Department of Mathematics, University of Michigan Complex Analysis Qualifying Exam

January 8, 2023, 2.00 pm-5.00 pm

Problem 1: Use contour integration to evaluate the integral

$$\int_{-\infty}^{\infty} \frac{\sin \pi x}{x^2 - x} \; .$$

Solution:

For $R > 10, 0 < \varepsilon < 1$, let $\gamma_{\varepsilon,R} \subset \mathbb{C}$ be the contour made up of the line segments $[-R, -\varepsilon]$, $[\varepsilon, 1-\varepsilon]$, $[1+\varepsilon, R]$ on the real line, together with the semicircles $\{z \in \mathbb{C} : |z| = R, \Im z > 0\}$, $\{|z| = \varepsilon, \Im z > 0\}$, $\{|z-1| = \varepsilon, \Im z > 0\}$, and the contour traversed in a counter-clockwise direction. Let

$$I_{\varepsilon,R} = \int_{\gamma_{\varepsilon,R}} \frac{e^{i\pi z}}{z(z-1)} dz = \int_{\gamma_{\varepsilon,R}} f(z) dz = I_{\varepsilon,R}^1 + I_{\varepsilon}^2 + I_{\varepsilon,R}^3 + J_{\varepsilon,R}^1 - J_{\varepsilon}^2 - J_{\varepsilon}^3 ,$$

where

$$I_{\varepsilon,R}^{1} = \int_{-R}^{-\varepsilon} f(x) \, dx \,, \quad I_{\varepsilon}^{2} = \int_{\varepsilon}^{1-\varepsilon} f(x) \, dx \,, \quad I_{\varepsilon,R}^{3} = \int_{1+\varepsilon}^{R} f(x) \, dx \,,$$
$$J_{\varepsilon,R}^{1} = i \int_{0}^{\pi} \frac{e^{-\pi R \sin \theta + i\pi R \cos \theta}}{[Re^{i\theta} - 1]} \, d\theta \,, \quad J_{\varepsilon}^{2} = i \int_{0}^{\pi} \frac{\exp\left[i\pi \varepsilon e^{i\theta}\right]}{\varepsilon e^{i\theta} - 1} \, d\theta \,, \\J_{\varepsilon}^{3} = i e^{i\pi} \int_{0}^{\pi} \frac{\exp\left[i\pi \varepsilon e^{i\theta}\right]}{\varepsilon e^{i\theta} + 1} \, d\theta \,.$$
By Cauchy's theorem $I_{\varepsilon} = 0$. Furthermore one has that

By Cauchy's theorem $I_{\varepsilon,R} = 0$. Furthermore one has that

$$\int_{-\infty}^{\infty} \frac{\sin \pi x \, dx}{x^2 - x} = \lim_{\varepsilon \to 0} \lim_{R \to \infty} \Im \left[I_{\varepsilon,R}^1 + I_{\varepsilon}^2 + I_{\varepsilon,R}^3 \right] \, .$$

We have that

$$|J_{\varepsilon,R}^1| \leq \frac{2\pi}{R}$$
, $\lim_{\varepsilon \to 0} J_{\varepsilon}^2 = -i\pi$, $\lim_{\varepsilon \to 0} J_{\varepsilon}^3 = -i\pi$.

We conclude that the value of the integral is -2π .

Problem 2: Let $f : \mathbb{D} \to \mathbb{C}$ be a holomorphic function from the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ to the right half plane $\{w \in \mathbb{C} : \Re w > 0\}$ with the property f(0) = 1. Prove that

$$|f(z)| \leq \frac{1+|z|}{1-|z|}$$
 for $z \in \mathbb{D}$.

Solution: We make a conformal transformation g from the right half plane to \mathbb{D} such that g(1) = 0. The function $h = g \circ f$ then maps \mathbb{D} to itself and h(0) = 0.

By the Schwarz lemma we then have $|h(z)| \leq |z|$. The function g is given by the formula

$$g(w) = \frac{1-w}{1+w}$$
, whence $h(z) = \frac{1-f(z)}{1+f(z)}$ so $f(z) = \frac{1-h(z)}{1+h(z)}$

Since $|h(z)| \leq |z|$ it then follows from the triangle inequality that $|f(z)| \leq (1 + |z|)/(1 - |z|)$.

Problem 3: Let $f : \mathbb{D} \to \mathbb{C}$ be a holomorphic function on the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, which has the property $f(-z) = -f(z), z \in \mathbb{D}$. a) Show there is a holomorphic function $g : \mathbb{D} \to \mathbb{C}$ such that $g(z^2) = [f(z)]^2, z \in \mathbb{D}$.

b) Prove that if $f(\cdot)$ is one to one then the function g in a) is one to one.

Solution: (a) By the anti-symmetry of $f(\cdot)$ the Taylor expansion of $f(\cdot)$ about 0 has the form

$$f(z) = z \sum_{n=0}^{\infty} a_n z^{2n} = zh(z^2) ,$$

where $h : \mathbb{D} \to \mathbb{C}$ is holomorphic. We can therefore take $g(w) = wh(w)^2$.

(b) Note that since f(0) = 0 and $f(\cdot)$ is one to one that $f(z) \neq 0$ for $z \neq 0$. Hence $g(w) \neq 0$ if $w \neq 0$. Suppose now that $w \neq 0$ and $g(w) = a^2 \neq 0$. Letting $w = z^2$ for some $z \neq 0$ we have that $[f(z)]^2 = a^2$ and so f(z) = a or f(z) = -a. Since $f(\cdot)$ is one to one and antisymmetric $z = z_a$ or $z = -z_a$ where $f(z_a) = a$ and z_a is unique. In either case $g(w_a) = a^2$ and $w_a = z_a^2$ is unique.

Problem 4: An entire function $f : \mathbb{C} \to \mathbb{C}$ is of exponential type if there exist constants $C_1, C_2 > 0$ such that $|f(z)| \leq C_1 e^{C_2|z|}, z \in \mathbb{C}$. Show that a function $f(\cdot)$ is of exponential type if and only if its derivative $f'(\cdot)$ is of exponential type.

Solution: Suppose $f(\cdot)$ is of exponential type. By the Cauchy formula

$$f'(z) = \frac{1}{2\pi i} \int_{|w-z|=1} \frac{f(w)}{(w-z)^2} dw ,$$

whence

 $|f'(z)| \leq C_1 \sup\{|f(w)|: |w-z|=1\} \leq C_1 e^{C_2} e^{C_2|z|}$

Conversely if $f'(\cdot)$ is of exponential type we use the representation

$$f(z) - f(0) = \int_{\gamma_z} f'(w) \, dw = \int_0^x f'(x') \, dx' + i \int_0^y f'(x+iy') \, dy' \,, \quad \text{where } z = x + iy \,.$$

It follows that

$$|f(z) - f(0)| \leq \int_0^{|x|} C_1 e^{C_2 x'} dx' + C_1 e^{C_2 |x|} \int_0^{|y|} e^{C_2 y'} dy' \leq \frac{2C_1}{C_2} e^{2C_2 |z|}.$$

Problem 5: Let $\mathcal{D} \subset \mathbb{C}$ be a domain i.e. open and connected, and $f, g : \mathcal{D} \to \mathbb{C}$ holomorphic functions which have the property that |f(z)| + |g(z)| is constant for $z \in \mathcal{D}$. Prove that the functions f and g are constant. Hint: Apply the maximum principal judiciously.

Solution: Let $z_0 \in \mathbb{D}$ and choose $\theta(z_0) \in [-\pi, \pi]$ such that $|f(z_0) + e^{i\theta(z_0)}g(z_0)| = |f(z_0)| + |g(z_0)|$. Then the function $z \to f(z) + e^{i\theta(z_0)}g(z)$ attains its maximum modulus in \mathbb{D} at z_0 , whence the maximum principle implies the function is constant. It then follows from our assumption there exists $K \in \mathbb{C}$ such that

 $|f(z)| + |K - f(z)| = \text{constant for } z \in \mathbb{D}$.

If $f(\cdot)$ is not constant the open mapping theorem then implies that for some $\varepsilon > 0$ and $K' \in \mathbb{C}$ one has |w| + |K' - w| = constant for $|w| < \varepsilon$. Since this is clearly false we conclude $f(\cdot)$ is constant-and similarly $g(\cdot)$.