Department of Mathematics, University of Michigan
 Real Analysis Qualifying Exam
 January 7, 2023, $2.00 \mathrm{pm}-5.00 \mathrm{pm}$

Problem 1: Let $E_{k}, k=1,2, \ldots, n$, be measurable subsets of $[0,1]$ such that each point $x \in[0,1]$ is contained in at least 5 of the sets $E_{k}, k=1, \ldots, n$. Prove there exists k such that $m\left(E_{k}\right) \geq 5 / n$.

Solution: Letting χ_{E} be the characteristic function of the set E, we have that $\sum_{k=1}^{n} \chi_{E_{k}}(x) \geq 5, x \in[0,1]$. Integrating this inequality we have then that $\sum_{k=1}^{n=} m\left(E_{k}\right) \geq 5$, whence there exists k such that $m\left(E_{k}\right) \geq 5 / n$.

Problem 2: For $f \in L^{1}(\mathbb{R})$ define a sequence of functions $g_{n}:[0,1] \rightarrow \mathbb{R}, n=$ $1,2, \ldots$, by

$$
g_{n}(x)=\sum_{k=1}^{n} \frac{1}{\sqrt{k}} f(x+\sqrt{k}), \quad n=1,2, \ldots
$$

Prove that the sequence $g_{n}, n=1,2, \ldots$, is convergent in $L^{1}([0,1])$.
Solution: It is sufficient to show that

$$
\lim _{m \rightarrow \infty} \sum_{k=m^{2}}^{\infty} \frac{1}{\sqrt{k}} \int_{0}^{1}|f(x+\sqrt{k})| d x=0 \quad \text { for integer } m
$$

Note that

$$
\int_{0}^{1}|f(x+\sqrt{k})| d x \leq \int_{m}^{m+2}|f(y)| d y \quad \text { if } m^{2} \leq k<(m+1)^{2}
$$

Hence

$$
\sum_{k=m^{2}}^{\infty} \frac{1}{\sqrt{k}} \int_{0}^{1}|f(x+\sqrt{k})| d x \leq \sum_{r=m}^{\infty} \frac{2 r+1}{r} \int_{r}^{r+2}|f(y)| d y \leq 6 \int_{m}^{\infty}|f(y)| d y
$$

Now use the fact that $f \in L^{1}(\mathbb{R})$.

Problem 3: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function which is absolutely continuous on finite intervals, and $g:[0,1] \rightarrow \mathbb{R}$ an integrable function. Define the function $h: \mathbb{R} \rightarrow \mathbb{R}$ by $h(x)=\int_{0}^{1} f(x-y) g(y) d y$. Show that h is also absolutely continuous on finite intervals.

Solution: We need to show that for any finite interval $I=[a, b]$ and $\varepsilon>0$, there exists $\delta>0$ such that for all sets of disjoint intervals $\left\{\left(x_{i}, x_{i}^{\prime}\right): i=1, \ldots, n\right\}$ contained in I one has

$$
\sum_{i=1}^{n}\left|h\left(x_{i}^{\prime}\right)-h\left(x_{i}\right)\right|<\varepsilon \quad \text { if } \sum_{i=1}^{n}\left[x_{i}^{\prime}-x_{i}\right]<\delta
$$

To see this we use the fact that f is ac on the interval $[a-1, b]$, whence for $\varepsilon>0$ there exists $\delta>0$ such that

$$
\sum_{i=1}^{n}\left|f\left(x_{i}^{\prime}-y\right)-f\left(x_{i}-y\right)\right|<\frac{\varepsilon}{\|g\|_{L^{1}}} \quad \text { if } 0<y<1, \quad \sum_{i=1}^{n}\left[x_{i}^{\prime}-x_{i}\right]<\delta
$$

The result follows on multiplication by $|g(y)|$ and integrating with respect to $y \in[0,1]$.

Problem 4: Let $f_{n}, n=1,2, \ldots$, be a sequence of measurable functions on $[0,1]$ such that $f_{n} \rightarrow 0$ a.e. and $f_{n} \in L^{3}([0,1]), n=1,2, \ldots$, with $\sup _{n \geq 1}\left\|f_{n}\right\|_{3}<\infty$. Prove there exists p with $1<p<\infty$ such that

$$
(*) \quad \lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) g(x) d x=0 \quad \text { for all } g \in L^{p}([0,1]) .
$$

Solution: For any $A>0$ define $f_{n, A}(x)=H\left(A-\left|f_{n}(x)\right|\right) f_{n}(x)$, where $H: \mathbb{R} \rightarrow$ $\{0,1\}$ is the Heaviside function $H(z)=0$ if $z<0$, and $H(z)=1$ if $z>0$. The dominated convergence theorem then implies that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n, A}(x) g(x) d x=0 \quad \text { for all bounded } g:[0,1] \rightarrow \mathbb{R}
$$

Letting $M=\sup _{n \geq 1}\left\|f_{n}\right\|_{3}$, we have from the Chebyshev inequality that

$$
m\left(\left|f_{n}\right|>\lambda\right) \leq \frac{\left\|f_{n}\right\|_{3}^{3}}{\lambda^{3}} \leq \frac{M^{3}}{\lambda^{3}}, \quad \lambda>0
$$

whence it follows that

$$
\int_{\left|f_{n}\right|>A}\left|f_{n}(x)\right| d x=\int_{A}^{\infty} m\left(\left|f_{n}\right|>\lambda\right) d \lambda \leq \frac{M^{3}}{2 A^{2}}
$$

It follows that $(*)$ holds for all bounded g. We can extend this to $g \in L^{p}([0,1])$ with $p=3 / 2$ by using the Hölder inequality. Thus for $g \in L^{p}([0,1])$ and $\varepsilon>0$ there exists bounded g_{ε} such that $\left\|g-g_{\varepsilon}\right\|_{p}<\varepsilon$. Then

$$
\left|\int_{0}^{1} f_{n}(x)\left[g(x)-g_{\varepsilon}(x)\right] d x\right| \leq\left\|f_{n}\right\|_{3}\left\|g-g_{\varepsilon}\right\|_{3 / 2} \leq M \varepsilon
$$

Problem 5: Let $f(\cdot)$ be an integrable function on \mathbb{R}^{n} and $M f$ the corresponding Hardy-Littlewood maximal function

$$
M f(x)=\sup _{R>0} \frac{1}{|B(x, R)|} \int_{B(x, R)}|f(y)| d y, \quad x \in \mathbb{R}^{n}
$$

where $B(x, R)$ denotes the ball centered at x with radius R. Show there is a constant C_{n}, depending only on n such that

$$
m\left\{x \in \mathbb{R}^{n}: M f(x)>s\right\} \leq \frac{C_{n}}{s} \int_{\{x:|f(x)|>s / 2\}}|f(y)| d y
$$

Hint: Consider the function f_{s} defined by $f_{s}(x)=|f(x)|$ if $|f(x)|>s / 2, \quad f_{s}(x)=0$ otherwise.

Solution: Suppose that $M f(x)>s$. Then there exists a ball $B(x, R)$ such that

$$
\frac{1}{|B(x, R)|} \int_{B(x, R)}|f(y)| d y=\frac{1}{|B(x, R)|} \int_{B(x, R)}\left|f_{s}(y)\right| d y+\frac{s}{2}>s
$$

We conclude that $\{M f>s\} \subset\left\{M f_{s}>s / 2\right\}$. The result follow from the HardyLittlewood inequality applied to f_{s}.

