Department of Mathematics, University of Michigan Real Analysis Qualifying Exam

January 7, 2023, 2.00 pm-5.00 pm

Problem 1: Let E_k , k = 1, 2, ..., n, be measurable subsets of [0, 1] such that each point $x \in [0, 1]$ is contained in at least 5 of the sets E_k , k = 1, ..., n. Prove there exists k such that $m(E_k) \ge 5/n$.

Solution: Letting χ_E be the characteristic function of the set E, we have that $\sum_{k=1}^{n} \chi_{E_k}(x) \geq 5$, $x \in [0,1]$. Integrating this inequality we have then that $\sum_{k=1}^{n} m(E_k) \geq 5$, whence there exists k such that $m(E_k) \geq 5/n$.

Problem 2: For $f \in L^1(\mathbb{R})$ define a sequence of functions $g_n : [0,1] \to \mathbb{R}$, $n = 1, 2, \ldots$, by

$$g_n(x) = \sum_{k=1}^n \frac{1}{\sqrt{k}} f(x + \sqrt{k}) , \quad n = 1, 2, \dots$$

Prove that the sequence g_n , n = 1, 2, ..., is convergent in $L^1([0, 1])$.

Solution: It is sufficient to show that

$$\lim_{m \to \infty} \sum_{k=m^2}^{\infty} \frac{1}{\sqrt{k}} \int_0^1 |f(x+\sqrt{k})| \, dx = 0 \quad \text{for integer } m$$

Note that

$$\int_0^1 |f(x + \sqrt{k})| \, dx \leq \int_m^{m+2} |f(y)| \, dy \quad \text{if } m^2 \leq k < (m+1)^2$$

Hence

$$\sum_{k=m^2}^{\infty} \frac{1}{\sqrt{k}} \int_0^1 |f(x+\sqrt{k})| \, dx \leq \sum_{r=m}^{\infty} \frac{2r+1}{r} \int_r^{r+2} |f(y)| \, dy \leq 6 \int_m^{\infty} |f(y)| \, dy \, .$$

Now use the fact that $f \in L^1(\mathbb{R})$.

Problem 3: Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function which is absolutely continuous on finite intervals, and $g : [0,1] \to \mathbb{R}$ an integrable function. Define the function $h : \mathbb{R} \to \mathbb{R}$ by $h(x) = \int_0^1 f(x-y)g(y) \, dy$. Show that h is also absolutely continuous on finite intervals.

Solution: We need to show that for any finite interval I = [a, b] and $\varepsilon > 0$, there exists $\delta > 0$ such that for all sets of disjoint intervals $\{(x_i, x'_i) : i = 1, ..., n\}$ contained in I one has

$$\sum_{i=1}^{n} |h(x_i') - h(x_i)| < \varepsilon \text{ if } \sum_{i=1}^{n} [x_i' - x_i] < \delta$$

To see this we use the fact that f is ac on the interval [a-1,b], whence for $\varepsilon > 0$ there exists $\delta > 0$ such that

$$\sum_{i=1}^{n} |f(x'_i - y) - f(x_i - y)| < \frac{\varepsilon}{\|g\|_{L^1}} \quad \text{if } 0 < y < 1, \quad \sum_{i=1}^{n} [x'_i - x_i] < \delta.$$

The result follows on multiplication by |g(y)| and integrating with respect to $y \in [0, 1]$.

Problem 4: Let f_n , n = 1, 2, ..., be a sequence of measurable functions on [0, 1] such that $f_n \to 0$ a.e. and $f_n \in L^3([0, 1])$, n = 1, 2, ..., with $\sup_{n \ge 1} ||f_n||_3 < \infty$. Prove there exists p with 1 such that

(*)
$$\lim_{n \to \infty} \int_0^1 f_n(x)g(x) \, dx = 0$$
 for all $g \in L^p([0,1])$

Solution: For any A > 0 define $f_{n,A}(x) = H(A - |f_n(x)|)f_n(x)$, where $H : \mathbb{R} \to \{0,1\}$ is the Heaviside function H(z) = 0 if z < 0, and H(z) = 1 if z > 0. The dominated convergence theorem then implies that

$$\lim_{n \to \infty} \int_0^1 f_{n,A}(x)g(x) \, dx = 0 \quad \text{for all bounded } g: [0,1] \to \mathbb{R}$$

Letting $M = \sup_{n \ge 1} ||f_n||_3$, we have from the Chebyshev inequality that

$$m(|f_n| > \lambda) \leq \frac{\|f_n\|_3^3}{\lambda^3} \leq \frac{M^3}{\lambda^3}, \quad \lambda > 0,$$

whence it follows that

$$\int_{|f_n|>A} |f_n(x)| \ dx = \int_A^\infty m(|f_n|>\lambda) \ d\lambda \leq \frac{M^3}{2A^2} \ .$$

It follows that (*) holds for all bounded g. We can extend this to $g \in L^p([0,1])$ with p = 3/2 by using the Hölder inequality. Thus for $g \in L^p([0,1])$ and $\varepsilon > 0$ there exists bounded g_{ε} such that $||g - g_{\varepsilon}||_p < \varepsilon$. Then

$$\left|\int_0^1 f_n(x)[g(x) - g_{\varepsilon}(x)] dx\right| \leq ||f_n||_3 ||g - g_{\varepsilon}||_{3/2} \leq M\varepsilon.$$

Problem 5: Let $f(\cdot)$ be an integrable function on \mathbb{R}^n and Mf the corresponding Hardy-Littlewood maximal function

$$Mf(x) = \sup_{R>0} \frac{1}{|B(x,R)|} \int_{B(x,R)} |f(y)| \, dy \, , \quad x \in \mathbb{R}^n \, ,$$

where B(x, R) denotes the ball centered at x with radius R. Show there is a constant C_n , depending only on n such that

$$m\{x \in \mathbb{R}^n : Mf(x) > s\} \leq \frac{C_n}{s} \int_{\{x: |f(x)| > s/2\}} |f(y)| dy$$

Hint: Consider the function f_s defined by $f_s(x) = |f(x)|$ if |f(x)| > s/2, $f_s(x) = 0$ otherwise.

Solution: Suppose that Mf(x) > s. Then there exists a ball B(x, R) such that

$$\frac{1}{|B(x,R)|} \int_{B(x,R)} |f(y)| \, dy = \frac{1}{|B(x,R)|} \int_{B(x,R)} |f_s(y)| \, dy + \frac{s}{2} > s \; .$$

We conclude that $\{Mf > s\} \subset \{Mf_s > s/2\}$. The result follow from the Hardy-Littlewood inequality applied to f_s .