Applied Functional Analysis QR Exam - January 2023

Problem 1 Let $A: X \mapsto Y$ be a linear operator between normed vector spaces X and Y, with the following property: For any sequence $\left(x_{n}\right)_{n \geq 1}$ in X converging to 0 , the sequence $\left(A x_{n}\right)_{n \geq 1}$ is bounded. Prove that A is continuous.

Problem 2 The secant method is an iterative method for solving an equation $f(x)=0$, for a function $f: \mathbb{R} \mapsto \mathbb{R}$. Starting with two points $x_{0}, x_{1} \in \mathbb{R}$, it computes the sequence $\left(x_{n}\right)_{n \geq 1}$ as follows:

$$
x_{n+1}=x_{n}-f\left(x_{n}\right)\left[\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}\right], \quad n \geq 1
$$

Prove that the secant method applied to the function $f(x)=x^{2}-2$ and with starting points $x_{0}, x_{1}>\sqrt{2}$ converges to a root.
$\underline{\text { Problem } 3}$ Consider the linear operator $T: \ell^{2} \mapsto \ell^{2}$, defined by $T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(\frac{1}{1} x_{1}, \frac{1}{\sqrt{2}} x_{2}, \frac{1}{\sqrt{3}} x_{3}, \ldots\right)$,
for all $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ in ℓ^{2}. Prove that T is a compact linear operator. Is the range of T closed? Prove or disprove it.

Problem 4 This problem has two parts:

1. Let A be a bounded linear operator $A: H \mapsto H$, where H is a Hilbert space. Prove that if λ belongs to the residual spectrum of A, then $\bar{\lambda}$, the complex conjugate of λ, belongs to the point spectrum of the adjoint A^{\star} of A.
2. Consider the right and left shift operators defined on the Hilbert space ℓ^{2} of sequences $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ with complex terms, satisfying $\sum_{j=1}^{\infty}\left|x_{j}\right|^{2}<\infty$,

$$
\begin{aligned}
R: \ell^{2} \mapsto \ell^{2}, & R\left(\left(x_{1}, x_{2}, \ldots\right)\right)=\left(0, x_{1}, x_{2}, \ldots\right) \\
L: \ell^{2} \mapsto \ell^{2}, & L\left(\left(x_{1}, x_{2}, \ldots\right)\right)=\left(x_{2}, x_{3}, \ldots\right)
\end{aligned}
$$

Prove that
(a) The resolvent sets of R and L are both the exterior of the unit disk $\{\lambda \in \mathbb{C}||\lambda|>1\}$.
(b) Determine the point spectrum, the continuous spectrum and the residual spectrum of R and L. Hint: Part 1 of this problem should be useful.

Problem 5 Show that the distributional derivative of $\log |x|: \mathbb{R} \mapsto \mathbb{R}$ is the principal value distribution p.v.1/x.

