1. (a) State the definition of a CW complex, and its topology (the weak topology).

(b) Let X be a CW complex and $A \subseteq X$ a nonempty CW subcomplex. Working directly from your definition, describe a CW complex structure on the quotient space X / A, and verify explicitly that the quotient topology on X / A agrees with the weak topology of your given CW complex structure.

2. (a) Let X be a path-connected, locally path-connected, and semi-locally simply connected space. Let $p : (\tilde{X}, \tilde{v}) \to (X, v)$ be the covering space associated to a subgroup $H \subseteq \pi_1(X, v)$. For an element $[\gamma] \in \pi_1(X, v)$, let $\tilde{\gamma}$ denote the lift of γ to \tilde{X} starting at \tilde{v}. Show that $[\gamma] \in \pi_1(X, v)$ is in the normalizer $N(H)$ of H if and only if the lift $\tilde{\gamma}$ has endpoint $\tilde{w} := \tilde{\gamma}(1)$ in the orbit of \tilde{v} under the deck group of the cover p.

(b) Consider the wedge $S^1 \vee S^1$ of circles a and b with wedge point v. Below is a (based) cover associated to a certain subgroup H of $\pi_1(S^1 \vee S^1, v)$. The covering map is specified by the edge labels and orientations, and a basepoint \tilde{v} is marked with a gray dot. Find a (not necessarily free) finite generating set for the normalizer $N(H)$ of H, with very brief justification.

3. Fix $g \geq 0$. The closed orientable genus-g surface Σ_g is the boundary of a compact 3-dimensional manifold H_g called a genus-g handlebody, as pictured for $g = 3$. [Image by Oleg Alexandrov]

The doubled handlebody D_g is obtained by gluing two copies of H_g along their boundary via the identity map. Concretely, for $H = H' = H_g$ and $I : H \to H'$ the the identity map, the space D_g is the quotient of the disjoint union $H' \cup H$ by the equivalence relation $I(x) \sim x$ for all $x \in \partial H = \Sigma_g$.

(a) Compute $\pi_1(D_g)$.

(b) Compute $\tilde{H}_2(D_g)$.

For this question, you can assert descriptions of the fundamental groups and homology groups of Σ_g and H_g without proof. Please justify the other steps in your computation.
4. The following proposition is a step in the proof of the Five Lemma. Perform a diagram chase to prove this proposition.

Proposition. Suppose that in the following commutative diagram of abelian groups,

- Both rows are exact.
- The maps β and δ are injective.
- The map α is surjective.

\[
\begin{array}{cccccc}
A & \xrightarrow{f} & B & \xrightarrow{g} & C & \xrightarrow{h} & D \\
\downarrow{\alpha} & & \downarrow{\beta} & & \downarrow{\gamma} & & \downarrow{\delta} \\
A' & \xrightarrow{f'} & B' & \xrightarrow{g'} & C' & \xrightarrow{h'} & D'
\end{array}
\]

Then the map γ is injective.

5. Let $f : X \to Y$ be a continuous map of nonempty topological spaces. Let $[0, 1]$ denote the closed interval.

The **mapping cylinder** M_f of f is obtained by gluing $X \times [0, 1]$ to Y via f in the following sense: it is the quotient of the disjoint union of $X \times [0, 1]$ and Y by the equivalence relation generated by $(x, 1) \sim f(x)$.

Let X_0 denote the image of $X \times \{0\}$ in M_f. The **mapping cone** C_f of f is the quotient of M_f that collapses X_0 to a point.

The spaces M_f and C_f, respectively, are illustrated below. [Images by Fernando Muro]

Fix $k \geq 0$ in \mathbb{Z}. Prove that the induced map $f_* : H_i(X) \to H_i(Y)$ is an isomorphism for $0 \leq i \leq k$ if $H_i(C_f) = 0$ for $0 \leq i \leq k + 1$.

Hint: First verify that (M_f, X_0) is a good pair.