat{G}_{ad})_+\) is also virtually split for the same reason it is virtually split in the adjoint case.
REFERENCES


[Kal18] T. Kaletha - Supercuspidal L-packets, Appendix (draft)


DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY,
E-mail address: nikolayg@berkeley.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AUSTIN,
E-mail address: wyattreeves1215@gmail.com