Department of Mathematics, University of Michigan Analysis Qualifying Exam, January 4, 2020

Morning Session, 9.00 AM-12.00

Problem 1: Let $P(z), z \in \mathbb{C}$, be the polynomial

$$P(z) = z^n + a_{n-1}z^{n-1} + \dots + a_0$$
.

The coefficients $a_j \in \mathbb{C}$, j = 0, ..., n - 1 can be arbitrary. Prove that $\sup_{|z|=1} |P(z)| \geq 1$.

Problem 2: Use contour integration to evaluate the integral

$$\int_0^\infty \frac{\ln x}{1+x^2} \ dx \ .$$

Problem 3: Let $f \in L^1([0,1])$ and $\Omega = \mathbb{C} \setminus [0,1]$. Prove that the function

$$F(z) = \int_0^1 \frac{f(t)}{t-z} dt$$

is holomorphic on Ω .

Problem 4: Let $\Omega = \{z \in \mathbb{C} : |z - 1/3| > 1/3 \text{ and } |z - 1| < 1\}.$

- (a) Find a conformal mapping f from Ω onto the open unit disk $\mathbb{D} = \{w \in \mathbb{C} : |w| < 1\}$.
- (b) Show that we may choose $f(\cdot)$ to be of the form $f(z) = \tan g(z)$ with g(1) = 0, g'(1) > 0, and obtain a formula for the function $g(\cdot)$.

Problem 5: Let f be a holomorphic function in \mathbb{C} satisfying f(0) = 0, f(1) = 1, and $|f(z)| \leq |z|$ for all $|z| \leq 1$. Show that:

- (a) $f'(1) \in \mathbb{R}$. Hint: Consider the function $\theta \mapsto |f(e^{i\theta})|^2$.
- (b) $f'(1) \ge 1$. Hint: Consider $\operatorname{Re}\left(\frac{f(x)-1}{x-1}\right)$ for $x \in (0,1)$.

Department of Mathematics, University of Michigan Analysis Qualifying Exam, January 4, 2020

Afternoon Session, 2.00-5.00 PM

Problem 1: Let $E \subset \mathbb{R}$ be a bounded Lebesgue measurable set. Show there is a measurable subset F of E such that m(F) = m(E)/2.

Problem 2: For a closed interval $I \subset \mathbb{R}$, a function $f: I \to \mathbb{R}$ is convex if for all $x, y \in I$ and $0 < \lambda < 1$ one has $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$.

- (a) Prove that the convex function f is continuous and of bounded variation.
- (b) Give an example to show that f is not necessarily absolutely continuous.

Problem 3: Let (X, \mathcal{A}, μ) be a measure space, and $f_n : X \to (0, \infty), n = 1, 2, ...,$ be a sequence of measurable functions such that

$$\sum_{n=1}^{\infty} \mu(f_n^{-1}(1/n, \infty)) < \infty .$$

Prove that $f_n \to 0$ a.e.

Problem 4: Let f_n , n = 1, 2, ..., be a bounded sequence in $L^2([0, 1])$ such that f_n converges almost everywhere to a function f.

- (a) Prove that the function $x \to f(x)/x^{1/3}$ is integrable.
- (b) Prove further that

$$\lim_{n \to \infty} \int_0^1 \frac{f_n(x)}{x^{1/3}} \ dx = \int_0^1 \frac{f(x)}{x^{1/3}} \ dx \ .$$

Problem 5: Suppose f and g are non-negative real-valued measurable functions on (0,1) which satisfy

$$\int_0^1 f(x) \ dx = 3, \quad \int_0^1 g(x) \ dx = 2 \ .$$

Let $E = \{x \in (0,1) : f(x) > g(x)\}.$

- (a) Prove that m(E) > 0, and give an example to show that m(E) may be arbitrarily small.
- (b) Suppose that $\int_0^1 f(x)^3 dx = 64$. Prove that $m(E) \ge 1/8$.