Applied Functional Analysis QR Exam - January 2023

Problem 1 Let $A: X \mapsto Y$ be a linear operator between normed vector spaces X and Y, with the following

property: For any sequence $(x_n)_{n\geq 1}$ in X converging to 0, the sequence $(Ax_n)_{n\geq 1}$ is bounded. Prove that A is continuous.

Problem 2 The secant method is an iterative method for solving an equation f(x) = 0, for a function

 $f: \mathbb{R} \to \mathbb{R}$. Starting with two points $x_0, x_1 \in \mathbb{R}$, it computes the sequence $(x_n)_{n \ge 1}$ as follows:

$$x_{n+1} = x_n - f(x_n) \left[\frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} \right], \qquad n \ge 1.$$

Prove that the secant method applied to the function $f(x) = x^2 - 2$ and with starting points $x_0, x_1 > \sqrt{2}$ converges to a root.

<u>Problem 3</u> Consider the linear operator $T: \ell^2 \mapsto \ell^2$, defined by $T(x_1, x_2, x_3, \ldots) = \left(\frac{1}{1}x_1, \frac{1}{\sqrt{2}}x_2, \frac{1}{\sqrt{3}}x_3, \ldots\right)$,

for all $\mathbf{x} = (x_1, x_2, x_3, ...)$ in ℓ^2 . Prove that T is a compact linear operator. Is the range of T closed? Prove or disprove it.

<u>Problem 4</u> This problem has two parts:

- 1. Let A be a bounded linear operator $A: H \mapsto H$, where H is a Hilbert space. Prove that if λ belongs to the residual spectrum of A, then $\overline{\lambda}$, the complex conjugate of λ , belongs to the point spectrum of the adjoint A^* of A.
- 2. Consider the right and left shift operators defined on the Hilbert space ℓ^2 of sequences $\mathbf{x} = (x_1, x_2, x_3, \ldots)$ with complex terms, satisfying $\sum_{j=1}^{\infty} |x_j|^2 < \infty$,

$$R: \ell^2 \mapsto \ell^2, \quad R((x_1, x_2, \ldots)) = (0, x_1, x_2, \ldots)$$
$$L: \ell^2 \mapsto \ell^2, \quad L((x_1, x_2, \ldots)) = (x_2, x_3, \ldots).$$

Prove that

- (a) The resolvent sets of R and L are both the exterior of the unit disk $\{\lambda \in \mathbb{C} | |\lambda| > 1\}$.
- (b) Determine the point spectrum, the continuous spectrum and the residual spectrum of R and L. Hint: Part 1 of this problem should be useful.

Problem 5 Show that the distributional derivative of $\log |x| : \mathbb{R} \to \mathbb{R}$ is the principal value distribution p.v.1/x.