Department of Mathematics, University of Michigan
 Complex Analysis Qualifying Exam
 January 8, 2023, $2.00 \mathrm{pm}-5.00 \mathrm{pm}$

Problem 1: Use contour integration to evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{\sin \pi x}{x^{2}-x}
$$

Solution:

For $R>10,0<\varepsilon<1$, let $\gamma_{\varepsilon, R} \subset \mathbb{C}$ be the contour made up of the line segments $[-R,-\varepsilon],[\varepsilon, 1-\varepsilon],[1+\varepsilon, R]$ on the real line, together with the semicircles $\{z \in \mathbb{C}:|z|=R, \Im z>0\},\{|z|=\varepsilon, \Im z>0\},\{|z-1|=\varepsilon, \Im z>0\}$, and the contour traversed in a counter-clockwise direction. Let

$$
I_{\varepsilon, R}=\int_{\gamma_{\varepsilon, R}} \frac{e^{i \pi z}}{z(z-1)} d z=\int_{\gamma_{\varepsilon, R}} f(z) d z=I_{\varepsilon, R}^{1}+I_{\varepsilon}^{2}+I_{\varepsilon, R}^{3}+J_{\varepsilon, R}^{1}-J_{\varepsilon}^{2}-J_{\varepsilon}^{3},
$$

where

$$
\begin{gathered}
I_{\varepsilon, R}^{1}=\int_{-R}^{-\varepsilon} f(x) d x, \quad I_{\varepsilon}^{2}=\int_{\varepsilon}^{1-\varepsilon} f(x) d x, \quad I_{\varepsilon, R}^{3}=\int_{1+\varepsilon}^{R} f(x) d x \\
J_{\varepsilon, R}^{1}=i \int_{0}^{\pi} \frac{e^{-\pi R \sin \theta+i \pi R \cos \theta}}{\left[R e^{i \theta}-1\right]} d \theta, \quad J_{\varepsilon}^{2}=i \int_{0}^{\pi} \frac{\exp \left[i \pi \varepsilon e^{i \theta}\right]}{\varepsilon e^{i \theta}-1} d \theta, J_{\varepsilon}^{3}=i e^{i \pi} \int_{0}^{\pi} \frac{\exp \left[i \pi \varepsilon e^{i \theta}\right]}{\varepsilon e^{i \theta}+1} d \theta .
\end{gathered}
$$

By Cauchy's theorem $I_{\varepsilon, R}=0$. Furthermore one has that

$$
\int_{-\infty}^{\infty} \frac{\sin \pi x d x}{x^{2}-x}=\lim _{\varepsilon \rightarrow 0} \lim _{R \rightarrow \infty} \Im\left[I_{\varepsilon, R}^{1}+I_{\varepsilon}^{2}+I_{\varepsilon, R}^{3}\right]
$$

We have that

$$
\left|J_{\varepsilon, R}^{1}\right| \leq \frac{2 \pi}{R}, \quad \lim _{\varepsilon \rightarrow 0} J_{\varepsilon}^{2}=-i \pi, \quad \lim _{\varepsilon \rightarrow 0} J_{\varepsilon}^{3}=-i \pi
$$

We conclude that the value of the integral is -2π.
Problem 2: Let $f: \mathbb{D} \rightarrow \mathbb{C}$ be a holomorphic function from the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ to the right half plane $\{w \in \mathbb{C}: \Re w>0\}$ with the property $f(0)=1$. Prove that

$$
|f(z)| \leq \frac{1+|z|}{1-|z|} \quad \text { for } z \in \mathbb{D}
$$

Solution: We make a conformal transformation g from the right half plane to \mathbb{D} such that $g(1)=0$. The function $h=g \circ f$ then maps \mathbb{D} to itself and $h(0)=0$.

By the Schwarz lemma we then have $|h(z)| \leq|z|$. The function g is given by the formula

$$
g(w)=\frac{1-w}{1+w}, \quad \text { whence } h(z)=\frac{1-f(z)}{1+f(z)} \text { so } f(z)=\frac{1-h(z)}{1+h(z)} .
$$

Since $|h(z)| \leq|z|$ it then follows from the triangle inequality that $|f(z)| \leq(1+$ $|z|) /(1-|z|)$.

Problem 3: Let $f: \mathbb{D} \rightarrow \mathbb{C}$ be a holomorphic function on the unit disk $\mathbb{D}=\{z \in$ $\mathbb{C}:|z|<1\}$, which has the property $f(-z)=-f(z), z \in \mathbb{D}$.
a) Show there is a holomorphic function $g: \mathbb{D} \rightarrow \mathbb{C}$ such that $g\left(z^{2}\right)=[f(z)]^{2}, z \in$ D.
b) Prove that if $f(\cdot)$ is one to one then the function g in a) is one to one.

Solution: (a) By the anti-symmetry of $f(\cdot)$ the Taylor expansion of $f(\cdot)$ about 0 has the form

$$
f(z)=z \sum_{n=0}^{\infty} a_{n} z^{2 n}=z h\left(z^{2}\right),
$$

where $h: \mathbb{D} \rightarrow \mathbb{C}$ is holomorphic. We can therefore take $g(w)=w h(w)^{2}$.
(b) Note that since $f(0)=0$ and $f(\cdot)$ is one to one that $f(z) \neq 0$ for $z \neq 0$. Hence $g(w) \neq 0$ if $w \neq 0$. Suppose now that $w \neq 0$ and $g(w)=a^{2} \neq 0$. Letting $w=z^{2}$ for some $z \neq 0$ we have that $[f(z)]^{2}=a^{2}$ and so $f(z)=a$ or $f(z)=-a$. Since $f(\cdot)$ is one to one and antisymmetric $z=z_{a}$ or $z=-z_{a}$ where $f\left(z_{a}\right)=a$ and z_{a} is unique. In either case $g\left(w_{a}\right)=a^{2}$ and $w_{a}=z_{a}^{2}$ is unique.

Problem 4: An entire function $f: \mathbb{C} \rightarrow \mathbb{C}$ is of exponential type if there exist constants $C_{1}, C_{2}>0$ such that $|f(z)| \leq C_{1} e^{C_{2}|z|}, z \in \mathbb{C}$. Show that a function $f(\cdot)$ is of exponential type if and only if its derivative $f^{\prime}(\cdot)$ is of exponential type.

Solution: Suppose $f(\cdot)$ is of exponential type. By the Cauchy formula

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{|w-z|=1} \frac{f(w)}{(w-z)^{2}} d w
$$

whence

$$
\left|f^{\prime}(z)\right| \leq C_{1} \sup \{|f(w)|:|w-z|=1\} \leq C_{1} e^{C_{2}} e^{C_{2}|z|}
$$

Conversely if $f^{\prime}(\cdot)$ is of exponential type we use the representation
$f(z)-f(0)=\int_{\gamma_{z}} f^{\prime}(w) d w=\int_{0}^{x} f^{\prime}\left(x^{\prime}\right) d x^{\prime}+i \int_{0}^{y} f^{\prime}\left(x+i y^{\prime}\right) d y^{\prime}, \quad$ where $z=x+i y$.
It follows that

$$
|f(z)-f(0)| \leq \int_{0}^{|x|} C_{1} e^{C_{2} x^{\prime}} d x^{\prime}+C_{1} e^{C_{2}|x|} \int_{0}^{|y|} e^{C_{2} y^{\prime}} d y^{\prime} \leq \frac{2 C_{1}}{C_{2}} e^{2 C_{2}|z|}
$$

Problem 5: Let $\mathcal{D} \subset \mathbb{C}$ be a domain i.e. open and connected, and $f, g: \mathcal{D} \rightarrow \mathbb{C}$ holomorphic functions which have the property that $|f(z)|+\mid g(z \mid$ is constant for $z \in \mathcal{D}$. Prove that the functions f and g are constant.
Hint: Apply the maximum principal judiciously.
Solution: Let $z_{0} \in \mathbb{D}$ and choose $\theta\left(z_{0}\right) \in[-\pi, \pi]$ such that $\left|f\left(z_{0}\right)+e^{i \theta\left(z_{0}\right)} g\left(z_{0}\right)\right|=$ $\left|f\left(z_{0}\right)\right|+\left|g\left(z_{0}\right)\right|$. Then the function $z \rightarrow f(z)+e^{i \theta\left(z_{0}\right)} g(z)$ attains its maximum modulus in \mathbb{D} at z_{0}, whence the maximum principle implies the function is constant. It then follows from our assumption there exists $K \in \mathbb{C}$ such that

$$
|f(z)|+|K-f(z)|=\text { constant for } z \in \mathbb{D}
$$

If $f(\cdot)$ is not constant the open mapping theorem then implies that for some $\varepsilon>0$ and $K^{\prime} \in \mathbb{C}$ one has $|w|+\left|K^{\prime}-w\right|=$ constant for $|w|<\varepsilon$. Since this is clearly false we conclude $f(\cdot)$ is constant-and similarly $g(\cdot)$.

