1. Consider the initial-value problem for $y(t)$:

$$
y' = \frac{t}{y}
$$

$$
y(0) = 2
$$

$$
0 \leq t \leq 5
$$

(a) Solve the initial-value problem exactly.

(b) Is the problem well-posed? Justify.

(c) Approximate the solution on $[0, 2]$ using the Euler method with step size $\Delta t = 1$. Put $w_0 = y(0)$ and approximate $w_i \approx y(i)$.

(d) Sketch $f(t, y) = \frac{t}{y}$ on the t-y plane by putting an arrow at (t, y) with $\Delta t = 1$ and $\Delta y = f(t, y)$, at representative and useful points (t, y). Sketch the exact solution, asymptotes, and the numeric solution to the IVP on $[0, 2]$. Indicate geometrically why the problem is or is not well-posed.
2. The modified Euler method for the initial-value problem \(y'(t) = f(t, y) \); \(y(a) = \alpha \) on \(t \in [a, b] \) is as follows:
\[
\tilde{w} = w_i + \frac{h}{2}f(t_i, w_i) \\
w_{i+1} = w_i + hf(t_i + \frac{h}{2}, \tilde{w})
\]
Derive the local truncation error, for “reasonable” functions \(f \). (Answer in the form \(O(h^k) \).) Give appropriate conditions on \(f \) to achieve that order, and explain.

3. Consider the boundary value problem
\[
-u'' + \pi^2 u = 2\pi^2 \sin(\pi x) \\
u(0) = u(1) = 0.
\]
(a) Set up a finite difference approximation with \(h = \Delta x = \frac{1}{4} \) as a system of equations in unknowns \(w_1 \approx u(h), w_2 \approx u(2h), w_3 \approx u(3h) \). Use the central form of the second difference. (You can include “unknowns” \(w_0 \) and \(w_4 \) if that makes it cleaner to set up the system.)
(b) Set up a Jacobi iteration to solve this system. (No need to solve by hand.)
(c) Set up a Gauss-Seidel iteration.
(d) Comment on the convergence and efficiency of the iterative schemes.
(e) What properties of the iterative schemes or their convergence would be different if the term \(\pi^2 u \) were instead \(-32u\)? What if instead of \(\pi^2 u \) it were \(-\pi^2 u\)?
4. Consider the initial boundary value problem

\[u_t = \frac{1}{16} u_{xx} \]

\[u(0, t) = u(1, t) = 0 \]

\[u(x, 0) = 2 \sin(2\pi x) \]

(a) Sketch the domain on the x-t plane with x horizontal and t vertical.

(b) Set up a continuous-time and central-space discretization

\[\frac{d\vec{v}}{dt} = -\frac{D}{(\Delta x)^2} \left[A\vec{v}(t) + \vec{b}(t) \right]. \]

That is, find the scalar \(D \), the matrix \(A \), and the vector \(\vec{b} \). (The vector \(\vec{v}(t) \) approximates the solution \(\vec{u}(t) \) discretized in space at time \(t \).) Use a central difference for the discretization of \(u_{xx} \).

(c) Now discretize your system in time to first order, using \(\vec{w}(n) \) as unknown vectors and \(n \) corresponding to discrete time. Use the forward-time discretization, which result in an overall Forward-Time, Central-Space scheme. Derive the evolution \[\vec{w}(n+1) = (I - \lambda A)\vec{w}(n) - \lambda \vec{b}(n+1), \]

where the superscript indicates discrete time. Comment on the value of \(\lambda \) and its role in convergence.

(d) Explicitly solve for \[\begin{bmatrix} w_1^{(n)} \\ w_2^{(n)} \\ w_3^{(n)} \end{bmatrix} \] (omitting \(w_0 = w_4 = 0 \)), using \(\Delta x = \Delta t = \frac{1}{4} \). Write the values of \(\vec{w}^{(n)} \) for \(n = 0, 1, 2 \).

5. Consider the wave equation

\[u_{tt} = \frac{1}{25} u_{xx} \]

\[0 < x < 1 \]

\[0 < t < \infty \]

\[u(0, t) = -\sin(t/5) \]

\[u(1, t) = \sin(1 - t/5) \]

\[u(x, 0) = \sin x \]

\[u_t(x, 0) = -\frac{1}{5} \cos x. \]

We will set up a discretization \(w_j^{(n)} \approx (u(j\Delta x, n\Delta t) \) by

\[\frac{w_j^{(n+1)} - 2w_j^{(n)} + w_j^{(n-1)}}{(\Delta t)^2} = \frac{1}{25} \frac{w_{j-1}^{(n)} - 2w_j^{(n)} + w_{j+1}^{(n)}}{(\Delta x)^2}. \]

(a) For given \(\Delta x \), give bounds on \(\Delta t \) to make the discretization stable in \(\ell_2 \).

(b) Explain how to compute \(w_j^{(1)} \) as a special case.