Algebra II QR — January 2024

Problem 1. Let G be a finite simple group which contains an element of order 55. Prove that the index of any proper subgroup of G is at least 16.

Solution. Let $H \subset G$ be a proper subgroup of index n = [G : H]. The action of G on the set of left cosets G/H defines a homomorphism $\rho \colon G \to S_n$ to the symmetric group on n elements. The kernel $\ker(\rho)$ is a normal subgroup of G which is contained in the proper subgroup H, so $\ker(\rho)$ must be trivial as G is simple. Thus, ρ is injective and S_n contains an element σ of order 55. The order of an element of S_n is the least common multiple of the lengths of the cycles in its cycle decomposition, so σ must decompose into a product of disjoint cycles of lengths 5 and 11. In particular, $n \geq 5 + 11 = 16$.

Problem 2. Prove that any group of order $455 = 5 \cdot 7 \cdot 13$ is abelian.

Solution. The Sylow theorems show there exists either 1 or 91 Sylow 5-subgroups, there is a unique Sylow 7-subgroup $N_7 \subset G$, and there is a unique Sylow 13-subgroup $N_{13} \subset G$, with N_7 and N_{13} both normal. The map $G \to G/N_7 \times G/N_{13}$ is injective since N_7 and N_{13} have relatively prime orders. We win since G/N_7 and G/N_{13} are abelian by the following observation: For primes p < q with $q \not\equiv 1 \pmod{p}$, any group A of order pq splits as a product $A \cong \mathbf{Z}/p \times \mathbf{Z}/q$. (Indeed, by the Sylow theorems there are normal subgroups $P \subset A$ and $Q \subset A$ of sizes p and q, and for order reasons we must have $P \cap Q = \{1\}$ and PQ = A, hence $A \cong P \times Q$ splits as the direct product.)

Problem 3. Let $f(x) \in k[x]$ be an irreducible polynomial where k is a field of characteristic 0 with algebraic closure \bar{k} . Prove that there does not exist an element $a \in \bar{k}$ so that f(a) = f(a+1) = 0.

Solution. Let $K \subset \bar{k}$ be the splitting field for f(x) in \bar{k} . Since f(x) is irreducible, the Galois group $\operatorname{Gal}(K/k)$ acts transitively on the roots of f(x). In particular, if $a \in \bar{k}$ is such that f(a) = f(a+1) = 0, then $a \in K$ and there exists $\sigma \in \operatorname{Gal}(K/k)$ such that $\sigma(a) = a+1$. Then $\sigma^n(a) = a+n$ is a root of f(x) for every integer n. Since the number of roots of f(x) is finite, this is only possible if the characteristic of k is positive.

Problem 4. Let $f(x) \in F[x]$ an irreducible, separable polynomial over a field F, and let E be a splitting field for f(x) over F. Prove that if Gal(E/F) is abelian, then for any root $a \in E$ of f(x) we have E = F(a).

Solution. Since Gal(E/F) is abelian any subgroup is normal, so by the Galois correspondence K/F is Galois for any intermediate field extension $F \subset K \subset E$. In particular, for any root a of f(x) the extension F(a)/F is Galois, so it must contain every root of the polynomial f(x), i.e. F(a) = E.

Problem 5. Prove that $\mathbf{Q}(\sqrt{2+\sqrt{2}})$ is a Galois field extension of \mathbf{Q} , and compute its Galois group.

Hint: The following two facts may be useful.

- (1) (Eisenstein's criterion) If $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in \mathbf{Z}[x]$ and p is a prime such that p divides all a_i but p^2 does not divide a_0 , then f(x) is irreducible as an element of $\mathbf{Q}[x]$.
- (2) If $\alpha = \sqrt{2 + \sqrt{2}}$ and $\beta = \sqrt{2 \sqrt{2}}$, then $\alpha\beta = \sqrt{2}$

Solution. A computation shows that $f(x) = x^4 - 4x^2 + 2$ has roots $\pm \alpha$ and $\pm \beta$, where $\alpha = \sqrt{2 + \sqrt{2}}$ and $\beta = \sqrt{2 - \sqrt{2}}$. We claim $K = \mathbf{Q}(\sqrt{2 + \sqrt{2}})$ is the splitting field of $f(x) = x^4 - 4x^2 + 2$, and hence is Galois. Clearly $\pm \alpha \in K$. Note that $\sqrt{2} = \alpha^2 - 2 \in K$, so from $\alpha\beta = \sqrt{2}$ we find $\pm \beta \in K$ as well.

Next we prove that $\operatorname{Gal}(K/\mathbf{Q}) \cong \mathbf{Z}/4$. First note that the polynomial $f(x) \in \mathbf{Q}[x]$ is irreducible by Eisenstein's criterion at the prime 2. Thus $[K:\mathbf{Q}]=4$ and we have either $\operatorname{Gal}(K/\mathbf{Q}) \cong \mathbf{Z}/4$ or $\operatorname{Gal}(K/\mathbf{Q}) \cong \mathbf{Z}/2 \times \mathbf{Z}/2$. To show the first case holds, it suffices to show that there exists $\sigma \in \operatorname{Gal}(K/\mathbf{Q})$ of order greater than 2. Choose σ so that $\sigma(\alpha) = \beta$. From the computations above we find $\beta = (\alpha^2 - 2)/\alpha$, and thus

$$\sigma^{2}(\alpha) = \frac{\beta^{2} - 2}{\beta} = -\frac{\sqrt{2}}{\sqrt{2 - \sqrt{2}}} = -\frac{\sqrt{2}}{\beta} = -\alpha.$$

This shows σ has order greater than 2.