
Department of Mathematics, University of Michigan
Complex Analysis Qualifying Exam

May 3, 2023, 2.00 pm-5.00 pm

Problem 1: (a) Let D = {z ∈ C : |z| < 1} be the unit disk and f : D→ C be a
holomorphic function satisfying <f(z) > 0, z ∈ D. Show that |f ′(0)| ≤ 2<f(0).
(b) Suppose instead that f(D) ⊂ D− {0}. Prove that |f ′(0)| ≤ 2e−1.

Solution: (a) This follows from the Schwarz lemma by mapping the right half

plane to D such that f(0) → 0. The mapping is w → [w − f(0)][w + f(0]. By
Schwarz the function g(·) satisfies |g′(0)| ≤ 1. We have

g(z) =
f(z)− f(0)

f(z) + f(0)
= 1− [f(0) + f(0)]

f(z) + f(0)
, g′(z) =

[f(0) + f(0)]f ′(z)

[f(z) + f(0)]2
.

We conclude that
|f ′(0)| ≤ f(0) + f(0) = 2<f(0) .

(b) Note that h(z) = − log f(z) is well defined from Cauchy’s theorem by the
integral formula

h(z) = −
∫ z

0

f ′(z′)

f(z′)
dz′ + constant ,

for a suitable constant such that <h(z) = − log |f(z)|. . Then h(·) is holomorphic
on D and <h(·) > 0. Hence by (a) |h′(0)| ≤ 2<h(0), which implies that |f ′(0)| ≤
2 max0<α<1 α| logα| = 2e−1.

Problem 2: Use contour integration to evaluate the integral∫ ∞
0

log x

(x+ 1)2
√
x
dx .

Solution: We make the substitution x = z2, whence it is sufficient to evaluate
the integral

4

∫ ∞
0

log z

(z2 + 1)2
dz = 2<

∫ ∞
−∞

log z

(z2 + 1)2
dz .

Now we use the residue theorem for the region bounded by the contour ΓR which
consists of the line segment {z ∈ R : −R ≤ z ≤ R} and the semicircle {z ∈ C :
=z > 0, |z| = R}. Then if R > 1 one has∫

ΓR

log z

(z2 + 1)2
dz = 2πi Res

(
log z

(z2 + 1)2
, i

)
.

To evaluate the residue we write

log z

(z2 + 1)2
=

f(z)

(z − i)2
=

f(i)

(z − i)2
+

f ′(i)

(z − i)
+ . . . , f(z) =

log z

(z + i)2
.



We have that

f ′(z) =
1

z(z + i)2
− 2 log z

(z + i)3
, f ′(i) =

i

4
+
π

8
.

Hence the integral over ΓR is −π/2 + π2i/4. Finally we note that∣∣∣∣∫
=z>0,|z|=R

log z

(z2 + 1)2
dz

∣∣∣∣ ≤ πR logR

(R2 − 1)2
→ 0 as R→∞ .

Hence the value of the integral in the problem is −π.

Problem 3: Find a conformal mapping from the unit disk D = {z ∈ C : |z| < 1}
onto the region U = {z = x + iy ∈ C : y < x2}. You may write your solution
as a composition of simpler maps. Make sure to explain why each of your simpler
maps is conformal.

Solution: We need to map the unit circle onto the parabola y = x2. We first
begin by finding a map which takes a line onto the parabola. Consider the line
<z = α, so {α + iy ∈ C : y ∈ R}. The image under the mapping w = z2 is
{α2 − y2 + 2iαy ∈ C : y ∈ R}. Writing w = ξ + iη the image is {ξ + iη ∈ C :
η2 = 4α2(α2 − ξ)}. Taking α = 1/2 this becomes η2 = 1/4 − ξ. We can map
this to the parabola y = x2 by translation and rotation, so w1 = w − 1/4 and
w2 = −iw1. Noting that 0 maps to i/4 we see that the region <z > 1/2 maps to
the region y < x2. Finally we need to map D onto the half plane <z > 1/2. Note
that w = (1−z)/(1+z) takes D onto the half plane <w > 0, whence the mapping
w = (1 − z)/(1 + z) + 1/2 maps to the region <w > 1/2. The only one of these
mappings which is not necessarily conformal is the 2-1 mapping w = z2. However
it does map the region <z > 1/2 conformally.

Problem 4: Let f(·) be a meromorphic function on C with a finite number of
zeros and poles. Assume further there are constants A,C with A 6= 0 such that

|f(z)− A| ≤ C

|z|2
for all large |z| .

(a) Prove that f(·) is a rational function.
(b) Suppose the poles and zeros of f(·) in C are z1, . . . , zk, with corresponding
multiplicities m1, . . . ,mk ∈ Z. Show that m1z1 + · · ·mkzk = 0.

Solution: (a) Since lim|z|→∞ f(z) = A the function f(·) is meromorphic on the
Riemann sphere and therefore a rational function.
(b) We have from the argument principle that

1

2πi

∫
|z|=R

zf ′(z)

f(z)
dz =

k∑
j=1

mjzj if R > max{|zj| : 1 ≤ j ≤ k} .



The Laurent expansion of f(·) about z = ∞ is f(z) = A + a2/z
2 + a3/z

3 + . . . .
Hence ∣∣∣∣zf ′(z)

f(z)

∣∣∣∣ ≤ 4|a2|
A|z|2

if |z| = R, for all sufficiently large R.

We conclude that∣∣∣∣ 1

2πi

∫
|z|=R

zf ′(z)

f(z)
dz

∣∣∣∣ ≤ 4|a2|
AR

→ 0 R→∞ .

Problem 5: Let D ⊂ C be a domain (open and connected), and fn : D →

C, n = 1, 2, . . . , a sequence of holomorphic functions. Suppose further there is a
continuous function f : D → C such that

lim
n→∞

∫
D

|fn(x+ iy)− f(x+ iy)| dx dy = 0 on all disks D ⊂ D .

Prove that f is a holomorphic function.

Solution: We use the Cauchy theorem. Thus suppose D contains the disk {z ∈
C : |z − z0| < r2} and 0 < r1 < r2. Then if |z| < r1 < r2, one has

fn(z + z0) =
1

2π(r2 − r1)

∫ r2

r1

∫ 2π

0

fn(z0 + reiθ) reiθdrdθ

z − reiθ

=
1

2π(r2 − r1)

∫
r21<x

2+y2<r22

fn(z0 + x+ iy) (x+ iy)dxdy√
x2 + y2[z − (x+ iy)]

.

From the assumption of the problem and the above representation the functions
z → fn(z + z0), |z| < r1 − ε, n = 1, 2, . . . , form a uniformly Cauchy sequence
for any ε > 0. Hence by the Weierstrasse theorem there exists a holomorphic
function g(·) on the disk {|z| < r1} such that limn→∞ fn(z + z0) = g(z). To show
f(z + z0) = g(z) we observe from our limiting procedure that∫

D

|g(x+ iy)− f(z0 + x+ iy)| dx dy = 0 on the disk D = {|z| < r1} .


