1. Show that
\[\omega = \frac{-y}{x^2 + y^2} \, dx + \frac{x}{x^2 + y^2} \, dy \]
defines a nonzero deRham cohomology class of \(\mathbb{R}^2 \setminus \{0,0\} \).

Solution: We need to show \(\omega \) is closed but not exact.

Computing the exterior derivative gives
\[d\omega = \left(\frac{\partial}{\partial x} \frac{x}{x^2 + y^2} - \frac{\partial}{\partial y} \frac{-y}{x^2 + y^2} \right) \, dx \wedge dy \]
\[= \left(\frac{x^2 + y^2}{(x^2 + y^2)^2} - 2x^2 + \frac{x^2 + y^2 - 2y^2}{(x^2 + y^2)^2} \right) \, dx \wedge dy \]
\[= 0, \]

so \(\omega \) is closed.

To show \(\omega \) is not exact, we integrate \(\omega \) around the unit circle \(C \), which we will parametrize by \(f(t) = (\cos(t), \sin(t)) \) from \(t = 0 \) to \(2\pi \). It suffices to show the integral \(\int_C \omega \neq 0 \). Indeed, if \(\omega \) were exact, then \(\omega = dg \) for some smooth function \(g \) and then Stokes’ theorem would give \(\int_C dg = \int_{\partial C} g = 0 \) since \(C \) has no boundary.

We have
\[f^*dx = -\sin(t) dt \]
\[f^*dy = \cos(t) dt. \]

Writing \(x, y, dx, dy \) in terms of \(t \), we get
\[\int_C \omega = \int_0^{2\pi} \sin^2(t) + \cos^2(t) \, dt = 2\pi \neq 0. \]

Therefore, \(\omega \) is not exact.

2. Any non-constant smooth function of a compact connected manifold has at least two critical points.

Solution: Let \(M \) be a compact connected manifold and let \(f : M \to \mathbb{R} \) be a smooth function. Since \(M \) is compact and \(f \) is continuous, the function \(f \) must achieve both a maximum and minimum value on \(M \). Suppose \(p \) is such that \(f(p) \) is the maximum value of \(f \). We claim \(f \) has a critical point at \(p \). To see this, let \(\gamma : (-\varepsilon, \varepsilon) \to M \) be a curve with \(\gamma(0) = p \) (this is assuming \(M \) has no boundary, which is necessary or else \(f(x) = x \) on \([0,1]\) is a counter-example to the statement of the problem). Suppose for contradiction \(\gamma'(t) \neq 0 \). If \(\gamma'(t) > 0 \) then there is small enough \(t > 0 \) so that \(f(\gamma(t)) > f(p) \) and if \(\gamma'(0) < 0 \), there is \(t > 0 \) so that \(f(\gamma(-t)) > f(p) \), contradicting the maximality of \(f(p) \). A similar argument
shows that if \(q \in M \) is such that \(f(q) \) is the minimum value at \(f \), then \(f \) must have a critical point at \(q \).

3. For each \(n \geq 1 \), there is a diffeomorphism \((TS^n) \times \mathbb{R} \cong S^n \times \mathbb{R}^{n+1}\).

Solution: View \(S^n \) as \(\{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_1^2 + \cdots + x_n^2 = 1\} \). Let \(N_p \) be the normal vector field to \(S^n \), i.e. associate to each \(p = (x_1, \ldots, x_{n+1}) \in \mathbb{R}^n \) the vector \((x_1, \ldots, x_{n+1})\). Define

\[
F : (TS^n) \times \mathbb{R} \to S^n \times \mathbb{R}^{n+1}
\]

\[
(p, v, \alpha) \mapsto (p, v + \alpha N_p).
\]

This map is clearly smooth. It is bijective because any \(w \in \mathbb{R}^{n+1} \) can be decomposed uniquely as \(w = w_1 + w_2 \) where \(w_1 \) is in the direction of \(N_p \) and \(w_2 \) is in the direction normal to \(N_p \), i.e. in the direction of \(T_p S^n \).

4. Assuming that every \(n \)-dimensional compact manifold \(M^n \) can be embedded into some \(\mathbb{R}^N \), prove that we can choose \(N = 2n + 1 \). (Hint: Given a nonzero vector \(v \neq 0 \) in \(\mathbb{R}^N \), once can define a parallel projection \(\phi_v \) from \(\mathbb{R}^N \) to the orthogonal complement of \(v \). If \(N > 2n + 1 \), we can choose some \(v \) so that \(\phi_v \mid M^n \) is an embedding.)

Solution: We need to choose \(v \) so that \(\phi_v \) is an injective immersion.

Injective: In order for \(\phi_v \) to be injective, we need the line \(tv \) to pass through at most one point on \(M \). Define

\[
F : M \times M \setminus \Delta \to \mathbb{R}P^{N-1}
\]

\[
(p, q) \mapsto [p - q].
\]

If \(F(p, q) = [v] \), then the line \(tv \) will pass through both \(p \) and \(q \), which means \(\phi_v \) is not injective. If \([v]\) is not in the image of \(F \), then the fiber of \(\phi_v \) contains at most one point, i.e. \(\phi \) is injective. We claim the image of \(F \) has measure 0 so long as \(2n = \dim(M \times M \setminus \Delta) > \dim(\mathbb{R}P^{N-1}) = N - 1 \). Indeed, if the dimensions satisfy this inequality, \(F \) cannot have any regular values, so every value of \(F \) must be a critical value. The set of critical values has measure 0 by Sard’s theorem.

Immersion: In order for \(\phi_v \) to be an immersion, we must have \(d\phi_v \) is injective on tangent spaces. Since \(\phi_v \) is linear, its derivative is itself. For the projection \(\phi_v \) to be injective on tangent spaces, we must have that \(v \) is not parallel to any vector tangent to \(M \). Define

\[
G : TM \setminus \{(p, 0) \mid p \in M\} \to \mathbb{R}P^{N-1}
\]

\[
(p, v) \mapsto [v].
\]

If \(v \) is not in the image of \(G \), then \(v \) is not parallel to any vector tangent to \(M \). Again, by Sard’s theorem, the image of \(G \) has measure 0 so long as \(2n = \dim(TM) > \dim(\mathbb{R}P^{N-1}) = N - 1 \).

In conclusion, if \(2n > N - 1 \), we can choose \(v \) so that \([v] \in \mathbb{R}P^{N-1}\) is not in the image of \(F \) or \(G \), guaranteeing the projection \(\phi_v \) is an injective immersion, and hence an embedding.

5.
(1) Show that the space of orthogonal matrices
\[O(n) = \{ A \in M_{n \times n}(\mathbb{R}) \mid AA^T = I \} \]
is a smooth submanifold of \(M_{n \times n}(\mathbb{R}) \).

Solution: Let \(S(n) \) denote the space of \(n \times n \) real symmetric matrices. Consider the function
\[
F : M_{n \times n}(\mathbb{R}) \to S(n)
\]
\[
A \mapsto AA^T.
\]
By the regular value theorem, it suffices to show \(I \) is a regular value of \(F \). To this end, we compute the derivative
\[
DF_A : T_A M_{n \times n}(\mathbb{R}) \to T_{Id} S(n)
\]
for any \(A \in O(n) \) and show it is surjective. Note we can identify \(T_A M_{n \times n}(\mathbb{R}) \cong M_{n \times n}(\mathbb{R}) \) and \(T_F(A)S(n) \cong S(n) \). Let \(B \in T_A M_{n \times n}(\mathbb{R}) \cong M_{n \times n}(\mathbb{R}) \). Then
\[
DF_A(B) = \frac{d}{dt} \bigg|_{t=0} F(A + tB)
\]
\[
= \frac{d}{dt} \bigg|_{t=0} (A + tB)(A + tB)^T
\]
\[
= \frac{d}{dt} \bigg|_{t=0} AA^T + t(AB^T + BA^T) + t^2(BB^T)
\]
\[
= AB^T + BA^T.
\]
To see \(DF_A \) is surjective onto symmetric matrices, note that we can write any symmetric matrix \(X \) as \(P + P^T \), where \(P \) is upper triangular. (Indeed, take the super diagonal entries of \(P \) to be the same as \(A \), and take the diagonal entries of \(P \) to be one half times the diagonal entries of \(A \)). Then given \(P \) and \(A \), we can solve the equation \(P = AB^T \) for \(B \), since we are assuming \(A \in O(n) \) and so \(A \) is invertible because \(A^{-1} = A^T \). This shows \(DF_A \) is surjective as desired.

(2) Verify that the tangent space at the identity matrix
\[o(n) = \{ A \in M_{n \times n}(\mathbb{R}) \mid A + A^T = 0 \}. \]

Solution: First we claim these two vector spaces have the same dimension. The dimension of the right hand side is \(\frac{n^2 - n}{2} \), since we are free to specify the upper-triangular part of the matrix \(A \). To compute the dimension of the left hand side, we can use the regular value theorem. Since \(O(n) = F^{-1}(I) \) with \(F \) defined as above, we know \(O(n) \subset M_{n \times n}(\mathbb{R}) \) is a smooth submanifold with codimension equal to \(\dim S(n) = \frac{n^2 - n}{2} + n \). Hence \(\dim O(n) = \dim o(n) = n^2 - \dim S(n) = \frac{n^2 - n}{2}. \)

Next, suppose \(\gamma(t) \) is a curve in \(O(n) \) with \(\gamma(0) = I \), so \(\gamma'(0) \in o(n) \). Then
\[
F(\gamma(t)) = I.
\]
Differentiating both sides with respect to \(t \) and using the chain rule gives
\[
DF_{Id}(\gamma'(0)) = 0.
\]
This means
\[o(n) \subset \ker DF_{Id} = \{ A \in M_{n \times n}(\mathbb{R}) \mid A + A^T = 0 \}. \]

Since these two vector spaces have the same dimension, the only way for one of them to be a subset of the other is if they are the same.

(3) Show that the tangent bundle \(TO(n) \) can be trivialized, i.e.
\[TO(n) \cong O(n) \times o(n). \]

Solution: Let \((g, v) \in TO(n), \) i.e. \(g \in O(n) \) and \(v \in T_g O(n) \). Let \(L_{g^{-1}} \) denote left multiplication by \(g^{-1} \). This map is a diffeomorphism, so its derivative at \(g \)
\[D_g L_{g^{-1}} : T_g O(n) \to T_{Id} O(n) = o(n) \]
is a linear isomorphism. Let
\[\Phi : TO(n) \to O(n) \times o(n) \]
\[(g, v) \mapsto (g, D_g L_{g^{-1}}(v)). \]
Then \(\Phi \) is a diffeomorphism.