Department of Mathematics, University of Michigan
Analysis Qualifying Exam, May 4, 2022
Morning Session, 9.00 AM-12.00

Problem 1: Suppose f : (0,1) — R is integrable and define a function g : (0,1) —
R by

1
t
g(x) = / @dt, 0<z<l.
Prove that g is also integrable.

Solution: Consider a function F': (0,1) x (0,1) defined by
f

PO .
Flat) =4 t fo<zr<t<l;
0, otherwise.

Then by Tonelli’s theorem,

/Ol/ollF(x,tﬂdxdt:/01|f(t),dt<+oo’

so by Fubini’s theorem, F' is integrable. Applying Fubini’s theorem again, we

conclude that
1 £(1) 1 1
/ e dt‘ dx g/ / |F(z,t)] dzx dt < 4o0.
x 0 0

[owrar= [

Problem 2: Let f : [0,1] — R be a positive function such that f and 1/f are
integrable. Prove that log f is integrable and

qli_)ngoq- (/Olf(:v)l/q dx — 1> = /Ollogf(a:) dx .

Solution: For any y > 0, logy < y. Hence, |log f| < max(f,1/f) < f+1/f
which implies that log f is integrable.
Consider a function ¢ : (0,00) x R — R defined by

¢(t,y)—eyt_l

If y > 0, then using the Taylor expansion we get

[e.o]

1 n— n
o(t,y) = Z;t "
n=1

and so ¢ is an increasing function of t. Therefore,
6(ty) < ¢(1,y) = ¥ — 1 forany t € (0,1).



Applying this with ¢t = 1/q, y = log f(x), we obtain
q (f(x)l/q —1) < f(z) =1 wheneverf(z) > 1 and ¢ > 1.
On the other hand, if y < 0, then
ot y)| < =gt y)e™ =

and the previous argument yields

e W —1

t Y

1
q‘f(a;)l/q —1| < 7@ 1 whenever 0 < f(z) <1 and ¢ > 1.
T

Therefore, the functions Fy(z) = ¢ (f(x)"/4 — 1) satisfy the inequality

|Fy(2)] < f(z) + —1 forany¢>1,

1
f(x)
where the right-hand side is an integable function. L’Hopital’s rule implies

lim F,(z) = lim f(z)"7-log f(z) = log f()
q—00 q—00

for any x € (0,1). Thus, the result follows from the Lebesgue Dominated Conver-
gence Theorem.

Problem 3: Let (€2, A, 1) be a finite measure space. Let C C A be a sub-sigma
algebra of A. Prove that for any f € L'(u) there exists a C— measurable integrable
function g such that

/gd,u = /fd,u for any F € C .
E E

Solution: Define a function v : C — C by

V(E) = /E fdu.

Since f € L'(u), v is a complex measure on C and v < pu. Let g be the Radon-
Nikodym derivative of v with respect to u: g = Z—Z. The existence, C-measurability,
and integrability of g are guaranteed by the Lebesgue-Radon-Nikodym theorem.
Then ¢ satisfies the equality above.

Problem 4: Let f, : [0,1] — R, n = 1,2,..., be a sequence of non-negative
Lebesgue measurable functions such that lim,, ., f.(z) = 0 for almost every x €
[0,1]. Prove there exists an infinite subsequence f,, , k= 1,2,..., such that the
series

Z fn,(x)  converges for almost every z € [0,1] .
k=1

Hint: Use Egorov’s theorem.



Solution: By Egorov’s theorem, for any k£ € N there exists a set Ej with

1

such that f,, — 0 uniformly on Ej. Passing if necessary from Ej, to L), = U?:l E;,
we may assume that E; C Ey C ... Using induction, we can construct an increas-
ing sequence {ny}3>; C N such that

|fm(z)] <27 for any m > ny, and z € E}.

Fix [ € N. Since the sets Ej, are nested, any = € E; satisfies |f,, (z)] < 27 for all
k > 1. Therefore,

S @) <3 @)+ 27 < 0.
k=1 k=1 k=n,

By continuity of the Lebesgue measure,

m ([0, 17\ UE,) = 0.
=1
The result follows.

Problem 5: Suppose for n = 1,2, ..., the functions F, : [a,b] — R are increasing
and nonnegative, and that the function F' with domain [a, b] defined by

F(z) = ) Fi),
n=1
is finite for all x € [a, b]. Prove that the derivative F'(z) exists a.e. and
F'(z) = Z F!(z) for almost every z € [a, b].
n=1

Solution: The function F' is increasing, and so a.e. differentiable.

To prove the equality, define G(x) = limy,_,o4 F(z+h) and G,,(z) = limy,_04 F,,(z+
h). Then the functions G and G,, are increasing and right-continuous. Since F' is
increasing, it has only countably many points of discontinuity, and if x is a point
of continuity of F' and G is differentiable at x, then F is differentiable at x as well
with F'(x) = G'(z). Hence, it is enough to prove that

G'(z) = Z G (z) for almost all x € [a, b].
n=1

The function G defines a Lebesgue-Sieltjes measure pg on [a, b] by
pal(erd) = G(d) — G(e) for any (¢,d)  [a,b].



Denote the Lebesgue measure by m. We can define the Lebesgue-Stieltjes measures
i, in a similar way. Let

pe=A+n, A<Lm, nLlm

be the Lebesgue decomposition of g into the absolutely continuous and the sin-
gular part, and let d\ = gdz, i.e., g = % and g € L'([a,b]). By the Lebesgue
Differentiation Theorem, G’ = g a.e.

Similarly, let

dptm,
My = A+ 10y Ay K<, Uniﬂ%gn:%’ gnGLl([a,b]).
Note that since pug and pg, are positive measures, all the measures here are

positive. Set
§:ng A= Z)\n andﬁ:Znn,
n=1 n=1 n=1

and as before, G, = g, a.e. Then ug = A+ 77, and so both measures are finite.
For any Borel set F C a, b],

ME) =3 m(B) =Y [ a@de= [ 3 gufe) e

n=1 n=
and thus ~
o dA - 1
9= = ;% € L ([a,b])

Therefore, A\ < m. Also, for any n € N, there exists a set E, C [a,b] with
m(E,) = 0 such that n,([a, b] \ E,) = 0 Hence,

i(la, b\ | En) =0 and m(| ] E,) =0,

so 7 L m. Since the decomposition of a measure into the absolutely continuous
and the singular part is unique,

A=\ andn=7.

Summarizing, we have

dA o0 e}
G/: = —_— = TL: G’/n .e.

as claimed.



