Qualifying Review Exam Complex Analysis January 2024

Notation: $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$

(1) Find all solutions of $\cos z = 1 + 100z^2$ in the unit disk |z| < 1.

SOLUTION: Using Rouché's Theorem with $100z^2$ as the dominant term we see that $f(z) = 1 + 100z^2 - \cos z$ has two zeros in the unit disk, which are entirely accounted for by the double zero at the origin.

(2) Find

 $\sup \left\{ |f(1)| : f \text{ is holomorphic on } \mathbb{C} \setminus \{0\} \text{ and satisfies } |f(z)| \le 7|z|^{-3/2} \right\}.$

SOLUTION: A function f satisfying the conditions must have a removable singularity at infinity and at most a simple pole at the origin, hence f must be rational. Since the extended f must have at least a double zero at infinity and there is no room to balance these with two poles, f must be identically zero. Hence the desired sup is zero.

(3) Let $f_k: \mathbb{D} \to \mathbb{C}$ be a sequence of holomorphic functions forming a normal family (that is to say, every subsequence of (f_k) has a further subsequence convering uniformly on each compact subset of \mathbb{D}). Further, let $h_k: \mathbb{D} \to \mathbb{D}$ be holomorphic functions satisfying $h_k(0) = 0$. Prove that the functions

$$g_k(z) = f_k \left(h_k(z) \right)$$

form a normal family.

SOLUTION: The normality condition on the f_k is equivalent to the condition that for 0 < r < 1 there is M_r so that $|f_k(z)| \le M_r$ when $|z| \le r$. By Schwarz's Lemma $|h_k(z)| \le r$ when $|z| \le r$. Combining these facts we have $|g_k(z)| \le M_r$ when $|z| \le r$. Thus the g_k form a normal family.

(4) Let $D_1, D_2 \subset \mathbb{C}$ be disks with the property that the circles Bd D_1 , Bd D_2 intersect in exactly two points. Under what additional hypothesis will there exist a bijective *rational* map from $D_1 \cap D_2$ to \mathbb{D} ?

SOLUTION: The interior angle of intersection must be of the form π/n for some natural n so that it can be converted to π by a rational function with derivative vanishing to order n at the intersection points p_1, p_2 .

If this condition holds then the desired map can be constructed by composing maps of the form

$$z_1 = e^{i\theta} \frac{z - p_1}{z - p_2}$$
 [mapping to sector with \mathbb{R}_+ as bottom edge]
$$z_2 = z_1^n$$

$$w = \frac{z_2 - i}{z_2 + i}.$$

- (5) Suppose that f is holomorphic on $\{z \in \mathbb{C} : |z| > r\}$ for some r < 1. Suppose further that $zf(z) \to 1$ as $z \to \infty$.
 - (a) Evaluate $\int_{|z|=1} z f'(z) dz$.
 - (b) Show that $\int_{|z|=1}^{\infty} |f'(z)||dz| \ge 2\pi.$
 - (c) When does equality hold in (b)?

SOLUTION:

(a) We have
$$f(z) = \frac{1}{z} + a_0 + a_1 z + \dots$$
 and $z f'(z) = -\frac{1}{z} + a_1 z + \dots$ Thus
$$\int_{|z|=1}^{|z|=1} z f'(z) dz = -2\pi i.$$

(b) This follows from

$$2\pi = \left| \int_{|z|=1} zf'(z) \, dz \right| \le \int_{|z|=1} |f'(z)| \, |dz|.$$

Remark: Note that $\int_{|z|=1}^{\infty} |f'(z)| |dz|$ is the length of the image of the unit circle.

(c) From (a) we have

$$2\pi = \int_{0}^{2\pi} \operatorname{Re}\left(e^{it}f'(e^{it}) \cdot e^{it}\right) dt \le \int_{|z|=1} |f'(z)| |dz|$$

with equality if and only if $e^{it} f'(e^{it}) \cdot e^{it}$ is non-negative.

By Schwarz reflection, $\phi(z) \stackrel{\text{def}}{=} z^2 f'(z)$ extends to a holomorphic function on \mathbb{C} satisfying $\phi(z) = \overline{\phi(1/\overline{z})}$. Thus $\phi(0) = -1 = \phi(\infty)$ and in fact $\phi(z) = -1$ for all z. Thus $f'(z) = -\frac{1}{z^2}$ and $f(z) = \frac{1}{z} + C$; original limit condition requires C = 0.