Department of Mathematics, University of Michigan Analysis Qualifying Exam, May 5, 2022 Morning Session, 9.00 AM-12.00

Morning Session, 9.00 AM-12.00

Problem 1: Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function. Suppose that for each $z_0 \in \mathbb{C}$ the power series expansion

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

has at least one coefficient a_n which is zero. Show that f is a polynomial.

Solution: For each $z \in \mathbb{C}$ there exists a non-negative integer $n(z) \geq 0$ such that $f^{n(z)}(z) = 0$. Assume $f(\cdot)$ is not a polynomial. Then for every non-negative integer $n \geq 0$ the set $S_n = \{z \in \mathbb{C} : f^n(z) = 0\}$ has no accumulation points, and hence is countable. It follows that $\bigcup_{n=0}^{\infty} S_n$ is also countable. However we know $\bigcup_{n=0}^{\infty} S_n = \mathbb{C}$, which is uncountable. We conclude that $f(\cdot)$ is a polynomial.

Problem 2: Let U be an open subset of \mathbb{C} and $z_0 \in U$. Suppose that $f(\cdot)$ is a meromorphic function on U with a pole at z_0 . Prove there is no holomorphic function $g: U - \{z_0\} \to \mathbb{C}$ such that $f(z) = e^{g(z)}, z \in U - \{z_0\}$.

Solution: Since $f(\cdot)$ has a pole at z_0 we have for sufficiently small r > 0 that

$$\frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f'(z)}{f(z)} dz = -N ,$$

where $N \neq 0$ is the order of the pole. If $g(\cdot)$ exists then this implies that

$$\frac{1}{2\pi i} \int_{|z-z_0|=r} g'(z) \, dz \neq 0 \, .$$

However writing $g(\cdot)$ in its Lorenz expansion centered at z_0 and differentiating we see that the Lorenz expansion of g'(z) has no term in $1/(z - z_0)$. We conclude that

$$\frac{1}{2\pi i} \int_{|z-z_0|=r} g'(z) \, dz = 0 \,, \quad \text{a contradiction.}$$

Problem 3: Use contour integration to evaluate the integral

$$\int_0^\infty \frac{x^{-1/3}}{1+x} \, dx$$

Solution: For $\varepsilon, R > 0$ such that $\varepsilon \ll 1 \ll R$ we define the contour $\gamma_{\varepsilon,R}$ as follows:

(a) The line segment $\{x + i\varepsilon, 0 < x < \sqrt{R^2 - \varepsilon^2}\},\$

(b) The arc of the circle $\{|z| = R\}$ anti-clockwise from $\sqrt{R^2 - \varepsilon^2} + i\varepsilon$ to $\sqrt{R^2 - \varepsilon^2} - i\varepsilon$,

(c) The line segment $\{x - i\varepsilon, \sqrt{R^2 - \varepsilon^2} > x > 0\},\$

(d) The arc of the circle $\{|z| = \varepsilon\}$ in the left hand plane.

Letting $f(z) = z^{-1/3}/(1+z)$ we have from the residue theorem that

$$\frac{1}{2\pi i} \int_{\gamma_{\varepsilon,R}} f(z) \, dz = \text{Res}[f,-1] = e^{-i\pi/3}$$

Since the integrand $x \to x^{-1/3}/(1+x)$ is integrable in a nbh of 0 and ∞ the limit of the integral of f(z) over the contour (a) as $\varepsilon \to 0$, $R \to \infty$ is

$$I = \int_0^\infty \frac{x^{-1/3}}{1+x} \, dx \; .$$

For z along the contour (c) one has for $z = x - i\varepsilon$ that $z^{-1/3} \simeq e^{-2\pi i/3} x^{-1/3}$. Hence the limit of the integral of f(z) over the contour (c) as $\varepsilon \to 0$, $R \to \infty$ is $-e^{-2\pi i/3}I$. The integral over (b) is bounded by $CR^{-1/3}$ for a constant C and so goes to zero as $R \to \infty$. The integral over (d) is bounded by $C\varepsilon^{2/3}$ and also converges to zero as $\varepsilon \to 0$. We conclude that

$$[1 - e^{-2\pi i/3}]I = 2\pi i e^{-\pi i/3}$$
, whence $I = \frac{\pi}{\sin \pi/3} = \frac{2\pi}{\sqrt{3}}$

Problem 4: Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ denote the unit disc. Consider a sequence of holomorphic functions $f_n : \mathbb{D} \to \mathbb{C}$ having the Taylor expansions

$$f_n(z) = \sum_{k=1}^{\infty} a_{n,k} z^k$$

where $|a_{n,k}| \leq k^{2022}$ for all $k, n \in \mathbb{N}$.

Prove that the sequence $\{f_n\}_{n=1}^{\infty}$ contains a subsequence uniformly convergent on compact subsets of \mathbb{D} .

Solution: Let $K \subset \mathbb{D}$ be compact. Then $\sup\{|z|: z \in K\} = r_K < 1$. Using the inequality $k\delta < (1+\delta)^k$ for $\delta > 0$, $k = 1, 2, \ldots$, we have that for every $z \in K$,

$$|f_n(z)| \leq \sum_{k=1}^{\infty} k^{2022} r_K^k \leq \frac{1}{\delta^{2022}} \sum_{k=1}^{\infty} (1+\delta)^{2022k} r_K^k = \frac{(1+\delta)^{2022} r_K}{\delta^{2022} [1-(1+\delta)^{2022} r_K]},$$

provided $\delta > 0$ is chosen small enough so $(1 + \delta)^{2022} r_K < 1$. Hence the family $\mathcal{F} = \{f_n : \mathbb{D} \to \mathbb{C}\}$ is uniformly bounded on any compact subset K of \mathbb{D} . The result follows from Montel's theorem.

Problem 5: Find the number of solutions (counted according to multiplicity) in the annulus $\{1 \le |z| \le 3\}$ of the equation $z^9 + z^6 + 30z^5 - 3z + 2 = 0$.

Solution: Let $f(z) = z^9 + z^6 + 30z^5 - 3z + 2$ and $g(z) = z^9 + 30z^5$. Then we have that

$$|f(z) - g(z)| < |g(z)|$$
 if $|z| = 1$ or $|z| = 3$.

Hence by the Rouché theorem the number of zeros of $f(\cdot)$ in the annulus is the same as the number of zeros $g(\cdot)$. The zeros of $g(\cdot)$ in the annulus are the roots of $z^4 + 30 = 0$. Since $1 < 30^{1/4} < 3$, the number of zeros of $f(\cdot)$ in the annulus is 4.