Analysis QR exam, May 5, 2016

Morning Session, 9:00–12:00

- 1. Find all entire functions f(z) satisfying $|f(z)| \ge e^{|z|}$ for all $z \in \mathbb{C}$.
- 2. Assume that a > 0. Evaluate the integral

$$\int_0^\infty \frac{\log x}{x^2 + a^2} dx.$$

- 3. Let $P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$, where $a_i \in \mathbb{C}$ are constants. Prove that there is at least one point on |z| = 1 satisfying $|P(z)| \ge 1$.
- 4. Suppose that f is analytic on the annulus $\{z \in \mathbb{C} : 1/2 < |z| < 2\}$ except for the simple pole at 1. Suppose that the residue of f at z = 1 is 1. Let $\sum_{n = -\infty}^{\infty} a_n z^n$ and $\sum_{n = -\infty}^{\infty} b_n z^n$ be the Laurent expansion of f on the annuli $\{z : 1/2 < |z| < 1\}$ and $\{z : 1 < |z| < 2\}$, respectively. Compute $b_n a_n$ for every integer n.
- 5. Find all functions f which is analytic in an open set containing $\overline{\mathbb{D}}$ and satisfies |f(z)| = 1 for |z| = 1. Here $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ is the open disk of radius 1.

Analysis QR exam, May 5, 2016

Afternoon Session, 2:00–5:00

1. (a) Prove that for every Borel measurable set $E \subset [0,1]$,

$$\lim_{n \to \infty} \int_E \sin(2\pi nx) dx = 0.$$

(b) Let $f_n:[0,1]\to\mathbb{R}$ be a sequence of continuous functions satisfying

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0.$$

Does it imply that $\lim_{n\to\infty} f_n(x) = 0$? Prove it or give a counter-example.

2. Let $f \in L^1([0,1])$, and let g be a bounded increasing function on [0,1]. Assume that for any interval $[a,b] \subset [0,1]$,

$$\left| \int_a^b f(x) \, dx \right|^2 \le (g(b) - g(a))(b - a).$$

Prove that $f \in L^2([0,1])$.

3. Let (X, \mathcal{B}, μ) be a σ -finite measure space. Prove that there is a finite measure ν on (X, \mathcal{B}) with the property that

$$\nu(E) = 0$$
 if and only if $\mu(E) = 0$.

4. Assume that $f \in L^1([0,\infty)) \cap C([0,\infty))$. Evaluate the limit

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_0^\infty f(x) e^{-\frac{x}{\epsilon}} dx.$$

Prove your assertion.

5. Let f be a function on \mathbb{R}^n . Assume that for any $\epsilon > 0$, there exist measurable functions $g, h \in L^1(\mathbb{R}^n)$ such that $g(x) \leq f(x) \leq h(x)$ for all $x \in \mathbb{R}^n$ and

$$\int_{\mathbb{R}^n} \left(h(x) - g(x) \right) \, dx < \epsilon.$$

Prove that f is measurable on \mathbb{R}^n and $f \in L^1(\mathbb{R}^n)$.