Problem 1: Let \(\mu \) be a finite Borel measure on \([0, 1]\) and \(f : [0, 1] \to [0, \infty) \) an integrable function with respect to \(\mu \). Suppose further that
\[
\int_A |f| \, d\mu \leq \sqrt{\mu(A)} \quad \text{for all Borel sets } A \subset [0, 1].
\]
Prove that \(|f|^p \) is integrable with respect to \(\mu \) provided \(1 \leq p < 2 \).

Solution: For \(n = 1, 2, \ldots \), let \(A_n = \{ x \in (0, 1) : 2^n < f(x) \leq 2^{n+1} \} \).

\[
2^n \mu(A_n) \leq \int_{A_n} |f| \, d\mu \leq \sqrt{\mu(A_n)}
\]
We conclude that
\[
\int_{[0, 1]} |f|^p \, d\mu \leq \mu([0, 1]) + \sum_{n=1}^{\infty} 2^{(n+1)p-2n} < \infty
\]
if \(p < 2 \).

Problem 2: Let \(f : (0, 1) \to \mathbb{R} \) be a Lebesgue measurable function which satisfies the inequality \(\int_0^1 t^3f(t)^4 \, dt < \infty \). Prove that
\[
\lim_{x \to 0} \frac{1}{|\log x|^{3/4}} \int_x^1 f(t) \, dt = 0.
\]

Solution: Using the Hölder inequality we have that
\[
\int_x^1 |f(t)| \, dt \leq \left[\int_x^1 \frac{dt}{t} \right]^{3/4} \left[\int_0^1 t^3 f(t)^4 \, dt \right]^{1/4} \leq C |\log x|^{3/4}.
\]
Generalizing this we have that
\[
\int_x^\delta |f(t)| \, dt \leq C_\delta |\log x|^{3/4}, \quad 0 < x < \delta,
\]
where \(C_\delta = \left[\int_0^\delta t^3 f(t)^4 \, dt \right]^{1/4} \).

By the dominated convergence theorem we have \(\lim_{\delta \to 0} C_\delta = 0 \). The result follows by observing that
\[
\limsup_{x \to 0} \frac{1}{|\log x|^{3/4}} \int_x^1 |f(t)| \, dt \leq \limsup_{x \to 0} \frac{1}{|\log x|^{3/4}} \int_\delta^1 |f(t)| \, dt + C_\delta = C_\delta.
\]

Problem 3: Suppose \(A \) is a Lebesgue measurable subset of \(\mathbb{R} \) with positive measure \(m(A) > 0 \). Show that for any \(b \) with \(0 < b < m(A) \) there exists a compact subset \(K \subset A \) with \(m(K) = b \).
Problem 4: Suppose \(- \) the requisite compact set is then \(x \) \(- \) theorem \(y \) that for all \(\) now define \(g = \sup \{ m(F) \} \), where the supremum is taken over all closed subsets \(F \) of \(A \). Since \(A \) is bounded the sets \(F \) are compact. Hence there exists compact \(K \subset A \) such that \(b < m(K) \). Now define \(g : (0, \infty) \to \mathbb{R}^+ \) by \(g(x) = m([-x, x] \cap K) \). By the monotone convergence theorem \(g(\cdot) \) is continuous and \(\lim_{x \to 0} g(x) = 0, \lim_{x \to \infty} g(x) = m(K) > b \). The intermediate value theorem implies there exists \(x_b > 0 \) such that \(g(x_b) = b \). The requisite compact set is then \([-x_b, x_b] \cap K\).

Solution: First we reduce to the case when \(A \) is bounded. Since \(\lim_{N \to \infty} m([-N, N] \cap A) = m(A) > b \), it follows that there exists \(N \geq 1 \) such that \(m([-N, N] \cap A) > b \). Hence we may replace the possibly unbounded \(A \) in the problem with the bounded set \([-N, N] \cap A \). Next by inner regularity of \(A \) one has \(m(A) = \sup_{F \subset A} m(F) \), where the supremum is taken over all closed subsets \(F \) of \(A \). Since \(A \) is bounded the sets \(F \) are compact. Hence there exists compact \(K \subset A \) such that \(b < m(K) \). Now define \(g : (0, \infty) \to \mathbb{R}^+ \) by \(g(x) = m([-x, x] \cap K) \). By the monotone convergence theorem \(g(\cdot) \) is continuous and \(\lim_{x \to 0} g(x) = 0, \lim_{x \to \infty} g(x) = m(K) > b \). The intermediate value theorem implies there exists \(x_b > 0 \) such that \(g(x_b) = b \). The requisite compact set is then \([-x_b, x_b] \cap K\).

Problem 4: Suppose \(f : \mathbb{R} \to \mathbb{R} \) is a continuous function and \(k \) an integer such that for all \(y \in \mathbb{R} \) the number of distinct solutions to the equation \(f(x) = y \) is bounded by \(k \). Prove that the derivative \(f'(x) \) exists for a.e. \(x \in \mathbb{R} \).

Solution: Let \([a, b] \subset \mathbb{R} \) be a compact interval such that \(m = \inf_{[a, b]} f(\cdot) \) and \(M = \sup_{[a, b]} f(\cdot) \). Let \(a_1 = \inf\{ x \in [a, b] : f(x) = m \} \) and \(b_1 = \inf\{ x \in [a, b] : f(x) = M \} \}. We may assume wlog that \(a_1 < b_1 \). Now define \(g_1 : [m, M] \to [a_1, b_1] \) by \(g_1(y) = \inf\{ x \in [a_1, b_1] : f(x) = y \} \). The function \(g_1 \) is strictly monotonic increasing and \(g_1([m, M]) = [a_1, b_1] \subset [a, b] \). Hence \(f \) is strictly monotonic increasing on \([a_1, b_1] \). It follows that \(f'(\cdot) \) is differentiable a.e. on \([a_1, b_1] \). We can proceed similarly with \(f \) on the intervals \([a_1, b_1] \) and \([b_1, b] \), until after a finite number of steps we conclude that \(f(\cdot) \) is differentiable a.e. on \([a, b] \).

Alternatively we can show by contradiction that \(f(\cdot) \) is BV on \([a, b] \). Let \(m = \inf_{[a, b]} f(\cdot) \) and \(M = \sup_{[a, b]} f(\cdot) \). Since \(f(\cdot) \) is not BV on \([a, b] \) there exist \(a \leq x_1 < x_2 < \cdots < x_N \leq b \) such that
\[
\sum_{j=1}^{N-1} |f(x_{j+1}) - f(x_j)| \geq k(M - m) + 1.
\]
Let \(S_j \) be the set \(f((x_j, x_{j+1})) \), \(j = 1, \ldots, N-1 \). Since the open sets \((x_j, x_{j+1}) \), \(j = 1, \ldots, N-1 \) are disjoint the assumption of the problem implies that
\[
\sum_{j=1}^{N-1} \chi_{S_j} \leq k,
\]
where \(\chi_S \) denotes characteristic function of \(S \). Since \(S_j \subset [m, M] \), \(j = 1, \ldots, N-1 \) it then follows that
\[
\sum_{j=1}^{N-1} |f(x_{j+1}) - f(x_j)| \leq \sum_{j=1}^{N-1} m(S_j) \leq k(M - m),
\]
which contradicts our initial inequality.
Problem 5: Let f be in $L^1(\mathbb{R})$ and denote by Mf the restricted maximal function

$$Mf(x) = \max_{0 < t < 1} \frac{1}{2t} \int_{x-t}^{x+t} |f(x')| \, dx' , \quad x \in \mathbb{R}.$$

Prove that

$$M(f \ast g)(x) \leq Mf \ast Mg(x) , \quad x \in \mathbb{R}, \ f, g \in L^1(\mathbb{R}),$$

where the operation \ast denotes convolution:

$$f \ast g(x) = \int_{\mathbb{R}} f(x - y)g(y) \, dy , \quad x \in \mathbb{R}.$$

Solution: We may assume wlog that f, g are non-negative. Then from the Lebesgue differentiation theorem we have that $Mg(x) \geq g(x)$ for a.e. x. Also

$$\int_{x-t}^{x+t} f(x') \, dx' = \chi_t \ast f(x) , \quad \text{where} \ \chi_t(y) = 1 \text{ if } |y| < t, \ \chi_t(y) = 0 \text{ if } |y| > t.$$

Now we use the associative property of convolutions. Thus

$$\chi_t \ast [f \ast g](x) = [\chi_t \ast f] \ast g(x).$$

This yields the inequality $M(f \ast g)(x) \leq Mf(x) \ast g(x)$. We may avoid use of the Lebesgue theorem by observing that

$$\chi_{t-s} \leq \chi_t \ast \frac{1}{2s} \chi_s \quad \text{for all } 0 < s < t.$$

Since the operation of convolution is also commutative we have that

$$\chi_{t-s} \ast [f \ast g](x) \leq [\chi_t \ast f] \ast \left[\frac{1}{2s} \chi_s \ast g \right](x).$$