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SOLUTIONS

1. Let M(n,R) be the space of all real n × n matrices and GL(n,R) be the subset of
invertible matrices. Let X ∈ GL(n,R) and B ∈M(n,R) Show that

d

dt
|t=0 det(X · etB) = detXtrace(B).

Show that SL(n,R) is a closed submanifold of GL(n,R) of dimension n2 − 1.

Solution: Since d
dt
|t=0 det(X · etB) = det(X) d

dt
|t=0 det(etB), it suffices to show

d

dt
|t=0 det(etB) = trace(B).

For a diagonal matrix D with eigenvalues λi, the matrix etD is diagonal with eigenvalues
etλi . So

d

dt
|t=0 det(etD) =

d

dt
|t=0 e

tλ1+···+tλn = λ1 + . . . λn = trace(D).

If B is diagonalizable, write B = P−1DP for P ∈ GL(n,R) and D a diagonal matrix. This
gives

etP
−1DP =

∞∑
n=0

(tP−1DP )n

n!
=
∞∑
n=0

P−1(tD)nP

n!
= P−1etDP.

We then have

d

dt
|t=0 det(etB) =

d

dt
|t=0 det(etD) = trace(D) = trace(B).

Hence the desired equality holds for diagonalizable matrices. Since diagonalizable matrices
are dense and the functions in the equality are continuous, the equality must hold for all
matrices.

Now we will show SL(n,R) is a closed submanifold of GL(n,R). Let f : GL(n,R) → R
be given by f(A) = det(A). Then SL(n,R) = f−1(1), which is a closed subset of GL(n,R).
To see it is a submanifold, we must verify that 1 is a regular value of f . Let X ∈ SL(n,R)
and let B ∈ TXGL(n,R) ∼= M(n,R). Then

DXF (B) =
d

dt
|t=0F (XetB) = det(X)trace(B) = trace(B).

Thus DXF is surjective onto R. Indeed let B be a matrix with top left entry λ ∈ R and
zeros everywhere else. This shows 1 is a regular value of f and hence by the regular value
theorem, f−1(1) is a smooth submanifold of GL(n,R) of codimension 1.

2. Let S2 ⊂ R3 be the unit sphere and let C be the cubic surface defined by

C = {y2x = x3 − xz2}.
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Define X = S2 ∩ C. Is X a smooth manifold of R3?

Solution: Let f : R3 → R2 be given by f = (f1, f2), where

f1(x, y, z) = x2 + y2 + z2 − 1

f2(x, y, z) = xy2 − x3 + xz2.

Then S2 ∩ C = f−1(0, 0).
Note that f2(x, y, z) = x(y2 − x2 + z2). Substituting the defining equation 1− x2 = y2 + z2

for S2, we get
0 = x(1− 2x2).

This gives x = 0,±
√
2
2

. We have f1(0, y, z) = y2 + z2− 1, f2(0, y, z) = 0, and f1(±
√
2
2
, 0, 0) =

y2 + z2 − 1/2, f2(±
√
2
2
, 0, 0) = ±

√
2
2

(y2 + z2 − 1/2). So S2 ∩ C is the union of three circles:

x = ±
√

2

2
, y2 + z2 = 1/2

and
x = 0, y2 + z2 = 1,

which means S2 ∩ C is a smooth submanifold of R3.

3. Consider R2n with coordinates (x, y) = (x1, . . . , xn, y1, . . . , yn) and define the 1-form α
by

α =
∑
i

yidxi,

and the 2-form ω by
ω = dα.

(1) Let Vx be the subspace {y = 0} ⊂ R2n and ιx : Vx → R2n the inclusion, and similarly
for Vy, ιy. Show the pullbacks ι∗xω on Vx and ι∗yω on Vy are identically 0.

Solution: By definition of the pullback, ι∗xω(v, w) = ω(dιx(v), dιx(w)) and similarly
for y. Let v, w ∈ TpVx. Then the vectors dιx(v), dιx(w) have y-coordinates all 0, i.e.
dyi(dιx(v)) = dyi(dιx(w)) = 0 for all i. Note

ω =
∑
i

dyi ∧ dxi,

so ω(dιx(v), dιx(w)) = 0 for any v, w ∈ TpVx. The same argument works for TpVy
with the roles of x and y reversed.

(2) Let S∗ = {(x, y) | y21 + · · ·+ y2n = 1}. Show that the 2n− 1 form

α ∧ (ω)n−1 = α ∧ ω ∧ · · · ∧ ω (n− 1) times

is nowhere zero on the submanifold S∗.

Solution: Since ω =
∑

i dyi ∧ dxi, we compute

(ω)n−1 = c(n)
∑
i

(−1)i−1dy1 ∧ dx1 ∧ . . . ̂dyi ∧ dxi · · · ∧ dyn ∧ dxn,
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where c(n) is a constant depending on n, and ̂dyi ∧ dxi means dyi ∧ dxi is deleted
from the expression. Hence

α ∧ (ω)n−1 = c(n)
∑
i

yi dy1 ∧ dx1 ∧ . . . d̂yi ∧ dxi · · · ∧ dyn ∧ dxn.

Let βi = dy1 ∧ dx1 ∧ . . . d̂yi ∧ dxi · · · ∧ dyn ∧ dxn. Let v1, . . . , v2n−1 be tangent vectors
to S∗ and let A be the 2n × (2n − 1) matrix whose columns are the vi expressed
in terms of the coordinates (y1, x1, . . . , yn, xn) on R2n. Then βi(v1, . . . , v2n−1) is the
determinant of the (2n− 1)× (2n− 1) matrix obtained from A by deleting the row
corresponding to the yi coordinate. By the cofactor expansion formula for the de-
terminant, it follows that

∑
i yiβi(v1, . . . , v2n−1) is the determinant of the 2n × 2n

matrix obtained by taking A and adding the column v = (y1, 0, . . . , yn, 0) at the end.
If v1, . . . , v2n−1 form a basis for the tangent space of S∗ at the point (y1, 0, . . . , yn, 0),
then v1 . . . , v2n−1, v forms a basis for R2n, hence the determinant will be nonzero.
This shows α ∧ (ω)n−1 is nonzero on S∗.

(3) Write down a vector field ξ tangent to S∗ which is not identically 0 so that for every
vector field η tangent to S∗ we have ω(ξ, η) ≡ 0.

Solution: Write ξ =
∑

i ai
∂
∂xi

+ bi
∂
∂yi

and η =
∑

i ci
∂
∂xi

+ di
∂
∂yi

. The tangency to S∗

condition means
∑

i yibi =
∑
yidi = 0. We have

ω(ξ, η) =
∑
i

bici − aidi.

Letting ai = yi and bi = 0 for all i gives ω(ξ, η) ≡ 0 for any ci, di.

4. Let M be a smooth manifold, A ⊂M a closed subset and U ⊃ A an open neighborhood
of A in M . Suppose that f is a smooth real-valued function defined on U . Show that there
is a smooth function f̃ : M → R such that f̃ ≡ f on a neighborhood of A.

Solution: The open sets U and M \ A cover M . So there exists a C∞ partition of unity
subordinate to this open covering, i.e. smooth functions ρ1, ρ2 on M so that

(1) 0 ≤ ρi ≤ 1
(2) suppρ1 ⊂ U , suppρ2 ⊂M \ A
(3) ρ1(x) + ρ2(x) = 1 for all x ∈M

Let f̃ = ρ1 · f . This is well-defined since ρ1 is 0 outside of U . By condition 2, we know ρ2 is
0 on a neighborhood of A. Since ρ1 + ρ2 ≡ 1, we must have ρ1 ≡ 1 on a neighborhood A.
So f̃ ≡ f on a neighborhood of A.

5. Let O(3) ⊂ GL(3,R) be the 3×3 orthogonal group. Let ω = g−1dg be the 3×3 matrix
of one-forms on O(3), where

g =

g1,1 . . . g1,3

g3,1 . . . g3,3

 , dg =

dg1,1 . . . dg1,3

dg3,1 . . . dg3,3

 ,
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and the gi,j are coordinate functions in M(3,R). Finally for a ∈ O(3) fixed, let La : O(3)→
O(3) be given by left multiplication, i.e. La(h) = a · h for all h ∈ O(3). Show that L∗aω = ω,
i.e. ω is left-invariant.

Solution: First we find ωij, the ijth entry of the matrix ω:

ωij =
3∑

k=1

(g−1)i,k(dg)k,j =
3∑

k=1

gk,idgk,j,

where the last equality uses g−1 = gT , since the matrix g is orthogonal. Then

L∗aωij =
3∑

k=1

(gk,i ◦ La)(dgk,j ◦ dLa)

=
3∑

k=1

(gk,i ◦ La)d(gk,j ◦ La).

The matrix with ijth entry equal to gi,j◦La is the same as the matrix ag. This means the ijth
entry of L∗aω corresponds to the ijth entry of the matrix (ag)Td(ag) = g−1a−1a dg = g−1 dg
as desired.


