Problem 1: Use contour integration to evaluate the integral
\[\int_0^\infty \frac{\cos x}{(1 + x^2)^2} \, dx. \]

Solution: We use the calculus of residues. Let \(\gamma_R \) be the contour consisting of the line segment \([-R, R]\) on the real axis combined with the semi-circle of radius \(R \) in the upper half plane. The direction of the contour is counter clockwise. Thus
\[
\frac{1}{2\pi i} \int_{\gamma_R} \frac{e^{iz}}{(1 + z^2)^2} = \text{Res}(f(\cdot), i), \quad \text{where } f(z) = \frac{e^{iz}}{(1 + z^2)^2}.
\]
We have that
\[
f(z) = \frac{e^{iz}}{(z - i)^2(z + i)^2}, \quad e^{iz} = e^{-1} + ie^{-1}(z - i) + O((z - i)^2), \quad \frac{1}{(z + i)^2} = -\frac{1}{4} - \frac{i}{4}(z - i) + O((z - i)^2),
\]
whence we conclude that
\[
f(z) = \frac{1}{(z - i)^2} \left[-\frac{e^{-1}}{4} - \frac{ie^{-1}}{2}(z - i) + O((z - i)^2) \right].
\]
Hence \(\text{Res}(f(\cdot), i) = -ie^{-1}/2 \). We observe that
\[
\lim_{R \to \infty} \int_{\gamma_R \cap \{\Im z = 0\}} f(z) \, dz = 2\int_0^\infty \frac{\cos x}{(1 + x^2)^2} \, dx.
\]
If we show that
\[
\lim_{R \to \infty} \int_{\gamma_R \cap \{|z|=R\}} f(z) \, dz = 0,
\]
then we have from the residue theorem that the value of the integral in the problem is \(\pi e^{-1}/2 \). Now
\[
|f(z)| \leq \frac{1}{(R - 1)^4}, \quad \text{for } |z| = R, \exists \alpha > 0, \quad \int_{\gamma_R \cap \{|z|=R\}} |f(z)| \, |dz| \leq \frac{\pi R}{(R - 1)^4}.
\]
Letting \(R \to \infty \) we conclude the integral of \(f(\cdot) \) on the semi-circle converges to 0 as \(R \to \infty \).

Problem 2: Find a conformal mapping from the quarter disc
\[
\{ z \in \mathbb{D} : z = re^{i\theta}, \ r \in (0, 1), \ \theta \in (0, \pi/2) \}\]
to the infinite strip
\[\{ z \in \mathbb{C} : z = x + iy, \ x \in \mathbb{R}, \ y \in (0,1) \} . \]

You may write your solution as a composite of simpler maps.

Solution: If \(f_1(z) = z^2 \) then \(f_1 \) maps the quarter disc \(D \) to the half disk \(D_1 = \{ z : |z| < 1, \ \Re z > 0 \} \). We can map \(D_1 \) to a quadrant using a FLT by sending
\(-1\) to 0 and \(+1\) to \(\infty \). Thus we take \(f_2(z) = (1 + z)/(1 - z) \), which maps \(D_1 \) to \(D_2 = \{ z = re^{i\theta}, \ 0 < \theta < \pi/2 \} \). Next \(f_3(z) = \frac{2}{\pi} \log z \) maps \(D_2 \) to the infinite strip \(0 < \Re z < 1 \). The conformal mapping is therefore \(f = f_3 \circ f_2 \circ f_1 \).

Problem 3: Suppose \(f : \mathbb{D} \to \mathbb{C} \) is a holomorphic function on the unit disk \(\mathbb{D} \) which satisfies \(|f(z)| \leq 3\) for all \(|z| < 1\), and \(f(1/2) = 2 \).

a) Show that \(f(0) \neq 0 \).
b) Extend your result in a) by showing that \(f(\cdot) \) has no zeros in the disk \(|z| < 1/8\).

Solution: a). We wish to use the Schwarz lemma, whence we define \(f_1(z) = f(z)/3 \), which maps the unit disk \(\mathbb{D} = \{ z : |z| < 1 \} \) to itself. Then \(f_1(1/2) = 2/3 \). Next we use conformal mappings on \(\mathbb{D} \) to construct a function \(g : \mathbb{D} \to \mathbb{D} \) from \(f \) with \(g(0) = 0 \). Hence we need FLTs, which are conformal mappings of \(\mathbb{D} \), such that \(0 \to 1/2 \) and \(2/3 \to 0 \). The relevant mappings are
\[z \to h(z) = \frac{z + 1/2}{1 + z/2}, \quad w \to k(w) = \frac{w - 2/3}{1 - 2w/3} . \]

Then \(g = k \circ f_1 \circ h \). The Schwarz lemma implies that \(|g(z)| < |z|, \ z \in \mathbb{D} - \{0\}\).
Note that \(h(-1/2) = 0, \ k(0) = -2/3 \). If \(f(0) = 0 \) then \(f_1(0) = 0 \) and so \(g(-1/2) = -2/3 \), contradicting Schwarz. We conclude that \(f(0) \neq 0 \).
b) We may extend the argument to the disk by observing that \(h^{-1} \) takes the circle centered at 0 with radius \(r \) to the circle with equation \(h(z)h'(z) = r^2 \), which is given by
\[\left(1 - \frac{r^2}{4} \right) (x^2 + y^2) + (1 - r^2)x + \frac{1}{4} - r^2 = 0 \quad z = x + iy . \]
This circle has center \([-2(1-r^2)/(4-r^2), 0]\) and radius \(R \) satisfying
\[R^2 = \frac{4(1-r^2)^2}{(4-r^2)^2} - \frac{1 - 4r^2}{4 - r^2} . \]
The result follows since
\[\frac{2(1-r^2)}{(4-r^2)} + R < \frac{2}{3} \quad \text{when} \ r = \frac{1}{8} . \]

Problem 4: Consider a function \(f(z) \) that is analytic for \(z \neq 0 \) and such that there exists a sequence \(z_j, \ j = 1, 2, \ldots, \) such that \(f(z_j) = 0, \ j \geq 1, \) and \(\lim_{j \to \infty} z_j = 0. \)
a) Prove that \(f \) cannot have a pole at \(z = 0 \).
b) Show by explicit example that there does exist such \(f \) which has an essential singularity at \(z = 0 \).

Solution: a) If \(f \) has a pole at \(z = 0 \) then \(f(z) = z^{-N}g(z) \) where \(N \geq 1 \) is an integer and \(g \) is analytic on \(\mathbb{C} \) with \(g(0) \neq 0 \). Since \(g \) is continuous it follows that \(f(z_j) \neq 0 \) for \(j \) sufficiently large, a contradiction.

b) An example is
\[
f(z) = \exp \left[\frac{1}{z} \right] - 1, \quad z_j = \frac{1}{2\pi j}, \quad j = 1, 2, \ldots
\]

Problem 5: Let \(U \) be a bounded connected domain in \(\mathbb{C} \) and \(f : U \to U \) a holomorphic function which satisfies \(f(z_0) = z_0 \) and \(|f'(z_0)| < 1 \) for some \(z_0 \in U \). For \(n = 1, 2, \ldots \), let \(f^{(n)} \) be the composition function defined inductively by \(f^{(1)} = f \), \(f^{(n+1)} = f^{(n)} \circ f \). Prove that \(f^{(n)} \) converges uniformly to \(z_0 \) on compact subsets of \(U \).

Solution: Since \(|f'(z_0)| < 1 \) and \(f' \) is continuous there exists \(r, \delta > 0 \) such that \(|f'(z)| \leq 1 - \delta \) if \(|z - z_0| \leq r \). It follows that \(|f(z) - f(z_0)| \leq (1 - \delta)|z - z_0| \) if \(z \in D(z_0, r) = \{ z : |z - z_0| < r \} \). Since \(f(z_0) = z_0 \) we conclude that \(f(D(z_0, r)) \subset D(z_0, (1 - \delta)r) \). Proceeding by induction we have further that \(f^{(n)}(D(z_0, r)) \subset D(z_0, (1 - \delta)^n r) \), \(n = 1, 2, \ldots \). Letting \(n \to \infty \), it follows that \(f^{(n)} \) converges uniformly to \(z_0 \) on compact subsets of \(D(z_0, r) \).

We extend the result to compact subsets of \(U \) by using Montel’s theorem. Since \(U \) is bounded the family of holomorphic functions \(f^{(n)} \), \(n \geq 1 \), is bounded on every compact subset of \(U \). Suppose the sequence \(f^{(n)} \), \(n \geq 1 \), does not converge uniformly to \(z_0 \) on a compact subset \(K \subset U \). Then there exists a sequence of points \(z_j \in K \), \(j = 1, 2, \ldots \), and a subsequence \(f^{(n_j)} \), \(j = 1, 2, \ldots \), of the family \(f^{(n)} \), \(n \geq 1 \), such that \(|f^{(n_j)}(z_j) - z_0| \geq \delta > 0 \) for some positive \(\delta \). By Montel’s theorem there exists a subsequence \(f^{(n_k)} \), \(k = 1, 2, \ldots \), of \(f^{(n_j)} \), \(j = 1, 2, \ldots \), which converges uniformly on all compact subsets of \(U \) to a holomorphic function \(f^{(\infty)} \). Since the sequence \(z_j \), \(j \geq 1 \), lies in the compact set \(K \) there exists a subsequence which has a limit point \(z_\infty \in K \). We claim that \(|f^{(\infty)}(z_\infty) - z_0| \geq \delta \).

This follows from the fact that the derivatives of \(f^{(n)} \) are uniformly bounded in a nbh of \(z_\infty \), which is a consequence of the Cauchy integral formula. Since we have shown that \(f^{(\infty)} \equiv z_0 \) in \(D(z_0, r) \) it follows by analytic continuation that \(f^{(\infty)} \equiv z_0 \) in \(U \), but this contradicts the inequality \(|f^{(\infty)}(z_\infty) - z_0| \geq \delta \).