Department of Mathematics, University of Michigan
Real Analysis Qualifying Exam
January 7, 2023, $2.00 \mathrm{pm}-5.00 \mathrm{pm}$

Problem 1: Let $E_{k}, k=1,2, \ldots, n$, be measurable subsets of $[0,1]$ such that each point $x \in[0,1]$ is contained in at least 5 of the sets $E_{k}, k=1, \ldots, n$. Prove there exists k such that $m\left(E_{k}\right) \geq 5 / n$.

Problem 2: For $f \in L^{1}(\mathbb{R})$ define a sequence of functions $g_{n}:[0,1] \rightarrow \mathbb{R}, n=$ $1,2, \ldots$, by

$$
g_{n}(x)=\sum_{k=1}^{n} \frac{1}{\sqrt{k}} f(x+\sqrt{k}), \quad n=1,2, \ldots
$$

Prove that the sequence $g_{n}, n=1,2, \ldots$, is convergent in $L^{1}([0,1])$.
Problem 3: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function which is absolutely continuous on finite intervals, and $g:[0,1] \rightarrow \mathbb{R}$ an integrable function. Define the function $h: \mathbb{R} \rightarrow \mathbb{R}$ by $h(x)=\int_{0}^{1} f(x-y) g(y) d y$. Show that h is also absolutely continuous on finite intervals.

Problem 4: Let $f_{n}, n=1,2, \ldots$, be a sequence of measurable functions on $[0,1]$ such that $f_{n} \rightarrow 0$ a.e. and $f_{n} \in L^{3}([0,1]), n=1,2, \ldots$, with $\sup _{n \geq 1}\left\|f_{n}\right\|_{3}<\infty$. Prove there exists p with $1<p<\infty$ such that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) g(x) d x=0 \quad \text { for all } g \in L^{p}([0,1])
$$

Problem 5: Let $f(\cdot)$ be an integrable function on \mathbb{R}^{n} and $M f$ the corresponding Hardy-Littlewood maximal function

$$
M f(x)=\sup _{R>0} \frac{1}{|B(x, R)|} \int_{B(x, R)}|f(y)| d y, \quad x \in \mathbb{R}^{n}
$$

where $B(x, R)$ denotes the ball centered at x with radius R. Show there is a constant C_{n}, depending only on n such that

$$
m\left\{x \in \mathbb{R}^{n}: M f(x)>s\right\} \leq \frac{C_{n}}{s} \int_{\{x:|f(x)|>s / 2\}}|f(y)| d y
$$

Hint: Consider the function f_{s} defined by $f_{s}(x)=|f(x)|$ if $|f(x)|>s / 2, \quad f_{s}(x)=0$ otherwise.

