General and Differential Topology QR Exam - May 4, 2023

All manifolds, vector fields, and differential forms are assumed to be smooth (C^{∞}) .

Problem 1. Let $M = \{(w, x, y, z) \in \mathbb{R}^4 \mid w^2 + x^2 = y^2 + z^2 = 1\}.$

- (a) Show that M is a submanifold of \mathbb{R}^4 .
- (b) Define a diffeomorphism $\pi: M \to M$ by $\pi(w, x, y, z) = (-y, -z, w, x)$. Let G be the group generated by this diffeomorphism. Show that the orbit space M/G is a manifold.
- (c) Is M/G orientable?

Problem 2. Let $n \ge 2$. Let X be the set of real $n \times n$ matrices A satisfying $A + A^t = 0$, where A^t is the transpose of A.

- (a) Is X a Lie algebra?
- (b) Let GL(n) be the group of invertible $n \times n$ matrices. Is $X \cap GL(n)$ a Lie group?
- (c) Let M(n) be the set of all real $n \times n$ matrices. Define a function $f: X \to M(n)$ by $f(A) = e^A e^{-A}$. Describe the image under f of a small open neighborhood of the zero matrix.

Problem 3. Let α be a nonvanishing 1-form on a manifold M, so for any point $q \in M$, $\ker \alpha_q$ is a codimension 1 subspace of the tangent space T_qM . Assume that f is a nonvanishing smooth function on M such that

$$d(\alpha) = \frac{df}{f} \wedge \alpha.$$

Prove that for any $p \in M$, there is a regular submanifold S of M such that $p \in S$ and $T_qS = \ker \alpha_q$ for all $q \in S$.

Problem 4. Let X be a complete vector field on a manifold M, and let $\alpha \in \Omega^k(M)$ be a k-form.

- (a) Show that the following two conditions on the pair (X, α) are equivalent:
 - the Lie derivative $\mathcal{L}_X \alpha$ is identically zero;
 - for all $t \in \mathbb{R}$, $\theta_t^* \alpha = \alpha$, where $\theta_t : M \to M$ is the time t map of the flow along X.
- (b) Suppose that $M = \mathbb{R}^3$, $\alpha = dx \wedge dy \wedge dz$, and

$$X = ax(y-z)\frac{\partial}{\partial x} + by(z-x)\frac{\partial}{\partial y} + cz(x-y)\frac{\partial}{\partial z}$$

for some $a, b, c \in \mathbb{R}$. For which a, b, c is it the case that (X, α) satisfies the conditions of the previous part?

Problem 5. Let M be a compact manifold of positive dimension. Prove that there exists a vector field X on M such that for every nonempty open set U of M, X is not identically zero on U.

1