Tronquée Solutions of Painlevé equations

Rodica D Costin

(The Ohio State University)

Painlevé equations and Applications. Workshop in memory of A.A. Kapaev
Generic solutions of the Painlevé equations have singularities (poles) in any sector towards ∞ in the complex plane. But some are free of poles for large z in sectors:

P$_1$: $u'' = 6u^2 - z$

Boutrox:
- there is a one-parameter family with no poles at infinity in a two adjacent sectors bd, by $\arg z = \frac{2k\pi i}{5}$, *tronquéee solutions*.
- There are solutions with no poles in four such sectors: *tritronquéée*

Dubrovin’s conjecture (2009): tonquéée have no poles in the sector.
Proved so by O. Costin, H. Huang, S. Tanveer (2015)

P$_{II}$: $u'' = zu + 2u^3 + \alpha$

Boutrox: sectors bd. by $\arg z = \frac{2k\pi i}{6}$
Existence of tronquéee solutions proved by N. Joshi and M. Mazzocco (2003)

Novokshenov’s conjecture (2014): tonquéée of any P_n have no poles in the sector.
Proved so for the Hastings-McLeod solution (2-tronqée) by M. Huang, S-X Xu, Lun Zhang (2015).
$P_{\text{III}}, P_{\text{IV}}$

- Existence of tronquée & position of the first array of poles, X. Xia (submitted)

P_{V}

Andreev, Kitaev - the exp small correction (1997)
S. Shimomura (at $w = 1$) (2011)

A. Kapaev’s work on tritronquée solutions, including he calculated the exp small term for P_{I}

Methods: classical analysis, isomonodromy methods.
\(P_{III}, P_{IV} \)
- Existence of tronquée & position of the first array of poles, X. Xia (submitted)

\(P_V \)
Andreev, Kitaev - the exp small correction (1997)
S. Shimomura (at \(w = 1 \)) (2011)

A. Kapaev's work on tritronquée solutions, including he calculated the exp small term for \(P_I \)

Methods: classical analysis, isomonodromy methods.
\[P_{III}, P_{IV} \]
- Existence of tronquée & position of the first array of poles, X. Xia (submitted)

\[P_V \]
Andreev, Kitaev - the exp small correction (1997)
S. Shimomura (at \(w = 1 \)) (2011)

A. Kapaev’s work on tritronquée solutions, including he calculated the exp small term for \(P_I \)

Methods: classical analysis, isomonodromy methods.
P_{III}, P_{IV}
- Existence of tronquée & position of the first array of poles, X. Xia (submitted)

P_V
Andreev, Kitaev - the exp small correction (1997)
S. Shimomura (at $\omega = 1$) (2011)

A. Kapaev's work on tritronquée solutions, including he calculated the exp small term for P_I

Methods: classical analysis, isomonodromy methods.
Our approach (RDC, OC, MH, S. Tanveer, Xiaoyue Xia):

We are studying truncated solutions using generalized Borel summation of their transseries (multi-instanton expansions).

Advantages:

- Once the equation is normalized (∃ almost algorithmic procedures)
- ...there are general theorems establishing

\[\{ \text{transseries solutions, in sectors} \} \leftrightarrow \{ \text{actual solutions an. there to } \infty \} \]

- The location of the first array of poles, beyond the sector of analyticity is also obtained.
New results with these techniques

- Combined with novel methods in the finite plane, Dubrovin’s conjecture was proved.
- New (readable!) proof for P_1 is coming soon. (OC, RDC)
- Combined with novel methods in the finite plane, Novokshenko’s conjecture was proved for McLeod solution of P_2.
- Obtained the Stokes multiplier directly for P_1. (OC, RDC, MH, 2015)
- Location of first arrays of poles for P_3, P_4 (X.X.)

NEW:

- Combined with a new type of convergent expansions \mapsto very efficient numerical methods to calculate solutions of P_n. (O Costin, G. Dunne)
- I will present some
 - recent work on P_I (OC, RDC)
 - ongoing work on P_5 (RDC)
Example: linear equation $y' + y = x^{-2}$

Point $x = \infty$ is a rank 1 irregular sing. pt.

Has unique power series sol as $x \to \infty$: $\tilde{y}_0(x) = \sum_{n=2}^{\infty} \frac{(n-1)!}{x^n}$. Divergent.

General solution:
$$y(x; C) = y_0(x) + Ce^{-x}, \quad y_0(x) = e^{-x} \int_x^{\infty} e^s s^{-2} ds \sim \tilde{y}_0(x) \quad (x \to \infty)$$

Phenomena at irreg. sing. pts.:
- power series sol are divergent
- loss of information (1-param. fam. of sol. asy. to the same series)
- asymptoticity holds only in sectors (here for $|\arg x| < \pi/2$)

Natural: complete formal solution $\tilde{y}(x) = \tilde{y}_0(x) + Ce^{-x}$ for $x \to +\infty$.
Intro to transseries expansions (multi-instantons)

Example: linear equation \(y' + y = x^{-2} \)

Point \(x = \infty \) is a *rank 1 irregular sing. pt.*

Has unique power series sol as \(x \to \infty \): \(\tilde{y}_0(x) = \sum_{n=2}^{\infty} \frac{(n-1)!}{x^n} \). Divergent.

General solution:
\[
y(x; C) = y_0(x) + Ce^{-x}, \quad y_0(x) = e^{-x} \int_{-\infty}^{x} e^s s^{-2} ds \sim \tilde{y}_0(x) \quad (x \to \infty)
\]

Phenomena at irreg. sing. pts.:
- power series sol are divergent
- loss of information (1-param. fam. of sol. asy. to the same series)
- asymptoticity holds only in sectors (here for \(|\arg x| < \pi/2 \))

Natural: complete formal solution \(\tilde{y}(x) = \tilde{y}_0(x) + Ce^{-x} \) for \(x \to +\infty \).
Intro to transseries expansions (multi-instantons)

Example: linear equation \[y' + y = x^{-2} \]
Point \(x = \infty \) is a *rank 1 irregular sing. pt.*

Has unique power series sol as \(x \to \infty \): \(\tilde{y}_0(x) = \sum_{n=2}^{\infty} \frac{(n-1)!}{x^n} \). Divergent.

General solution:
\[
y(x; C) = y_0(x) + Ce^{-x}, \quad y_0(x) = e^{-x} \int_{-\infty}^{x} e^s s^{-2} ds \sim \tilde{y}_0(x) \quad (x \to \infty)
\]

Phenomena at irreg. sing. pts.:
- power series sol are divergent
- loss of information (1-param. fam. of sol. asy. to the same series)
- asymptoticity holds only in sectors (here for \(|\arg x| < \pi/2 \))

Natural: complete formal solution \(\tilde{y}(x) = \tilde{y}_0(x) + Ce^{-x} \) for \(x \to +\infty \).
Intro to transseries expansions (multi-instantons)

Example: linear equation \(y' + y = x^{-2} \)

Point \(x = \infty \) is a *rank 1 irregular sing. pt.*

Has unique power series sol as \(x \to \infty \): \(\tilde{y}_0(x) = \sum_{n=2}^{\infty} \frac{(n-1)!}{x^n} \). Divergent.

General solution:

\[
y(x; C) = y_0(x) + Ce^{-x}, \quad y_0(x) = e^{-x} \int_{-\infty}^{x} e^s s^{-2} ds \sim \tilde{y}_0(x) \quad (x \to \infty)
\]

Phenomena at irreg. sing. pts. :

- power series sol are divergent
- loss of information (1-param. fam. of sol. asy. to the same series)
- asymptoticity holds only in sectors (here for \(| \arg x | < \pi/2 \))

Natural: complete formal solution \(\tilde{y}(x) = \tilde{y}_0(x) + Ce^{-x} \) for \(x \to +\infty \).
Intro to transseries expansions (multi-instantons)

Example: linear equation \(y' + y = x^{-2} \)

Point \(x = \infty \) is a *rank 1 irregular sing. pt.*

Has unique power series sol as \(x \to \infty \): \(\tilde{y}_0(x) = \sum_{n=2}^{\infty} \frac{(n-1)!}{x^n} \). Divergent.

General solution:

\[
y(x; C) = y_0(x) + Ce^{-x}, \quad y_0(x) = e^{-x} \int_{-\infty}^{x} e^{s}s^{-2} ds \sim \tilde{y}_0(x) \quad (x \to \infty)
\]

Phenomena at irreg. sing. pts. :

- power series sol are divergent
- loss of information (1-param. fam. of sol. asy. to the same series)
- asymptoticity holds only in sectors (here for \(|\text{arg } x| < \pi/2\))

Natural: complete formal solution \(\tilde{y}(x) = \tilde{y}_0(x) + Ce^{-x} \) for \(x \to +\infty \).
Eq. $y' + y = \frac{1}{x^2}$ has
the complete formal solution $\tilde{y}(x) = \tilde{y}_0(x) + Ce^{-x}$ for $x \to +\infty$

Simplest example of transseries.

Features:
- It satisfies the equation where it originated.
- It is not an asymptotic expansion à la Poincaré ($Ce^{-x} \ll x^{-n} \forall n$),
- but it is well ordered for $|\arg x| < \pi/2$ (terms are decreasing).
- It contains the free parameter C.
Eq. \(y' + y = \frac{1}{x^2} \) has
the complete formal solution \(\tilde{y}(x) = \tilde{y}_0(x) + Ce^{-x} \) for \(x \to +\infty \)

Simplest example of transseries.

Features:

- It satisfies the equation where it originated.
- It is not an asymptotic expansion à la Poincaré \((Ce^{-x} \ll x^{-n} \ \forall n)\),
- but it is well ordered for \(|\arg x| < \pi/2 \) (terms are decreasing).
- It contains the free parameter \(C \).
Eq. $y' + y = \frac{1}{x^2}$ has
the complete formal solution $\tilde{y}(x) = \tilde{y}_0(x) + Ce^{-x}$ for $x \to +\infty$

Simplest example of transseries.

Features:

- It satisfies the equation where it originated.
- It is not an asymptotic expansion à la Poincaré ($Ce^{-x} \ll x^{-n}$ $\forall n$),
- but it is well ordered for $|\arg x| < \pi/2$ (terms are decreasing).
- It contains the free parameter C.
Nonlinear example: \[y' + y = \frac{1}{x^2} + y^4 \]

Unique power series sol: \(\tilde{y}_0(x) = \frac{1}{x^2} + \frac{2}{x^3} + \frac{6}{x^4} + \ldots \ (x \to \infty) \)
Divergent.

Smaller terms? Substitute \(y = \tilde{y}_0(x) + g(x) \) assuming \(g(x) \ll x^{-n} \forall n \).
Obtain: \(\tilde{F}_0(z) + \tilde{F}_1(z)g(z) + g'(z) + [\text{Quadratic in } g] = 0 \)

\[\tilde{y}_0(x) \text{ is formal solution} \implies \tilde{F}_0(z) = 0. \]

\[\text{Quadratic } \ll g \implies \text{neglect.} \]

\[\tilde{y}_0(x) \sim 4\tilde{y}_0^3g \implies g(x) \sim Ce^{-x}\tilde{y}_1(x). \]

Only \(\tilde{y}_0(x) + Ce^{-x}\tilde{y}_1(x) \) is not an exact sol. Look for even smaller terms.
Nonlinear example:

\[y' + y = \frac{1}{x^2} + y^4 \]

Unique power series sol: \(\tilde{y}_0(x) = \frac{1}{x^2} + \frac{2}{x^3} + \frac{6}{x^4} + \ldots \ (x \to \infty) \)

Divergent.

Smaller terms? Substitute \(y = \tilde{y}_0(x) + g(x) \) assuming \(g(x) \ll x^{-n} \ \forall n. \)

Obtain: \(\tilde{F}_0(z) + \tilde{F}_1(z)g(z) + g'(z) + [\text{Quadratic in } g] = 0 \)

- \(\tilde{y}_0(x) \) is formal solution \(\implies \tilde{F}_0(z) = 0. \)
- Quadratic \(\ll g \implies \) neglect.

\[g' + g \sim 4\tilde{y}_0^3g \implies g(x) \sim Ce^{-x}\tilde{y}_1(x). \]

Only \(\tilde{y}_0(x) + Ce^{-x}\tilde{y}_1(x) \) is not an exact sol. Look for even smaller terms.
Nonlinear example: \[y' + y = \frac{1}{x^2} + y^4 \]

Unique power series sol: \(\tilde{y}_0(x) = \frac{1}{x^2} + \frac{2}{x^3} + \frac{6}{x^4} + \ldots \) \((x \to \infty)\)
Divergent.

Smaller terms? Substitute \(y = \tilde{y}_0(x) + g(x) \) assuming \(g(x) \ll x^{-n} \ \forall n \).

Obtain: \(\tilde{F}_0(z) + \tilde{F}_1(z)g(z) + g'(z) + [\text{Quadratic in } g] = 0 \)

- \(\tilde{y}_0(x) \) is formal solution \(\Rightarrow \tilde{F}_0(z) = 0 \).
- Quadratic \(\ll g \) \(\Rightarrow \) neglect.

\[g' + g \sim 4\tilde{y}_0^3 g \quad \Rightarrow \quad g(x) \sim Ce^{-x}\tilde{y}_1(x). \]

Only \(\tilde{y}_0(x) + Ce^{-x}\tilde{y}_1(x) \) is not an exact sol. Look for even smaller terms.
Nonlinear example: \[y' + y = \frac{1}{x^2} + y^4 \]

Unique power series sol: \(\tilde{y}_0(x) = \frac{1}{x^2} + \frac{2}{x^3} + \frac{6}{x^4} + \ldots \) \(x \to \infty \)

Divergent.

Smaller terms? Substitute \(y = \tilde{y}_0(x) + g(x) \) assuming \(g(x) \ll x^{-n} \ \forall n \).

Obtain: \(\tilde{F}_0(z) + \tilde{F}_1(z)g(z) + g'(z) + [\text{Quadratic in } g] = 0 \)

- \(\tilde{y}_0(x) \) is formal solution \(\implies \tilde{F}_0(z) = 0 \).
- Quadratic \(\ll g \implies \) neglect.

\[g' + g \sim 4\tilde{y}_0^3g \implies g(x) \sim Ce^{-x}\tilde{y}_1(x). \]

Only \(\tilde{y}_0(x) + Ce^{-x}\tilde{y}_1(x) \) is not an exact sol. Look for even smaller terms.
Nonlinear example: \[y' + y = \frac{1}{x^2} + y^4 \]

Unique power series sol: \[\tilde{y}_0(x) = \frac{1}{x^2} + \frac{2}{x^3} + \frac{6}{x^4} + \ldots \; (x \to \infty) \]
Divergent.

Smaller terms? Substitute \(y = \tilde{y}_0(x) + g(x) \) assuming \(g(x) \ll x^{-n} \; \forall n \).
Obtain: \(\tilde{F}_0(z) + \tilde{F}_1(z)g(z) + g'(z) + \text{[Quadratic in } g\text{]} = 0 \)
- \(\tilde{y}_0(x) \) is formal solution \(\implies \tilde{F}_0(z) = 0. \)
- Quadratic \(\ll g \implies \text{neglect.} \)

\[\sim g' + g \sim 4\tilde{y}_0^3g \implies g(x) \sim Ce^{-x}\tilde{y}_1(x). \]

Only \(\tilde{y}_0(x) + Ce^{-x}\tilde{y}_1(x) \) is not an exact sol. Look for even smaller terms.
Nonlinear example: \[y' + y = \frac{1}{x^2} + y^4 \]

Unique power series sol: \(\tilde{y}_0(x) = \frac{1}{x^2} + \frac{2}{x^3} + \frac{6}{x^4} + \ldots \quad (x \to \infty) \)

Divergent.

Smaller terms? Substitute \(y = \tilde{y}_0(x) + g(x) \) assuming \(g(x) \ll x^{-n} \ \forall n \).

Obtain: \(\tilde{F}_0(z) + \tilde{F}_1(z)g(z) + g'(z) + [\text{Quadratic in } g] = 0 \)

- \(\tilde{y}_0(x) \) is formal solution \(\implies \tilde{F}_0(z) = 0 \).
- Quadratic \(\ll g \implies \) neglect.

\[g' + g \sim 4\tilde{y}_0^3 g \implies g(x) \sim Ce^{-x} \tilde{y}_1(x). \]

Only \(\tilde{y}_0(x) + Ce^{-x} \tilde{y}_1(x) \) is not an exact sol. Look for even smaller terms.
Nonlinear example: \(y' + y = \frac{1}{x^2} + y^4 \)

Unique power series sol: \(\tilde{y}_0(x) = \frac{1}{x^2} + \frac{2}{x^3} + \frac{6}{x^4} + \ldots \) \((x \to \infty) \)

Divergent.

Smaller terms? Substitute \(y = \tilde{y}_0(x) + g(x) \) assuming \(g(x) \ll x^{-n} \ \forall n \).

Obtain: \(\tilde{\mathcal{F}}_0(z) + \tilde{\mathcal{F}}_1(z)g(z) + g'(z) + [\text{Quadratic in } g] = 0 \)

- \(\tilde{y}_0(x) \) is formal solution \(\implies \tilde{\mathcal{F}}_0(z) = 0 \).
- Quadratic \(\ll g \implies \text{neglect} \).

\[g' + g \sim 4\tilde{y}_0^3g \implies g(x) \sim Ce^{-x}\tilde{y}_1(x). \]

Only \(\tilde{y}_0(x) + Ce^{-x}\tilde{y}_1(x) \) is not an exact sol. Look for even smaller terms.
A complete formal solution:

\[\tilde{y}(x) = \tilde{y}_0(x) + C e^{-x} \tilde{y}_1(x) + C^2 e^{-2x} \tilde{y}_2(x) + C^3 e^{-3x} \tilde{y}_3(x) + \ldots \]

where \(\tilde{y}_n(x) \) are divergent power series and \(C \) is a free parameter.

General 1-dim

\[
y' + \left(\lambda - \frac{\alpha}{x} \right) y = g(x^{-1}, y), \quad g = O(x^{-2}) + O(y^2) \quad (x \to \infty, y \to 0)
\]

has a complete formal solution (in the RHP)

\[
\tilde{y}(x) = \tilde{y}_0(x) + C e^{-\lambda x} \tilde{y}_1(x) + C^2 e^{-2\lambda x} \tilde{y}_2(x) + C^3 e^{-3\lambda x} \tilde{y}_3(x) + \ldots
\]

where \(\tilde{y}_n(x) = x^{n\alpha} \tilde{s}_n(x) \), where \(\tilde{s}_n(x) \) are integer power series.

Valid for \(x \to \infty \) with \(|\arg(\lambda x)| < \pi/2 \).
Systems with $x = \infty$ a rank 1 irregular singularity:

Normal form:

$$y' + \left(\Lambda - \frac{1}{x} A \right) y = g(x^{-1}, y)$$

with g analytic at $(0, 0)$, with $g(x^{-1}, y) = O(x^{-2}) + O(|y|^2)$

If Λ, A are diagonalizable, then

$$\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_d), \ A = \text{diag}(\alpha_1, \ldots, \alpha_d)$$

(nonresonant) have formal solution:

$$\tilde{y} = \tilde{y}(x; C) = \tilde{y}_0(x) + \sum_{k \in \mathbb{N}^d \setminus 0} C^k e^{-\lambda \cdot k x} \tilde{y}_k(x)$$

where $\tilde{y}_k(x) = x^{\alpha \cdot k} \tilde{s}_k(x)$ are power series (divergent), determined algorithmically.

(If resonant - also logs.)

Note: the free parameters are beyond all orders of the unique power series.
Systems with \(x = \infty \) a rank 1 irregular singularity:

Normal form:
\[
y' + \left(\Lambda - \frac{1}{x} A \right) y = g(x^{-1}, y)
\]

with \(g \) analytic at \((0, 0)\), with \(g(x^{-1}, y) = O(x^{-2}) + O(|y|^2) \)

If \(\Lambda, A \) are diagonalizable, then
\[
\Lambda = \text{diag}(\lambda_1, \ldots \lambda_d), \ A = \text{diag}(\alpha_1, \ldots \alpha_d)
\]

(nonresonant) have formal solution:
\[
\tilde{y} = \tilde{y}(x; C) = \tilde{y}_0(x) + \sum_{k \in \mathbb{N}^d \setminus 0} C^k e^{-\lambda \cdot k x} \tilde{y}_k(x)
\]

where \(\tilde{y}_k(x) = x^{\alpha \cdot k} \tilde{s}_k(x) \) are power series (divergent), determined algorithmically.

(If resonant - also logs.)

Note: the free parameters are beyond all orders of the unique power series.
Systems with $x = \infty$ a rank 1 irregular singularity:

Normal form:

$$
y' + \left(\Lambda - \frac{1}{x} A \right) y = g(x^{-1}, y)$$

with g analytic at $(0, 0)$, with $g(x^{-1}, y) = O(x^{-2}) + O(|y|^2)$

If Λ, A are diagonalizable, then

$$\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_d), \quad A = \text{diag}(\alpha_1, \ldots, \alpha_d)$$

(nonresonant) have formal solution:

$$\tilde{y} = \tilde{y}(x; C) = \tilde{y}_0(x) + \sum_{k \in \mathbb{N}^d \setminus 0} C^k e^{-\lambda \cdot k \cdot x} \tilde{y}_k(x)$$

where $\tilde{y}_k(x) = x^{\alpha \cdot k} \tilde{s}_k(x)$ are power series (divergent), determined algorithmically.

(If resonant - also logs.)

Note: the free parameters are beyond all orders of the unique power series.
Systems with $x = \infty$ a rank 1 irregular singularity:

Normal form:

$$y' + \left(\Lambda - \frac{1}{x} A \right) y = g(x^{-1}, y)$$

with g analytic at $(0, 0)$, with $g(x^{-1}, y) = O(x^{-2}) + O(|y|^2)$

If Λ, A are diagonalizable, then

$$\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_d), \quad A = \text{diag}(\alpha_1, \ldots, \alpha_d)$$

(nonresonant) have formal solution:

$$\tilde{y} = \tilde{y}(x; C) = \tilde{y}_0(x) + \sum_{k \in \mathbb{N}^d \setminus \{0\}} C^k e^{-\lambda \cdot k \cdot x} \tilde{y}_k(x)$$

where $\tilde{y}_k(x) = x^{\alpha \cdot k} \tilde{s}_k(x)$ are power series (divergent), determined algorithmically.

(If resonant - also logs.)

Note: the free parameters are beyond all orders of the unique power series.
Systems with ∞ a rank 1 singularity $y' + \left(\Lambda - \frac{1}{x}A\right)y = g(x^{-1}, y)$ have formal solutions:

$$\tilde{y} = \tilde{y}(x; C) = \tilde{y}_0(x) + \sum_{k \in \mathbb{N}^d \setminus 0} C^k e^{-\lambda \cdot k \cdot x} \tilde{y}_k(x)$$

Introduced by Fabris (1885). Studied by Cope (1934).

Vastly generalized by Ecalle (1981) to formal expressions closed under all operations.

In logic. More recently, in physics (QFT, in particular).
So: solutions $y \to 0$ as $x \to \infty$ have a unique asymptotic power series:

$$y \sim \tilde{y}_0 \equiv \sum_{n=0}^{+\infty} x^{-n} y_{0,n}$$ (usually divergent)

Conversely:

Theorem [Wasow]

If \tilde{y}_0 formally solves $y' + \left(\Lambda - \frac{1}{x} A \right) y = g(x^{-1}, y)$ (and a nonres. cond. on λ_j, α_j) then there exists a true solution

$$y \sim \hat{y}_0, \quad |x| > R, \quad x \in S = \text{some sector opening} < \pi$$

Usually, there are many such solutions.

Recall that the free parameters are beyond all orders of \tilde{y}_0...
Correspondence between formal and actual solutions:

Example: linear equation \(y' + y = x^{-2} \)

Formal solution \(\tilde{y}(x; C) = \sum_{n \geq 2} (n - 1)! x^{-n} + Ce^{-x} \)

Since \(\mathcal{L}(p^{n-1}) = (n - 1)!x^{-n} \) it is natural to attempt \(\tilde{y}_0 = \mathcal{L}(\text{function}) \).

Recall: Borel transform is formal \(\mathcal{L}^{-1}: B(x^{-\alpha}) = p^{\alpha-1}/\Gamma(\alpha) \) for \(\alpha > 0 \).

Let \(y(x) = \mathcal{L}_\phi Y(x) := \int_{e^{i\phi} \mathbb{R}_+} e^{-px} Y(p) dp \) eq. becomes \(Y(p) = \frac{p}{1 - p} \).

We can integrate for \(\phi \neq 0 \), obtaining:

\[
\begin{align*}
y_0^+(x) &= \mathcal{L}_\phi Y(x) \quad \text{for } -\phi = \arg x \in \left(0, \frac{\pi}{2}\right) \\
y_0^-(x) &= \mathcal{L}_\phi Y(x) \quad \text{for } -\phi = \arg x \in \left(-\frac{\pi}{2}, 0\right)
\end{align*}
\]
Correspondence between formal and actual solutions: Generalized Borel Summation (O Costin 1995, '98)

Example: linear equation $y' + y = x^{-2}$

Formal solution $\tilde{y}(x; C) = \sum_{n \geq 2} (n - 1)! x^{-n} + Ce^{-x}$

Since $L(p^{n-1}) = (n - 1)! x^{-n}$ it is natural to attempt $\tilde{y}_0 = L(function)$.

Recall: Borel transform is formal L^{-1}: $B(x^{-\alpha}) = p^{\alpha-1}/\Gamma(\alpha)$ for $\alpha > 0$.

Let $y(x) = L_\phi Y(x) := \int_{e^{i\phi} \mathbb{R}_+} e^{-px} Y(p) dp$ eq. becomes $Y(p) = \frac{p}{1 - p}$.

We can integrate for $\phi \neq 0$, obtaining:

$$y_0^+(x) = L_\phi Y(x) \quad \text{for} \quad -\phi = \arg x \in \left(0, \frac{\pi}{2}\right)$$

and

$$y_0^-(x) = L_\phi Y(x) \quad \text{for} \quad -\phi = \arg x \in \left(-\frac{\pi}{2}, 0\right)$$
Correspondence between formal and actual solutions:
Generalized Borel Summation (O Costin 1995, '98)

Example: linear equation \(y' + y = x^{-2} \)

Formal solution \(\tilde{y}(x; C) = \sum_{n \geq 2} (n - 1)! \, x^{-n} + Ce^{-x} \)

Since \(\mathcal{L}(p^{n-1}) = (n - 1)!x^{-n} \) it is natural to attempt \(\tilde{y}_0 = \mathcal{L}(\text{function}) \).

Recall: Borel transform is formal \(\mathcal{L}^{-1}: B(x^{-\alpha}) = p^{\alpha-1}/\Gamma(\alpha) \) for \(\alpha > 0 \).

Let

\[
y(x) = \mathcal{L}_\phi Y(x) := \int_{e^{i\phi} \mathbb{R}^+} e^{-px} Y(p) dp
\]

eq. becomes \(Y(p) = \frac{p}{1 - p} \).

We can integrate for \(\phi \neq 0 \), obtaining:

\[
y_0^+(x) = \mathcal{L}_\phi Y(x) \quad \text{for} \quad -\phi = \arg x \in \left(0, \frac{\pi}{2}\right)
\]

and

\[
y_0^-(x) = \mathcal{L}_\phi Y(x) \quad \text{for} \quad -\phi = \arg x \in \left(-\frac{\pi}{2}, 0\right)
\]
Example: linear equation $y' + y = x^{-2}$

Formal solution $\tilde{y}(x; C) = \sum_{n \geq 2} (n - 1)! x^{-n} + C e^{-x}$

Since $\mathcal{L}(p^{n-1}) = (n - 1)! x^{-n}$ it is natural to attempt $\tilde{y}_0 = \mathcal{L}(\text{function})$.

Recall: Borel transform is formal $\mathcal{L}^{-1}: B(x^{-\alpha}) = p^{\alpha-1}/\Gamma(\alpha)$ for $\alpha > 0$.

Let $y(x) = \mathcal{L}_\phi Y(x) := \int_{e^{i\phi} \mathbb{R}_+} e^{-px} Y(p) dp$ eq. becomes $Y(p) = \frac{p}{1 - p}$.

We can integrate for $\phi \neq 0$, obtaining:

$$y_0^+(x) = \mathcal{L}_\phi Y(x) \quad \text{for} \quad -\phi = \arg x \in \left(0, \frac{\pi}{2}\right)$$

and

$$y_0^-(x) = \mathcal{L}_\phi Y(x) \quad \text{for} \quad -\phi = \arg x \in \left(-\frac{\pi}{2}, 0\right)$$
\(y_0^+(x) = \mathcal{L}_\phi Y(x) \) for \(-\phi = \arg x \in (0, \frac{\pi}{2}) \)

- does not depend on \(\phi \)
- can be analytically continued in the RHP (and beyond)

Same for \(y_0^-(x) = \mathcal{L}_\phi Y(x) \) for \(-\phi = \arg x \in (-\frac{\pi}{2}, 0) \).

In general \(y_0^+(x) \neq y_0^-(x) \).

In fact \(\frac{1}{2\pi i} \left[y_0^+(x) - y_0^-(x) \right] = e^{-x} \) recovers the small exponential.
\[y_0^+(x) = L_\phi Y(x) \quad \text{for } -\phi = \arg x \in (0, \frac{\pi}{2}) \]

- does not depend on \(\phi \)
- can be analytically continued in the RHP (and beyond)

Same for \(y_0^-(x) = L_\phi Y(x) \) for \(-\phi = \arg x \in (-\frac{\pi}{2}, 0) \).

In general \(y_0^+(x) \neq y_0^-(x) \).

In fact \(\frac{1}{2\pi i} [y_0^+(x) - y_0^-(x)] = e^{-x} \) recovers the small exponential.
\[y_0^+(x) = L_\phi Y(x) \text{ for } -\phi = \arg x \in (0, \frac{\pi}{2}) \]
- does not depend on \(\phi \)
- can be analytically continued in the RHP (and beyond)

Same for \(y_0^-(x) = L_\phi Y(x) \text{ for } -\phi = \arg x \in (-\frac{\pi}{2}, 0) \).

In general \(y_0^+(x) \neq y_0^-(x) \).

In fact \(\frac{1}{2\pi i} [y_0^+(x) - y_0^-(x)] = e^{-x} \) recovers the small exponential.
\(y_0^+(x) = \mathcal{L}_\phi Y(x) \) for \(-\phi = \arg x \in (0, \frac{\pi}{2}) \)
- does not depend on \(\phi \)
- can be analytically continued in the RHP (and beyond)

Same for \(y_0^-(x) = \mathcal{L}_\phi Y(x) \) for \(-\phi = \arg x \in (-\frac{\pi}{2}, 0) \).

In general \(y_0^+(x) \neq y_0^-(x) \).

In fact \(\frac{1}{2\pi i} [y_0^+(x) - y_0^-(x)] = e^{-x} \) recovers the small exponential.
Example: nonlinear equation \[y' + y = x^{-2} + y^4 \] with formal sol.

\[\tilde{y}(x) = \tilde{y}_0(x) + \sum_{n \geq 1} C^n e^{-nx} \tilde{y}_n(x) \]

Take \(L^{-1} \implies (1 - p) Y(p) = 1 + Y^4(p) \)

- Clearly \(\exists! \) solution \(Y_0(p) \) analytic at \(p = 0 \). It is analytic for \(|p| < 1 \).
- Clearly \(Y_0(p) \) is singular at \(p = 1 \).
- Convolution \(\tilde{\to} \) the singularity at \(p = 1 \) gives rise to singularities at \(p = 2, 3, 4, \ldots \) (an array, equally spaced).

Let \(y_0^+(x) = L_{\phi} Y_0(x) \) for \(-\phi = \arg x \in (0, \frac{\pi}{2}) \). Similarly \(y_0^-(x) \).

Summation of other \(\tilde{y}_n \): similarly, let \(y_n = L_{\phi} B \tilde{y}_n \).
Example: nonlinear equation \[y' + y = x^{-2} + y^4 \] with formal sol.
\[\tilde{y}(x) = \tilde{y}_0(x) + \sum_{n \geq 1} C^n e^{-nx} \tilde{y}_n(x) \]

Take \(\mathcal{L}^{-1} \implies (1 - p)Y(p) = 1 + Y^{*4}(p) \)

- Clearly \(\exists! \) solution \(Y_0(p) \) analytic at \(p = 0 \). It is analytic for \(|p| < 1 \).
- Clearly \(Y_0(p) \) is singular at \(p = 1 \).
- Convolution \(\sim \) the singularity at \(p = 1 \) gives rise to singularities at \(p = 2, 3, 4, \ldots \) (an array, equally spaced).

Let \(y_0^+(x) = \mathcal{L}_\phi Y_0(x) \) for \(-\phi = \arg x \in (0, \frac{\pi}{2}) \). Similarly \(y_0^-(x) \).

Summation of other \(\tilde{y}_n \): similarly, let \(y_n = \mathcal{L}_\phi B \tilde{y}_n \).
Example: nonlinear equation $y' + y = x^{-2} + y^4$ with formal sol.

$\tilde{y}(x) = \tilde{y}_0(x) + \sum_{n \geq 1} C^n e^{-nx} \tilde{y}_n(x)$

Take $L^{-1} \implies (1 - p) Y(p) = 1 + Y^*(4)(p)$

- Clearly $\exists!$ solution $Y_0(p)$ analytic at $p = 0$. It is analytic for $|p| < 1$.
- Clearly $Y_0(p)$ is singular at $p = 1$.
- Convolution \leadsto the singularity at $p = 1$ gives rise to singularities at $p = 2, 3, 4, \ldots$ (an array, equally spaced).

Let $y_0^+(x) = L_\phi Y_0(x)$ for $-\phi = \text{arg } x \in (0, \frac{\pi}{2})$. Similarly $y_0^-(x)$.

Summation of other \tilde{y}_n: similarly, let $y_n = L_\phi B \tilde{y}_n$.
Example: nonlinear equation $y' + y = x^{-2} + y^4$ with formal sol.

$\tilde{y}(x) = \tilde{y}_0(x) + \sum_{n \geq 1} C^n e^{-nx} \tilde{y}_n(x)$

Take \mathcal{L}^{-1} $\implies (1 - p) Y(p) = 1 + Y^\ast 4(p)$

- Clearly $\exists!$ solution $Y_0(p)$ analytic at $p = 0$. It is analytic for $|p| < 1$.
- Clearly $Y_0(p)$ is singular at $p = 1$.
- Convolution \sim the singularity at $p = 1$ gives rise to singularities at $p = 2, 3, 4, \ldots$ (an array, equally spaced).

Let $y_0^+(x) = \mathcal{L}_\phi Y_0(x)$ for $-\phi = \arg x \in (0, \frac{\pi}{2})$. Similarly $y_0^-(x)$.

Summation of other \tilde{y}_n: similarly, let $y_n = \mathcal{L}_\phi B \tilde{y}_n$.
Example: nonlinear equation \(y' + y = x^{-2} + y^4 \) with formal sol.

\[\tilde{y}(x) = \tilde{y}_0(x) + \sum_{n \geq 1} C^n e^{-nx} \tilde{y}_n(x) \]

Take \(\mathcal{L}^{-1} \Rightarrow (1 - p) Y(p) = 1 + Y^4(p) \)

- Clearly \(\exists! \) solution \(Y_0(p) \) analytic at \(p = 0 \). It is analytic for \(|p| < 1 \).
- Clearly \(Y_0(p) \) is singular at \(p = 1 \).
- Convolution \(\sim \) the singularity at \(p = 1 \) gives rise to singularities at \(p = 2, 3, 4, \ldots \) (an array, equally spaced).

Let \(y_0^+(x) = \mathcal{L}_\phi Y_0(x) \) for \(-\phi = \arg x \in (0, \frac{\pi}{2}) \). Similarly \(y_0^-(x) \).

Summation of other \(\tilde{y}_n \): similarly, let \(y_n = \mathcal{L}_\phi B \tilde{y}_n \).
Example: nonlinear equation \(y' + y = x^{-2} + y^4 \) with formal sol.
\[
\ddot{y}(x) = \ddot{y}_0(x) + \sum_{n \geq 1} C^n e^{-nx} \tilde{y}_n(x)
\]

Take \(\mathcal{L}^{-1} \implies (1 - p) Y(p) = 1 + Y^4(p) \)

- Clearly \(\exists! \) solution \(Y_0(p) \) analytic at \(p = 0 \). It is analytic for \(|p| < 1 \).
- Clearly \(Y_0(p) \) is singular at \(p = 1 \).
- Convolution \(\sim \) the singularity at \(p = 1 \) gives rise to singularities at \(p = 2, 3, 4, \ldots \) (an array, equally spaced).

Let \(y^+_0(x) = \mathcal{L}_\phi Y_0(x) \) for \(-\phi = \arg x \in (0, \frac{\pi}{2}) \). Similarly \(y^-_0(x) \).

Summation of other \(\ddot{y}_n \): similarly, let \(y_n = \mathcal{L}_\phi B \tilde{y}_n \).
General result

Theorem (O. Costin, 1998)

Let \(\frac{d}{dx} y + (\Lambda - \frac{1}{x} A) y = g(x^{-1}, y) \) nonres., \(\Lambda, A \) diag., \(g \) analytic at \((0, 0)\).

Any formal solution \(\tilde{y} = \tilde{y}(x; C) = \tilde{y}_0(x) + \sum_{k \in \mathbb{N}^d \setminus 0} C^k e^{-\lambda \cdot kx} \tilde{y}_k(x) \)

can be summed along any direction \textbf{not an antistokes lines} \((\pm i\lambda_j \mathbb{R}_+)\)

The series \(y = y_0(x) + \sum_{k \in \mathbb{N}^d \setminus 0} C^k e^{-\lambda \cdot kx} y_k(x) \) converges for large \(|x| \)
to an actual solution analytic on open sector bounded by two consecutive antistokes lines.

Conversely, any such solutions is a summation of a transseries.

Also: **RESURGENCE** all the \(y_n \) can be recovered from \(y_0 \):

\[
y_n(x) = \sum_j \alpha_{j,n} \int_{d_{j,n}} e^{-px} Y_0(p) \, dp
\]

balanced averages of Laplace transforms along \textbf{paths winding in prescribed ways} among \(p = k\lambda j \).
(1957-59) Iwano showed that $y(x; \mathbf{C}) = y_0(x) + \sum C^k e^{-\lambda \cdot k x \cdot \alpha \cdot k} y_k(x)$ with $y_k(x)$ analytic, and convergent in sectors.

(1981) Ecalle constructed the summation of transseries (formal solutions of most problems), establishing an isomorphism with a class of functions ("analyzable").

(1998) O. Costin proved generalized Borel summation for transseries solutions of rank 1, their 1-to-1 correspondence with solutions $y(x) \to 0$ (in a sector), and compatibility with all operations.

(2001-04) Braaksma proved similar results for solutions of difference equations.
Near the boundary of the sector of analyticity

Solutions \(y(x; C) \to 0 \) for \(x \to \infty, \; x \in d \) are analytic in \(S \) for \(|x| \) large. **Question:** what happens to \(y(x; C) \) as \(x \) approaches \(\partial S \)?

Example: \(d=1 \)

\[
y' + \left(1 - \frac{\alpha}{x} \right) y = g(x^{-1}, y) \quad (\lambda = 1).\]

Formal solution:

\[
\tilde{y}(x; C) = \hat{y}_0(x) + C e^{-x} x^\alpha \tilde{s}_1(x) + C^2 e^{-2x} x^{2\alpha} \tilde{s}_2(x) + C^3 e^{-3x} x^{3\alpha} \tilde{s}_3(x) + \ldots
\]

with \(\tilde{s}_k(x) = \sum_{j=0}^{\infty} \frac{y_{k,j}}{x^j} \) valid in the sector \(S_{\text{trans}} = \{ x; -\frac{\pi}{2} < \arg x < \frac{\pi}{2} \} \)

generalized Borel summable to a solution \(y(x; C) \) analytic in

\[
S_{an} = \{ x \mid -\frac{\pi}{2} + \epsilon < \arg x < \frac{\pi}{2} - \epsilon, \; |x| > R, \; |Ce^{-x} x^\alpha| < \delta^{-1} \}
\]

What happens to \(y(x; C) \) **as** \(\arg x \) **approaches** \(\frac{\pi}{2} \)? (Similarly, for \(-\frac{\pi}{2}\).)
Near the boundary of the sector of analyticity

Solutions $y(x; C) \to 0$ for $x \to \infty$, $x \in d$ are analytic in S for $|x|$ large.

Question: what happens to $y(x; C)$ as x approaches ∂S?

Example: $d=1$ \[y' + \left(1 - \frac{\alpha}{x}\right)y = g(x^{-1}, y) \quad (\lambda = 1). \]

Formal solution:

$$\tilde{y}(x; C) = \hat{y}_0(x) + Ce^{-x}x^\alpha \tilde{s}_1(x) + C^2 e^{-2x}x^{2\alpha} \tilde{s}_2(x) + C^3 e^{-3x}x^{3\alpha} \tilde{s}_3(x) + \ldots$$

with $\tilde{s}_k(x) = \sum_{j=0}^{\infty} \frac{y_{k,j}}{x^j}$ valid in the sector $S_{\text{trans}} = \{x; -\frac{\pi}{2} < \arg x < \frac{\pi}{2}\}$

generalized Borel summable to a solution $y(x; C)$ analytic in

$S_{\text{an}} = \{x \mid -\frac{\pi}{2} + \epsilon < \arg x < \frac{\pi}{2} - \epsilon, \ |x| > R, \ |Ce^{-x}x^\alpha| < \delta^{-1}\}$

What happens to $y(x; C)$ **as** $\arg x$ **approaches** $\frac{\pi}{2}$? (Similarly, for $-\frac{\pi}{2}$.)
A two scale expansion in the region with singularities

\[\tilde{y}(x; C) = \tilde{y}_0(x) + Ce^{-x}x^\alpha \tilde{s}_1(x) + C^2 e^{-2x}x^{2\alpha} \tilde{s}_2(x) + C^3 e^{-3x}x^{3\alpha} \tilde{s}_3(x) + \ldots \]

Denote \[Ce^{-x}x^\alpha = \xi \] For \(C \neq 0 \). Transseries:

\[\tilde{y} = \left[\frac{y_{0,1}}{x} + \frac{y_{0,2}}{x^2} + \ldots \right] + \xi \left[y_{1,0} + \frac{y_{1,1}}{x} + \frac{y_{1,2}}{x^2} + \ldots \right] + \xi^2 \left[y_{2,0} + \frac{y_{2,1}}{x} + \frac{y_{2,2}}{x^2} + \ldots \right] \]

In the region: \(x^{-k} \ll \xi \) reorder the transseries:

\[\hat{y} = \left[\xi y_{1,0} + \xi^2 y_{2,0} + \ldots \right] + \frac{1}{x} \left[y_{0,1} + \xi y_{1,1} + \xi^2 y_{2,1} + \ldots \right] + \frac{1}{x^2} \left[y_{0,2} + \xi y_{1,2} + \ldots \right] \]

with the form \(\hat{y}(x; C) = F_0(\xi) + \frac{1}{x} F_1(\xi) + \frac{1}{x^2} F_2(\xi) + \ldots \)

Note: \(F_0(0) = 0 \). Note: choose \(y_{1,0} = 1 \) (to fix \(C \)). \(\sim F'_0(0) = 1 \).

Higher dimensions - similar.
A two scale expansion in the region with singularities

\[\tilde{y}(x; C) = \tilde{y}_0(x) + C e^{-x} x^\alpha \tilde{s}_1(x) + C^2 e^{-2x} x^{2\alpha} \tilde{s}_2(x) + C^3 e^{-3x} x^{3\alpha} \tilde{s}_3(x) + \ldots \]

Denote \(Ce^{-x} x^\alpha = \xi \) For \(C \neq 0 \). Transseries:

\[\tilde{y} = \left[\frac{y_{0,1}}{x} + \frac{y_{0,2}}{x^2} + \ldots \right] + \xi \left[y_{1,0} + \frac{y_{1,1}}{x} + \frac{y_{1,2}}{x^2} + \ldots \right] + \xi^2 \left[y_{2,0} + \frac{y_{2,1}}{x} + \frac{y_{2,2}}{x^2} + \ldots \right] + \ldots \]

In the region: \(x^{-k} \ll \xi \) reorder the transseries:

\[\hat{y} = \left[\xi y_{1,0} + \xi^2 y_{2,0} + \ldots \right] + \frac{1}{x} \left[y_{0,1} + \xi y_{1,1} + \xi^2 y_{2,1} + \ldots \right] + \frac{1}{x^2} \left[y_{0,2} + \xi y_{1,2} + \ldots \right] \]

with the form \(\hat{y}(x; C) = F_0(\xi) + \frac{1}{x} F_1(\xi) + \frac{1}{x^2} F_2(\xi) + \ldots \)

Note: \(F_0(0) = 0 \). Note: choose \(y_{1,0} = 1 \) (to fix \(C \)). \(\sim F'_0(0) = 1 \).

Higher dimensions - similar.
The series approximates solutions near singularities

Representation for x near $i\mathbb{R}^+$ (recall $\lambda_1 = 1$). Denote
$$\mathcal{E}_+ = \{x; -\frac{\pi}{2} + \delta < \arg x < \frac{\pi}{2} + \delta, \Re(\lambda_jx/|x|) > c, j = 2, \ldots\}$$
$$S_{\delta_1} = \{x \in \mathcal{E}_+; |\xi(x)| < \delta_1\}$$

Theorem (OC, RDC, 2001)
There exists $\delta_1 > 0$ so that all F_m are analytic for $|\xi| < \delta_1$ and
$$y(x) \sim F_0(\xi) + \frac{1}{x} F_1(\xi) + \frac{1}{x^2} F_2(\xi) + \ldots$$ uniformly for $x \in S_{\delta_1}, x \to \infty$.

The series is differentiable and satisfies Gevrey estimates.

It turns out that the series remains asymptotic in part of $\mathcal{E}_+ \setminus S_{\delta_1}$ near $\xi = \xi_s$ singularity of F_0.
\[y(x; C) \sim F_0(\xi) + \frac{1}{x} F_1(\xi) + \frac{1}{x^2} F_2(\xi) + \ldots \]

The picture: If \(\xi_s \) is an isolated singularity of \(F_0 \), calculate \(x = \tilde{x}_n \) solutions of \(\xi(x) = C_1 e^{-x} x^{\alpha_1} = \xi_s \implies \)
\[x = \tilde{x}_n = 2n\pi i + \alpha_1 \ln(2n\pi i) + \ln C_1 - \ln \xi_s + o(1), \quad (n \to \infty) \]

Then each solution \(y(x; C) \) (specified by \(C \)) has an array of singularities at:
\[x_n = \tilde{x}_n + o(1) = 2n\pi i + \alpha_1 \ln(2n\pi i) + \ln C_1 - \ln \xi_s + o(1), \quad (n \to \infty). \]
(almost periodic).

Moreover:
\[y(x; C) \sim F_0(\xi(x)) + \frac{1}{x} F_1(\xi(x)) + \frac{1}{x^2} F_2(\xi(x)) + \ldots \text{ for } x \to \infty, \ x \in D_x \]
where \(D_x \) is a connected domain surrounding all \(x_n \) with \(n > N \).
(An asymptotic series valid near infinitely many singularities!)
Small neighborhoods of the poles in the array are removed.
The Painlevé equation P_1

\[
\frac{d^2 u}{dz^2} = 6u^2 + z
\]

Tonquée solutions have the same classical asymptotic expansion in the pole free sector: they differ by a constant C beyond all orders.

Plan:
- recover the constant using transseries
- characterize the tritronquée
- find the first array of poles beyond the sector of analyticity

Consider solutions with $u(z) \sim +\sqrt{-\frac{z}{6}}$ for $z \to -\infty$.

(The family $u(z) \sim -\sqrt{-\frac{z}{6}}$ is similar.)
The Painlevé equation P_I

$$\frac{d^2 u}{dz^2} = 6u^2 + z$$

Tonquée solutions have the same classical asymptotic expansion in the pole free sector: they **differ by a constant C beyond all orders**.

Plan:

- recover the constant using transseries
- characterize the tritronquée
- find the first array of poles beyond the sector of analyticity

Consider solutions with $u(z) \sim +\sqrt{\frac{-z}{6}}$ for $z \to -\infty$.

(The family $u(z) \sim -\sqrt{\frac{-z}{6}}$ is similar.)
The Painlevé equation \(P_1 \)

\[
\frac{d^2 u}{dz^2} = 6u^2 + z
\]

Tonquée solutions have the same classical asymptotic expansion in the pole free sector: they differ by a constant \(C \) beyond all orders.

Plan:

- recover the constant using transseries
- characterize the tritronquée
- find the first array of poles beyond the sector of analyticity

Consider solutions with \(u(z) \sim +\sqrt{-\frac{z}{6}} \) for \(z \to -\infty \).

(The family \(u(z) \sim -\sqrt{-\frac{z}{6}} \) is similar.)
Existence of tronquée solutions of P_I

Normalization:

\[x = \frac{(-24z)^{5/4}}{30}; \quad u(z) = \sqrt{-z} \left(1 - \frac{4}{25x^2} + h(x) \right) \sim \text{Boutroux form!} \]

P_I normalized:

\[h'' + \frac{1}{x} h' - h - \frac{1}{2} h^2 - \frac{392}{625} \frac{1}{x^4} = 0 \]

Proposition

$P_{I,\text{norm}}$ has unique $o(1)$ asy series sol as $x \to \infty$: \(\tilde{h}_0(x) = \sum_{k=4, k \text{ even}}^{\infty} \frac{c_k}{x^k} \)

The complete formal sol have the form

\[\tilde{h}(x) = \tilde{h}_0(x) + \sum_{n \geq 1} C^n e^{-nx} \tilde{h}_n(x) \quad \text{for } \arg x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right), \]

\[\tilde{h}(x) = \tilde{h}_0(x) + \sum_{n \geq 1} C^n e^{nx} \tilde{h}_n(x) \quad \text{for } \arg x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \pm i\pi \]

where \(\tilde{h}_n(x) = x^{-n/2} \tilde{s}_n(x), \quad \tilde{h}_n(x) = x^{-n/2} e^{\mp n\pi i/2} \tilde{s}_n(-x) \)

Next: Borel Summation and correspondence with actual solutions.
Existence of tonquee solutions

Proposition (OC, RDC, MH, 2014)
Let $h(x) = o(1)$ as $x \to \infty$ with $|\arg x| < \pi/2$.
Then $h(x) \sim \tilde{h}_0$ and there are C_\pm so that, for $|x|$ large enough,

$$h(x) = \begin{cases}
 h_0(x) + \sum_{n=1}^{\infty} C_+ e^{-nx} h_n(x) & \text{for } \arg z \in (0, \frac{\pi}{2}) \\
 h_0(x) + \sum_{n=1}^{\infty} C_- e^{-nx} h_n(x) & \text{for } \arg x \in (-\frac{\pi}{2}, 0)
\end{cases}$$

where $h_n(x) = \mathcal{L}_\phi H_n$, $H_n(p) = B \tilde{h}_n$, ($-\phi = \arg x$).
Similar statements for $h(x) = o(1)$ in $|\arg x| < \pi/2$.

Stokes phenomenon

$$C_+ - C_- = -\mu \text{ (there is only one free constant)}$$

$$(\mathcal{L}_0 H_0 - \mathcal{L}_0 H_0) = -\mu e^{-x} x^{-1/2}(1 + o(1)))$$

$$\Rightarrow \exists 1\text{-param fam. sol. an. for large } |x| \text{ in RHP (and sol in LHP).}$$
Tronquée solutions

Tronque sol have the form

\[h(x) = \begin{cases}
 h_0(x) + \sum_{n=1}^{\infty} C_n e^{-nx} h_n(x) & \text{for } \arg x \in (0, \frac{\pi}{2}) \\
 h_0(x) + \sum_{n=1}^{\infty} C_n e^{-nx} h_n(x) & \text{for } \arg x \in (-\frac{\pi}{2}, 0)
\end{cases} \]

If \(C_+ = 0 \), then \(\exists \ AC \ h(x) = L\phi H_0 \) for \(\arg x \in \left(\frac{\pi}{2}, \pi \right) \), then through \(\mathbb{R}_- \), collecting an \(Ce^x \) (Stokes phenomenon), and further AC for \(\arg x \in \left(\pi, \frac{3\pi}{2} \right) \).

This \(h(x) \) has asymptotic power series for \(\arg x \in \left(-\frac{\pi}{2}, \frac{3\pi}{2} \right) \).

Returning to \(u(z) \): a unique solution with asymptotic power series for \(\arg z \in \left(-\frac{2\pi}{5}, \frac{6\pi}{5} \right) \): a tritonquée solution.
For \(y = (h, h') \) we have \(\lambda_{1,2} = \pm 1, \) \(\alpha_{1,2} = -1/2. \) Let \(\xi = Ce^{-x}x^{-1/2}. \)

Substitute \(h(x) \sim \sum_{k=0}^{\infty} x^{-k}H_k(\xi(x)). \) Assume \(x^{-k} \ll \xi, \forall k. \)

\[
\sim \xi^2 H_0'' + \xi H_0' = H_0 + \frac{1}{2} H_0^2
\]

with the initial condition \(H_0(\xi) = \xi + O(\xi^2) \sim H_0(\xi) = \frac{\xi}{(\xi/12 - 1)^2} \)

\(\xi_s = 12 \) is a 2\(^{nd} \) ord. pole, and (it is shown that) so are \(x_n, \) where \(x_n \) solve

\[
Ce^{-x}x^{-1/2} = 12, \quad |x| \text{ large }, \arg x \approx \pi/2
\]

The general theorem applies...
Returning to the original variables $u(z)$:

Proposition. (OC, RDC, MH 2015) Let u be a tronquée:

$$
\frac{d^2 u}{dz^2} = 6u^2 + z \text{ such that } u(z) \sim \sqrt{-z/6} \text{ for } z \to \infty, \ \arg(z) = \pi.
$$

Let $\epsilon > 0$ and $Z = \{z \mid \arg(z) > \frac{3}{5}\pi; |\xi(z)| < \epsilon^{-1}; |\xi(z) - 12| > \epsilon\}$.

(Note: Z surrounds infinitely many poles of u, it starts at the antistokes line $\arg(z) = \frac{3}{5}\pi$ and extends slightly beyond the next antistokes line $\arg(z) = \frac{7}{5}\pi$.)

Then $u \sim \sqrt{-z/6} \left(1 - \frac{1}{8\sqrt{6}(-z)^{5/2}} + \sum_{k=0}^{\infty} \frac{30^k H_k(\xi)}{(-24z)^{5k/4}}\right)$ \quad (z \to \infty, \ z \in Z)

The functions H_k are rational, and $H_0(\xi) = \xi(\xi/12 - 1)^{-2}$.

The expansion holds uniformly in the sector $3\pi/5 < \arg(z) < 7\pi/5$ and for $\arg z \approx 7\pi/5$, (where H_0 becomes dominant), down to an $o(1)$ distance of the actual poles of u if z is large.
Tronquée solutions of P_5

\[
\frac{d^2 w}{dz^2} = \left(\frac{1}{2w} + \frac{1}{w - 1} \right) \left(\frac{dw}{dz} \right)^2 - \frac{1}{z} \frac{dw}{dz} + \frac{(w - 1)^2}{z^2} \left(\alpha w + \frac{\beta}{w} \right) + \frac{\gamma w}{z} + \frac{\delta w(w + 1)}{w - 1}, \quad (\delta = -\frac{1}{2})
\]

All solutions of are meromorphic in $\mathbb{C} \setminus L$, with L from 0 to ∞.

Asymptotic series solutions: A. Parushnikova (2012). For $\alpha \beta \delta \neq 0$

\[
w = \pm \sqrt{\frac{\beta}{\delta}} z^{-1} + O(z^{-2}), \quad w = -1 + O(z^{-1}), \quad w = \pm \sqrt{-\frac{\delta}{\alpha}} z + c_0 + O(z^{-1})
\]
Transseries approach

Let $\delta = -\frac{1}{2}$. Looked at $w \sim \sqrt{-2\beta} z^{-1} \ (z \to \infty)$.

Has a unique asymptotic ps:

$$\hat{w}_0(z) = \sqrt{-2\beta} z^{-1} + \sum_{n=2}^{\infty} w_0 n z^{-n} \ (z \to \infty)$$

Exp small terms: subs $w(z) = \hat{w}_0(z) + g(z)$ assuming $g(z) \ll z^{-n}, \ \forall n$.

P_5: $\hat{F}_0(z) + \hat{F}_1(z) g(z) + \hat{G}(z) g'(z) + g''(z) + [\text{Quadratic in } g, g'] = 0$

- \tilde{w}_0 is formal solution $\implies \hat{F}_0(z) = 0$.
- Quadratic in $g, g' \ll g, g' \implies$ neglect.
- Retain only dominant powers in $\hat{F}_1(z), \hat{G}(z)$.

We remain with...
\[g''(z) + \frac{2}{z} g'(z) - \left(1 + \frac{2\gamma + 4\sqrt{2}\sqrt{-\beta}}{z}\right) g(z) = 0 \]

WKB yields

\[g(z) = Ce^{\pm z} z^{-Q}(1 + o(1)), \quad Q = \gamma + 2A, \quad A = \sqrt{-2\beta} \]

Choose \(e^{-z} \) to study solutions in the rhp (or \(e^{+z} \) in the lhp).

Note: \(z = \infty \) is a rank one sing, no normalization needed.

We can directly apply general theorems, yielding...
Sol. of P_5 with $w \sim \sqrt{-2\beta} z^{-1}$ as $z \to \infty$ along d in RHP

We found complete formal solutions, but to apply the general summation theorems we need to bring it to a normal form first:

$$P_V : \quad \frac{d^2w}{dz^2} = \left(\frac{1}{2w} + \frac{1}{w-1} \right) \left(\frac{dw}{dz} \right)^2 - \frac{1}{z} \frac{dw}{dz}$$

$$+ \frac{(w-1)^2}{z^2} \left(\alpha w + \frac{\beta}{w} \right) + \frac{\gamma w}{z} + \frac{\delta w(w+1)}{w-1}, \quad (\delta = -\frac{1}{2})$$

(not analytic at $w = 0$ and $w = O(z^{-1}) > O(z^{-2})$.)

Substitute: $w(z) = \frac{A}{z} \left(1 - \frac{Q}{z} + u(z) \right) \quad (A = \sqrt{-2\beta}, \quad Q = 2A + \gamma)$

Now eq. for u is analytic at $u = 0$ and $u(z) = O(z^{-2})$

(since $w(x) \sim \frac{A}{z} - \frac{Q}{z^2} + O(z^{-3})$).
Existence of tronquée solutions for P_v

Theorem

(i) \exists complete formal solutions in RHP:

$$\hat{w}(z; C) = \hat{w}_0(z) + \sum_{n=1}^{\infty} \left(Ce^{-x} e^{-Q} \right)^n \hat{w}_n(z), \quad \hat{w}_0(z) = \sqrt{-2\beta} z^{-1} + ...$$

where $\hat{w}_n(z)$ are power series in z^{-1} (divergent).

(ii) $\hat{w}_n(z)$ are Borel summable along any direction $-\phi = \arg z \in (-\frac{\pi}{2}, 0)$, to $w_n = L_{\phi} B \hat{w}_n$ and the series

$$w_0(z) + \sum_{n=1}^{\infty} \left(Ce^{-x} e^{-Q} \right)^n w_n(z)$$

converges, for $|z|$ large enough, to a solution of P_5. The same one for all ϕ.

(ii') A similar statement holds for all $-\phi = \arg z \in (0, \frac{\pi}{2})$.

Conversely,

I. Assume \(w(z) \) solves \(P_5 \) and \(w \sim \sqrt{-2\beta} z^{-1} \) as \(z \to \infty \) along \(d \) in RHP. Then there are \(C_\pm \) so that, for \(|z| \) large enough,

\[
w(z) = \begin{cases}
 w_0(z) + \sum_{n=1}^{\infty} \left(C_+ e^{-\phi x} x^{-Q} \right)^n w_n(z) & \text{for } \arg z \in (0, \frac{\pi}{2}) \\
 w_0(z) + \sum_{n=1}^{\infty} \left(C_- e^{-\phi x} x^{-Q} \right)^n w_n(z) & \text{for } \arg z \in \left(-\frac{\pi}{2}, 0\right)
\end{cases}
\]

where \(A^2 = -2\beta, \ Q = \gamma + 2A \) and \(w_n(z) = L_\phi B_\# w_n(z), \ \phi = -\arg z \).

II. Similar statements hold in the LHP.
Let $w(z)$ solution with

$$w(z) = w_0(z) + \sum_{n=1}^{\infty} \left(C_+ e^{-z} x^{-Q} \right)^n w_n(z) \text{ for } \arg z \in (0, \frac{\pi}{2})$$

Searching for poles for large z with $\arg z \approx \frac{\pi}{2}$ we let $\xi = C_+ e^{-z} x^{-Q}$, and look for solutions

$$w(z) \sim F_0(\xi) + \frac{1}{z} F_1(\xi) + \frac{1}{z^2} F_2(\xi) + \ldots \text{ assuming } z^{-k} \ll \xi, \forall k$$

We get $F_n(\xi)=$ polynomials. No poles! ???
What is going on?

The transseries solution has the form:

\[
\hat{w}(z) = \frac{w_{01}}{z} + \frac{w_{02}}{z^2} + \frac{w_{03}}{z^3} + \ldots \\
+ Ce^{-x}z^{-Q} \left(1 + \frac{w_{11}}{z} + \frac{w_{12}}{z^2} + \frac{w_{13}}{z^3} + \ldots \right) \\
+ \left(Ce^{-x}z^{-Q} \right)^2 \left(\frac{w_{21}}{z} + \frac{w_{22}}{z^2} + \frac{w_{13}}{z^3} + \ldots \right) \\
+ \left(Ce^{-x}z^{-Q} \right)^3 \left(\frac{w_{32}}{z^2} + \frac{w_{33}}{z^3} + \frac{w_{34}}{z^4} + \ldots \right) \\
+ \left(Ce^{-x}z^{-Q} \right)^4 \left(\frac{w_{43}}{z^3} + \frac{w_{44}}{z^4} + \ldots \right)
\]

This suggests to search for an expansion using the second scale
\[\zeta = Ce^{-x}z^{-Q-2},\] and of the form

\[w(z) \sim z^2 F_0(\zeta) + zF_1(\zeta) + F_2(\zeta) + \frac{1}{z} F_3(\zeta) + \ldots \quad \text{when} \quad z^{-n} \ll \zeta\]

Thanks, Maple!
What is going on?

The transseries solution has the form:

\[\hat{w}(z) = \frac{w_{01}}{z} + \frac{w_{02}}{z^2} + \frac{w_{03}}{z^3} + \ldots \]

\[+ Ce^{-x} x^{-Q} \left(1 + \frac{w_{11}}{z} + \frac{w_{12}}{z^2} + \frac{w_{13}}{z^3} + \ldots \right) \]
\[+ \left(Ce^{-x} x^{-Q} \right)^2 \left(\frac{w_{21}}{z} + \frac{w_{22}}{z^2} + \frac{w_{13}}{z^3} + \ldots \right) \]
\[+ \left(Ce^{-x} x^{-Q} \right)^3 \left(\frac{w_{32}}{z^2} + \frac{w_{33}}{z^3} + \frac{w_{34}}{z^4} + \ldots \right) \]
\[+ \left(Ce^{-x} x^{-Q} \right)^4 \left(\frac{w_{43}}{z^3} + \frac{w_{44}}{z^4} + \ldots \right) \]

This suggests to search for an expansion using the second scale
\[\zeta = Ce^{-z} z^{-Q-2}, \] and of the form

\[w(z) \sim z^2 F_0(\zeta) + z F_1(\zeta) + F_2(\zeta) + \frac{1}{z} F_3(\zeta) + \ldots \quad \text{when } z^{-n} \ll \zeta \]

Thanks, Maple!
What is going on?

The transseries solution has the form:

\[
\hat{w}(z) = \frac{w_{01}}{z} + \frac{w_{02}}{z^2} + \frac{w_{03}}{z^3} + \ldots \\
+ Ce^{-x}x^{-Q} \left(1 + \frac{w_{11}}{z} + \frac{w_{12}}{z^2} + \frac{w_{13}}{z^3} + \ldots \right) \\
+ \left(Ce^{-x}x^{-Q}\right)^2 \left(\frac{w_{21}}{z} + \frac{w_{22}}{z^2} + \frac{w_{13}}{z^3} + \ldots \right) \\
+ \left(Ce^{-x}x^{-Q}\right)^3 \left(\frac{w_{32}}{z^2} + \frac{w_{33}}{z^3} + \frac{w_{34}}{z^4} + \ldots \right) \\
+ \left(Ce^{-x}x^{-Q}\right)^4 \left(\frac{w_{43}}{z^3} + \frac{w_{44}}{z^4} + \ldots \right)
\]

This suggests to search for an expansion using the second scale
\[\zeta = Ce^{-z}z^{-Q-2},\text{ and of the form}\]

\[w(z) \sim z^2 F_0(\zeta) + z F_1(\zeta) + F_2(\zeta) + \frac{1}{z} F_3(\zeta) + \ldots \text{ when } z^{-n} \ll \zeta\]

Thanks, Maple!
This leads to the eq. for $F_0(\zeta)$:

$$-2\beta\alpha F_0^3 + \frac{3}{2} \frac{\zeta^2 F_0'}{F_0} - \zeta F_0' - \zeta^2 F_0'' - \frac{1}{2} F_0 = 0$$

with gen. sol.

$$F_0(\zeta) = \frac{4C_1\zeta}{-16\alpha\beta - C_1^2(\zeta - C_2)^2}$$

Condition that $F_0(\zeta) = \zeta + O(\zeta^2) \Rightarrow C_2^2 = -16\beta\alpha C_1^{-2} - 4 C_1^{-1}, C_1 = \forall$

It is determined so that F_1 is a rational function (has no log) \(\rightsquigarrow\)

$$F_0(\zeta) = \frac{\zeta}{1 - R\zeta - N\zeta^2}$$

where $R = (A - 1 - Q)A$, $N = -\alpha\beta - 1/4 R^2$, $C_1 = 4N$
This leads to the eq. for $F_0(\zeta)$:

$$-2\beta\alpha F^3_0 + \frac{3}{2} \frac{\zeta^2 F'_0}{F_0} - \zeta F'_0 - \zeta^2 F''_0 - \frac{1}{2} F_0 = 0$$

with gen. sol.

$$F_0(\zeta) = \frac{4C_1\zeta}{-16\alpha\beta - C_1^2(\zeta - C_2)^2}$$

Condition that $F_0(\zeta) = \zeta + O(\zeta^2) \Rightarrow C_2^2 = -16\beta\alpha C_1^{-2} - 4C_1^{-1}, \ C_1 = \forall$

It is determined so that F_1 is a rational function (has no log) \(\Rightarrow\)

$$F_0(\zeta) = \frac{\zeta}{1 - R\zeta - N\zeta^2}$$

where $R = (A - 1 - Q)A, \ N = -\alpha\beta - 1/4 R^2, \ C_1 = 4N$
This leads to the eq. for $F_0(\zeta)$:

$$-2\beta\alpha F_0^3 + \frac{3}{2} \frac{\zeta^2 F_0' \,^2}{F_0} - \zeta F_0' - \zeta^2 F_0'' - \frac{1}{2} F_0 = 0$$

with gen. sol.

$$F_0(\zeta) = \frac{4C_1\zeta}{-16\alpha\beta - C_1^2(\zeta - C_2)^2}$$

Condition that $F_0(\zeta) = \zeta + O(\zeta^2) \Rightarrow C_2^2 = -16\beta\alpha C_1^{-2} - 4C_1^{-1}$, $C_1 = \forall$

It is determined so that F_1 is a rational function (has no log) \(\Rightarrow\)

$$F_0(\zeta) = \frac{\zeta}{1 - R\zeta - N\zeta^2}$$

where $R = (A - 1 - Q)A$, $N = -\alpha\beta - 1/4R^2$, $C_1 = 4N$
This leads to the eq. for $F_0(\zeta)$:

$$-2\beta\alpha F_0^3 + \frac{3}{2} \frac{\zeta^2 F_0'}{F_0} - \zeta F_0' - \zeta^2 F_0'' - \frac{1}{2} F_0 = 0$$

with gen. sol.

$$F_0(\zeta) = \frac{4 C_1 \zeta}{-16\alpha\beta - C_1^2 (\zeta - C_2)^2}$$

Condition that $F_0(\zeta) = \zeta + O(\zeta^2) \Rightarrow C_2^2 = -16\beta\alpha C_1^{-2} - 4 C_1^{-1}, \ C_1 = \forall$

It is determined so that F_1 is a rational function (has no log) \(\rightsquigarrow\)

$$F_0(\zeta) = \frac{\zeta}{1 - R\zeta - N\zeta^2}$$

where $R = (A - 1 - Q)A$, $N = -\alpha\beta - 1/4 R^2$, $C_1 = 4N$.
Induction: F_n with $n \geq 1$ satisfy the linear non-homogeneous equations

$$
\xi^2 F''_n + \xi \left(1 - 3\xi \frac{F'}{F}\right) F'_n + \left(\frac{3}{2} \frac{\xi^2 (F')^2}{F^2} + \frac{1}{2} - 3 A^2 aF^2\right) F_n = R_n (\xi, F(\xi), F_{-1}(\xi), \ldots, F_{n-1}(\xi))
$$

where R_n are rational functions.

Proposition

There exist constants C_1, C_2 in F_{n-1} so that $F(\xi) = \xi + O(\xi^2)$ ($\xi \to 0$) and so that all solutions $F_n(\xi)$ are analytic at $\xi = 0$.

As a consequence, the only singularities of F_n are poles, when $N\xi^2 + R\xi - 1 = 0$, for all $n \geq 0$.

For example

$$
F_1 (\zeta) = \frac{\zeta (N\zeta^2 + 1)}{(N\zeta^2 + R\zeta - 1)^2} \left[-\frac{(2 N\zeta + R)}{2 (N\zeta^2 + 1) N} C_3 + C_4 \right]
$$

Next: a contractive argument is used to show that there is a solution asymptotic to this expansion.
Solve for z:
\[N\zeta^2 + R\zeta - 1 = 0, \quad \zeta = Ce^{-z}z^{-Q-2}, \quad |z| \text{ large}, \quad \arg z \approx \pi/2. \]

Further questions:

- Numerical verification would be great.
- For $C_+ = 0$ there exists tritonquee solutions, as explained for P_I. Where are their first array of poles located?
- How do the other two families of tronquee solutions behave?
- Does P_ν admit entire solutions (for special parameters)?
Thank You!