1. (a) Let \(f_n \) be a sequence of continuous real-valued functions on \([0, 1]\) which converges uniformly to \(f \). Prove that \(\lim_{n \to \infty} f_n(x_n) = f(1/2) \) for any sequence \(\{x_n\} \) that converges to 1/2.

(b) Suppose the convergence \(f_n \to f \) is only pointwise. Does the conclusion still hold? Explain.

2. Show that
\[
x^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx
\]
for \(-\pi \leq x \leq \pi\).

3. Let \(R \) be the unit square \([0, 1] \times [0, 1]\) in the plane, and let \(\mu \) be the usual Lebesgue measure on the real Cartesian plane. Let \(N \) be the function that assigns to each real number \(x \) in the unit interval the positive integer that indicates the first place in the decimal expansion of \(x \) after the decimal point where the first 0 occurs. If there are two expansions, use the expansion that ends in a string of zeroes. If 0 does not occur, let \(N(x) = \infty \). For example, \(N(0.0) = 1 \), \(N(0.5) = 2 \), \(N(1/9) = \infty \), and
\(N(0.4763014\ldots) = 5 \). Evaluate \(\iint_R y^{-N(x)} \, d\mu \).

4. Let \((f_n)_{n=1}^{\infty} \) be a sequence in \(L^p(\mu) \), where \(1 \leq p < \infty \). Show that if \(\lim ||f_n - f||_p = 0 \), where \(f \in L^p(\mu) \), then \((f_n) \) converges to \(f \) in measure.

5. Suppose that \(f \in L^p([-1, 1]) \) for all \(1 \leq p < \infty \). Prove that the integral
\[
\int_{-1}^{1} \frac{|f(x)|}{|x|^s} \, dx
\]
is finite for all \(0 < s < 1 \).
1. Let $f(z)$ and $g(z)$ be entire functions for which there exists a constant $C > 0$ such that $|f(z)| \leq C|g(z)|$ for all z. Prove that there exists a constant c such that $f(z) = cg(z)$ for all z.

2. Find a conformal mapping $w = f(z)$ that takes the first quadrant in the z-plane onto the unit disc in the w-plane, and such that $f(0) = 1$, $f(1 + i) = 0$.

3. Find all analytic functions on the unit disc that satisfy $f'(\frac{1}{n}) = f(\frac{1}{n})$ for $n = 2, 3, 4, \ldots$. Justify your answer.

4. Let $a \in \mathbb{C}$ with $|a| \neq 1$. Evaluate the integral

$$\oint_{|z|=1} \frac{\bar{z}}{a - z^{100}} \, dz.$$

5. Let $f(z)$ be an analytic function in the unit disc $\{|z| < 1\}$. Prove that there exists a sequence $(z_n)_{n=1}^{\infty}$ in the disc such that $\lim_{n \to \infty} |z_n| = 1$ and such that $\sup_n |f(z_n)| < \infty$.
