Differential Topology QR Exam – With Solutions Monday, January 8, 2024

All manifolds are assumed to be smooth. $\Omega^k(M)$ denotes the space of smooth kforms on the manifold M. All items will be graded independently of each other.

Problem 1. Let $f: X \to M$ be an injective immersion, where X and M are manifolds without boundary.

- (a) Give an example, with proofs, where f is not an embedding.
- (b) Show that if X is compact f must be an embedding.

SOLUTION: (a) Take X an open interval, $M = \mathbb{R}^2$, and f a parametrization of of a lemniscate (figure eight-see example 4.19 in Lee). f(X) is compact, but X is not so f is not a homeomorphism onto its image. (b) If $F \subset X$ is closed then it is compact. Since f is continuous f(X) is compact and therefore closed in M and therefore in f(X). So the pull-back of closed sets under inverse map $f(X) \to X$ is closed, and therefore the inverse map is continuous.

Problem 2. Let M be an n-dimensional manifold. The orientation covering of M is defined as

$$\widetilde{M} = \{(p, \mathfrak{o}) \mid p \in M \text{ and } \mathfrak{o} \text{ is an orientation of } T_p M\}$$
 .

 \widetilde{M} has a C^{∞} manifold structure such that the natural projection $\pi: \widetilde{M} \to M$ is a smooth covering map (you can freely use this without proof).

- (a) Show that \widetilde{M} has a natural orientation.
- (b) Let ω be a compactly-supported *n*-form on M. Show that $\int_{\widetilde{M}} \pi^* \omega = 0$.

SOLUTION: (a) Note that the natural projection induces $T_{(p,\mathfrak{o})}\widetilde{M} \cong T_pM$. Define a point-wise orientation on \widetilde{M} by orienting $T_{(p,\mathfrak{o})}\widetilde{M}$ by \mathfrak{o} . To prove that this is a continous orientation, pick (p,\mathfrak{o}) and a connected chart (U,ϕ) of M where $p \in U$ and the chart orientation agrees with \mathfrak{o} at p. Note that $\pi^{-1}(U) = U_+ \coprod U_-$ where $(p,\mathfrak{o}) \in U_+$ (and $(p,-\mathfrak{o}) \in U_-$). Then $\phi \circ \pi|_{U_+} : U_+ \to \mathbb{R}^n$ is a positive chart in the point-wise orientation previously defined.

(b) Using a partition of unit WOLOG assume that β is supported in the domain U of a connected chart in M. Keep the notation $\pi^{-1}(U) = U_+ \coprod U_-$ of (a), where $(p, \mathbf{o}) \in U_+ \Leftrightarrow (p, -\mathbf{o}) \in U_-$. Then $\int_{\pi^{-1}(U)} \pi^* \beta = \int_{U_+} \pi^* \beta + \int_{U_-} \pi^* \beta$. Now the obvious diffeomorphism $f: U_+ \to U_-$ is orientation-reversing, and $f^* \pi^* \beta = \pi^* \beta$ since $\pi \circ f = \pi$. Therefore

$$\int_{U_{+}} \pi^{*} \beta = \int_{U_{+}} f^{*} \pi^{*} \beta = -\int_{U_{-}} \pi^{*} \beta,$$

which implies $\int_{\pi^{-1}(U)} \pi^* \beta = 0$.

Problem 3. Let $f: X \to M$ and $g: Y \to M$ be smooth maps between manifolds, where f is a submersion. Show that

$$W := \{(x, y) \in X \times Y \mid f(x) = g(y)\}\$$

is a submanifold of $X \times Y$. HINT: Consider $F := f \times g : X \times Y \to M \times M$.

SOLUTION: The strategy is to show that $F = f \times g$ intersects the diagonal $\Delta \subset M \times M$ transversely (observe that $W = F^{-1}(\Delta)$). Let $(x,y) \in X \times Y$ be such that $F(x,y) \in \Delta$, i.e. f(x) = m = g(y). Let $a,b \in T_mM$; (a,b) is a generic vector in $T_{(m,m)}M \times M$. Note that $(b,b) \in T_{(m,m)}\Delta$. Since f is a submersion, $\exists u \in T_xM$ such that $df_x(u) = a - b$, and therefore

$$dF_{(x,y)}(u,0) + (b,b) = (df_x(u) + b,b) = (a,b).$$

This shows im $(dF_{(x,y)}) + T_{(m,m)}\Delta = T_{(m,m)}M \times M$.

Problem 4. Consider $\phi_t : \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$\phi_t(x, y, z) = (e^t x, \cos(t) y - \sin(t) z, \sin(t) y + \cos(t) z), \quad t \in \mathbb{R}.$$

- (a) Show that ϕ is a flow, and find the vector field V that generates it.
- (b) Use the definition of the Lie derivative of a form to compute $\mathcal{L}_V(dx \wedge dy)$.
- (c) Quote Cartan's formula, and use it to verify your answer to (b).

SOLUTION: (a) ϕ_t induces the standard rotation by t radians in the y-z plane, so it is easy to check that $\phi_{t+s} = \phi_t \circ \phi_s$. Moreover

$$V_{(x,y,z)} = \frac{d}{dt}\phi_t(x,y,z)|_{t=0} = \langle x, -z, y \rangle.$$

(b) $\mathcal{L}_V(dx \wedge dy) = d/dt \, \phi_t^* (dx \wedge dy) |_{t=0}$. Computing:

$$\phi_t^* (dx \wedge dy) = e^t dx \wedge (\cos(t) dy - \sin(t) dz)$$

and so $\mathcal{L}_V(dx \wedge dy) = dx \wedge dy - dx \wedge dz$. (c) Cartan's formula: $\mathcal{L}_V \alpha = \iota_V d\alpha + d\iota_V \alpha$. Here $\alpha = dx \wedge dy$ is closed, so the formula reduces to

$$\mathcal{L}_{V}\alpha = d\iota_{V}\alpha = d\left(xdy + zdx\right) = dx \wedge dy + dz \wedge dx.$$

which agrees with what was found in (b).

Problem 5. Let G be a connected Lie group with Lie algebra \mathfrak{g} that we identify with T_IG . Let Ω_G^k denote the space of all left-invariant forms on G of degree k.

- (a) Establish a natural isomorphism $\Omega_G^k \cong \bigwedge^k \mathfrak{g}^*$.
- (b) Show that the exterior differential maps Ω_G^k into Ω_G^{k+1} .
- (c) Combining (a) and (b) with k = 0, 1, we obtain maps

$$d_0: \wedge^0 \mathfrak{g}^* \cong \mathbb{R} \to \mathfrak{g}^*$$
 and $d_1: \mathfrak{g}^* \to \wedge^2 \mathfrak{g}^*$.

Show that $d_0 = 0$ and compute d_1 . HINT: For d_1 , use a formula for $d\alpha(V, W)$ where α is any one-form and V, W are vector fields.

SOLUTION: (a) In one direction $\Omega_G^k \to \bigwedge^k \mathfrak{g}^*$ is just evaluation at the identity I. The inverse is obtained by left-invariance,

$$\forall \alpha \in \Omega_G^k, \ g \in G \qquad \alpha_g = d \left(L_{g^{-1}} \right)_g^* \alpha_I$$

where $L_g: G \to G$ is left translation by g. (b) This follows because d commutes with the operation of pull-back by any smooth map, so $\forall \alpha \in \Omega_G^k L_g^* d\alpha = dL_g^* \alpha = d\alpha$ which shows that $d\alpha$ is left-invariant. (c) k = 0: An invariant function is constant, so its differential is zero. k = 1: Use

$$d\alpha(V,W) = V\alpha(W) - W\alpha(V) - \alpha([V,W]).$$

We want to compute $d\alpha_I$ for a given $\alpha \in \Omega_G^k$. The idea is to take V, W to be left-invariant fields, in which case the first two terms vanish (because $\alpha(V), \alpha(W)$ are constant functions), and the commutator [V, W] corresponds to the Lie algebra bracket of \mathfrak{g} . The conclusion is that

$$\forall a \in \mathfrak{g}^*, \ v, w \in \mathfrak{g} \qquad d_1(a)(v, w) = -a([v, w]).$$