Differential Topology QR Exam – Solutions
August 16, 2021

\(M \) denotes a \(C^\infty \) manifold of dimension \(n \).
\(\mathfrak{X}(M) \) is the space of all smooth vector fields on \(M \).
All items will be graded independently of each other, to the extent possible.

Problem 1.- Assume \(M \) is connected. Prove that between any two points there exists a smooth curve connecting them.

Solution: Define the relation on \(M \): \(p \sim q \) iff \(p \) and \(q \) can be joined by a smooth curve. Claim: this is an equivalence relation. The only non-trivial property is transitivity. Assume \(p \sim q \) and \(q \sim r \), and let \(\gamma_1 \) join \(p \) to \(q \) and \(\gamma_2 \) join \(q \) to \(r \). WLOG \(\gamma_1 : [a, b] \to M \) and \(\gamma_2 : [b, c] \to M \) with \(\gamma_1(a) = p, \gamma_1(b) = q = \gamma_2(b) \) and \(\gamma_2(c) = r \). Let \(\tilde{\gamma} : [a, c] \to M \) be the continuous piece-wise smooth curve agreeing with \(\gamma_1 \) on \([a, b]\) and with \(\gamma_2 \) on \([b, c]\). Using a smooth coordinate chart centered at \(q \), modify \(\tilde{\gamma} \) in a small neighborhood of \(b \) to yield a smooth curve \(\gamma : [a, c] \to M \) joining \(p \) and \(r \) (it is irrelevant if it does not pass by \(q \)). This proves transitivity.

Now pick \(p \in M \) and let \(\mathcal{C}_p \) be the equivalence class of \(p \). We claim that \(\mathcal{C}_p \) is open. Indeed let \(q \in \mathcal{C}_p \) and \(\phi : U \to \mathbb{R}^n \) a coordinate chart containing \(q \) with \(\phi(q) \) a Euclidean ball. Since any two points in a Euclidean ball can be joined by a smooth curve (say a straight line segment) the same is true for \(U \), and by transitivity \(U \subset \mathcal{C}_p \). Therefore the equivalence classes of \(\sim \) partition \(M \) into open sets, and since \(M \) is connected there is only one equivalence class.

Problem 2.- On vector fields:

1. Let \(X \in \mathfrak{X}(M) \), and assume that \(\exists \epsilon > 0 \) such that \(\forall p \in M \) the integral curve of \(X \) through \(p \) is defined \(\forall t \in (-\epsilon, \epsilon) \). Prove that \(X \) is complete.
2. Use (1) to show that every vector field on a compact manifold is complete.

Solution:

1. Arguing by contradiction, assume \(\exists p \in M \) such that the domain \(I \subset \mathbb{R} \) of the maximal integral curve \(\gamma_p : I \to M \) of \(X \) starting at \(p \) is bounded above, let \(\beta = \sup I \) be the upper endpoint of \(I \). Let \(T = \beta - \epsilon/2 \) and let \(q = \gamma_p(T) \). Define a curve \(\tilde{\gamma} : (-\epsilon, \beta + \epsilon/2) \to M \) by:

\[
\tilde{\gamma}(t) := \begin{cases}
\gamma_p(t) & \text{if } t \in (-\epsilon, \beta) \\
\gamma_q(t - T) & \text{if } t \in (T, \beta + \epsilon/2)
\end{cases}
\]

where we use that the integral curve \(\gamma_q \) is defined on \((-\epsilon, \epsilon) \). Both curves on the right-hand side of this definition are integral curves of \(X \) that agree on the overlap of their domains, by the group law of the flow \(\phi \) of \(X \):

\[
\gamma_q(t - T) = \phi_{t-T}(q) = \phi_{t-T}(\phi_T(p)) = \phi_t(p) = \gamma_p(t).
\]

Therefore (by uniqueness of integral curves) \(\tilde{\gamma} \) is an integral curve of \(X \) starting at \(p \). However \(\beta + \epsilon/2 > \beta \), which contradicts the definition of \(\beta \).

2. Let \(X \in \mathfrak{X}(M) \) with \(M \) compact. By the existence theorem of integral curves, \(\forall p \in M \exists U_p \) neighborhood of \(p \) and \(\exists \epsilon_p > 0 \) such that \(\forall q \in U_p \) the integral curve of \(X \) starting at \(p \) exists \(\forall t \in (-\epsilon_p, \epsilon_p) \). Let \(U_{p_1}, \ldots, U_{p_n} \) be a finite subcover of the cover \(\{U_p\}_{p \in M} \). Then \(\epsilon := \min\{\epsilon_{p_1}, \ldots, \epsilon_{p_n}\} \) and \(X \) satisfy the hypotheses of (1), and therefore \(X \) is complete.

Problem 3.- Two unrelated questions on Lie groups:
(1) Let \(U \subset G \) be a neighborhood of the identity where \(G \) is a Lie group. Show that there exists \(V \) a neighborhood of the identity such that \(V \subset U \) and \(\forall g, h \in V \ gh^{-1} \in U \).

(2) Show that every Lie group \(G \) is orientable, and that not all orientable manifolds admit a Lie group structure.

Solution:

(1) Consider the map \(F : G \times G \rightarrow G \) given by \(F(g, h) = gh^{-1} \). This is a smooth (and therefore continuous) map, and \(F(e, e) = e \) where \(e \) is the identity. By continuity, there exists a neighborhood \(W \subset G \times G \) of \((e, e) \) such that \(F(W) \subset U \). By definition of the product topology, \(\exists V' \subset G \) a neighborhood of the identity such that \(V' \times V' \subset W \). Now let \(V = V' \cap U \).

(2) Let \(G \) be a Lie group of dimension \(n \) and \(\forall g \in G \), let \(L_g : G \rightarrow G \) be left-translation by \(g \), that is \(L_g(k) = gk \). Pick \(\nu_e \in \bigwedge^n g^* \setminus \{0\} \), and \(\forall g \in G \) define \(\nu_g = L_g^* \nu_e \in \bigwedge^n T_g^* M \). Then \(\nu \) is a smooth non vanishing top-degree form on \(G \), which shows that \(G \) is orientable.

OR: Pick \(e_1, \ldots, e_n \) a basis of \(g \) and extend them to left-invariant vector fields \(E_1, \ldots, E_n \) on \(G \). Evaluating these fields at each \(g \in G \) yields a basis of \(T_g G \). Define an orientation of \(G \) by declaring these basis to be positive.

For the converse, use that any Lie group has plenty of non-vanishing smooth vector fields: Any non-zero left-invariant field, for example. Such fields do not exist e.g. on \(S^2 \), which is orientable nonetheless.

Problem 4.- Let \(\alpha \) be a smooth one-form on \(M \). Assume that \(\forall p \in M \ \alpha_p \neq 0 \).

(1) Show that \(N := \{(p, v) \in TM \mid \alpha_p(v) = 0\} \) is a submanifold of the tangent bundle \(TM \).

(2) Assume that \(d\alpha = 0 \). Prove that \(\forall p \in M \) there exists a regular submanifold \(S \subset M \) such that \(p \in S \) and \(\forall q \in S \ T_q S = \ker \alpha_q \).

Solution:

(1) Let \((x^1, \ldots, x^n) \) be coordinates on an open set \(U \subset M \), and \((x^1, \ldots, x^n, v^1, \ldots, v^n) \) be the associated coordinates on \(TU \). Let \(\alpha = \sum_j a_j(x)dx^j \). Then \(N \cap TU \) is defined by the equation

\[
\sum_j a_j(x)v^j = 0,
\]

that is, \(N \cap TU \) is the zero level set of the function \(F(x, v) = \sum_j a_j(x)v^j \), \(F : TU \rightarrow \mathbb{R} \). The Jacobian of this function is

\[
(\nabla_x F, a_1(x), \ldots, a_n(x))^T
\]

which is nowhere zero since \(\alpha \) does not vanish. By the regular value theorem \(N \cap TU \) is a submanifold.

(2) Let \(p \in M \) and \(U \) a neighborhood of \(p \) diffeomorphic to a Euclidean ball. By the Poincaré lemma, \(\exists f \in C^\infty(U) \) such that \(\alpha|_U = df \). Since \(\alpha \) does not vanish, \(f \) has no critical points, and every \(c \in \mathbb{R} \) is a regular value of \(f \). Let \(S = f^{-1}(c) \), where \(c = f(p) \). Then \(S \) is a regular submanifold, \(p \in S \) and \(\forall q \in S \ T_q S = \ker df_q = \ker \alpha_q \).

Problem 5.- Let \(f : M \times W \rightarrow \mathbb{R} \) be a smooth function, where \(W \subset \mathbb{R}^k \) is open. For each \((p, w) \in M \times W \), define the partial differential \(d_Mf_{(p,w)} \in T_p^* M \) by

\[
d_Mf_{(p,w)}(\gamma(0)) = \frac{d}{dt}f(\gamma(t), w)|_{t=0}
\]

for each smooth curve \(\gamma : (-\epsilon, \epsilon) \rightarrow M \) such that \(\gamma(0) = p \).
Assume that zero is a regular value of the map $\Phi : M \times W \to \mathbb{R}^k$ defined as

$$\Phi(p, w) = \left(\frac{\partial f}{\partial w^1}(p, w), \ldots, \frac{\partial f}{\partial w^k}(p, w) \right).$$

(1) Let $C := \Phi^{-1}(0)$. Explain why C is a submanifold and compute its dimension. If $(p, x) \in C$ and (x^1, \ldots, x^n) are coordinates in a neighborhood of p, write equations for the components $(\alpha^1, \ldots, \alpha^n, \beta^1, \ldots, \beta^k)$ of vectors in $T_{(p,w)}C$ in the coordinates $(x^1, \ldots, x^n, w^1, \ldots, w^k)$.

(2) Show that the map

$$F : C \to T^*M, \quad F(p, w) = (p, d_Mf_{(p,w)})$$

is an immersion.

Solution:

(1) The regular value theorem immediately implies that C is a submanifold of $M \times W$, and that if $(p, w) \in C$ then

$$T_{(p,w)}C = \ker d\Phi_{(p,w)}.$$

By assumption the rank of $d\Phi_{(p,w)}$ is k, and therefore its kernel has dimension $n + k - k = n$, so C has the same dimension as M.

Introduce coordinates (x^1, \ldots, x^n) in a neighborhood of p. Then the matrix of $d\Phi_{(p,w)}$ (the Jacobian) is

$$J := \left(f_{wx} \quad f_{ww} \right),$$

where f_{wx} is the matrix $f_{wx} = \left(\frac{\partial^2 f}{\partial x^i \partial w^j} \right)$, and similarly for f_{ww}. A tangent vector $\sum \alpha^i \partial x^i + \sum \beta^j \partial w^j$ is in $T_{(p,w)}C$ iff

$$f_{wx} \alpha + f_{ww} \beta = 0.$$

(2) Consider the extension $\tilde{F} : M \times W \to T^*M$ of F given by the same expression as F. In coordinates,

$$\tilde{F}(x, w) = \left(x, \frac{\partial f}{\partial x^i}(x, w) \right),$$

and therefore the Jacobian matrix of \tilde{F} is

$$K := \begin{pmatrix} I_n & 0 \\ f_{xx} & f_{xw} \end{pmatrix}.$$

Since $F = \tilde{F} \circ \iota$ where $\iota : F \hookrightarrow M \times W$ is the inclusion, the kernel of $dF_{(p,w)}$ is the space of vectors in $T_{(p,w)}C$ that are in the kernel of \tilde{F}. Therefore, the components of the vectors in $\ker dF_{(p,w)}$ are the intersection of the kernels of the matrices J and K. Computing using column vectors $\alpha \in \mathbb{R}^n$, $\beta \in \mathbb{R}^k$:

$$J \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = f_{wx} \alpha + f_{ww} \beta, \quad K \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha \\ f_{xx} \alpha + f_{xw} \beta \end{pmatrix},$$

we see that the joint kernel has for equations $\alpha = 0$, $f_{ww} \beta = 0$ and $f_{xw} \beta = 0$. Thus the equation on β is

$$J^T \beta = 0.$$

Since J is onto, J^T is 1-1 and this equation implies that $\beta = 0$. Therefore $\ker dF_{(p,w)} = 0$, i.e. F is an immersion.