Problem 1: Let E be a measurable subset of $[0, 1]$. Suppose there exists $\alpha \in (0, 1)$ such that
\[m(E \cap J) \geq \alpha \cdot m(J) \quad \text{for all subintervals } J \text{ of } [0, 1]. \]
Prove that $m(E) = 1$.

Problem 2: Let $f, g \in L^1(0, 1)$. Assume for all functions $\phi \in C^\infty([0, 1])$ with $\phi(0) = \phi(1)$ that
\[\int_0^1 f(t)\phi'(t) \, dt = -\int_0^1 g(t)\phi(t) \, dt. \]
Show that $f(\cdot)$ is absolutely continuous and $f' = g$.

Problem 3: Let $\{g_n\}$ be a sequence of measurable functions on $[0, 1]$ such that
(a) $|g_n(x)| \leq C$ for a.e. $x \in [0, 1]$,
(b) $\lim_{n \to \infty} \int_0^a g_n(x) \, dx = 0$ for all $a \in (0, 1)$.
Prove that if $f \in L^1(0, 1)$ then
\[\lim_{n \to \infty} \int_0^1 f(x)g_n(x) \, dx = 0. \]

Problem 4: Let (X, \mathcal{A}, μ) be a finite measure space. Let $\{f_n\}_{n=1}^\infty \subset L^2(\mu)$ be a sequence of functions such that $f_n \to f$ a.e. and $\|f_n\|_2 \leq M$ for all $n \in \mathbb{N}$. Prove that $\int_X f_n \, d\mu \to \int_X f \, d\mu$.

Problem 5: Let $A \subset \{(x, y) \in \mathbb{R}^2 : |x| + |y| \leq 1\}$ be a measurable set with the two-dimensional Lebesgue measure $m_2(A) \geq 1$. For $x \in [-1, 1]$, denote $A_x = \{y \in [-1, 1] : (x, y) \in A\}$. Prove that there exists $x \in [-1, 1]$ such that
\[m_1(A_x) \geq 2 - \sqrt{2}. \]