
Solutions to Algebra 2 QR (May 2023)

Problem 1. Let G be a finite group of order N and let X and Y be two sets on which G acts
transitively. Suppose that GCD(|X|, |Y |) = 1. Let G act on X×Y by g ·(x, y) = (g ·x, g ·y).
Show that the action of G on X × Y is transitive.

Solution. Let Z ⊂ X×Y be the orbit of some element. From the projection map p : Z → X,
we see that |X| divides |Z|. (Precisely, suppose z ∈ Z has stabilizer Gz. Since Z is transitive,
we have Z ∼= G/Gz. Let x = p(z). Since p is G-equivariant, we have Gz ⊂ Gx. Since X is
transitive, we have X ∼= G/Gx. Thus |Z|/|X| = |Gx|/|Gz|, which is an integer by Lagrange’s
theorem.) Similarly, |Y | divides |Z|. Since |X| and |Y | are coprime, it follows that |X| · |Y |
divides |Z|, and so Z = X × Y . Thus X × Y carries a transitive action.

Problem 2. Let G be a finite group with |G| ≡ 2 mod 4. Let s and t be two nonidentity
elements of G with s2 = t2 = 1. Show that s and t are conjugate within G.

Solution. Since 2 divides |G| but 4 does not, it follows that a 2-Sylow subgroup of G has
order 2. Thus {1, s} and {1, t} are 2-Sylow subgroups. By the second Sylow theorem, they
are conjugate, i.e., there is g ∈ G such that {1, s} = g{1, t}g−1. Since gtg−1 is not the
identity, it must be s, and so s and t are conjugate.

Problem 3. Let K be the field of rational functions C(x0, x1, x2, x3, x4). Let F be the
subfield of K consisting of functions symmetric under the permutations (x0, x1, x2, x3x4) 7→
(x1, x2, x3, x4, x0) and (x0, x1, x2, x3, x4) 7→ (x0, x4, x3, x2, x1). How many fields L are there
with F ⊆ L ⊆ K? (Prove your answer to be correct.)

Solution. Let σ be the automorphism of K that fixes C and acts on the variables by
σ(xi) = xi+1 (with indices in Z/5). Let τ be the automorphism that fixes C and acts on
the variables by τ(xi) = x−i. The group G ⊂ Aut(K) generated by σ and τ is isomorphic
to the dihedral group D5 of order 10. As F is the fixed field of G, we see that K/F is a
Galois extension with group D5. Hence, the number of intermediate fields is the number of
subgroups of D5. There is one subgroup of order one, five of order two, one of order five,
and one of order ten. Thus D5 has 8 subgroups, and so there are 8 intermediate fields.

Problem 4. Let K be a field, let f(x) be a separable polynomial of degree n ≥ 3 with
coefficients in K and let L be a splitting field for f(x) over K, in which f(x) factors as
(x− θ1)(x− θ2) · · · (x− θn). Suppose that Gal(L/K) is the alternating group An. Show that
θn lies in the field K(θ1, θ2, . . . , θn−2), but that θn does not lie in K(θ1, θ2, . . . , θn−3).

Solution. The Galois group of L/K(θ1, . . . , θn−2) consists of those permutations in An that
fix 1, . . . , n−2. The only such permutation is the identity, and so the Galois group is trivial.
By Galois theory, K(θ1, . . . , θn−2) = L, and thus contains θn.
The 3-cycle (n−2 n−1 n) is an element of Gal(L/K) that fixes the field K(θ1, . . . , θn−3).

Since it does not fix θn, it follows that θn does not belong to this field.



Problem 5. Let p ≥ 5 be prime. We consider the following four subgroups of GL2(Fp)
where, in each case, x ranges over F×

p and y ranges over Fp:

G1,2 = {
[ x y
0 x2

]
} G1,3 = {

[ x y
0 x3

]
} G2,3 = {

[
x2 y
0 x3

]
} G2,1 = {

[
x2 y
0 x

]
}.

Which of these groups are isomorphic to each other? When you claim that groups are
isomorphic, prove them to be so; when you claim that groups are not isomorphic, prove
them not to be so.

Solution. For coprime integers n and m, put

Gn,m =
[
xn y
0 xm

]
Tn,m = [ x

n 0
0 xm ] Un,m =

[
1 y
0 1

]
,

where x varies over F×
p and y varies over Fp. Both Tn,m and Un,m are subgroups of Gn,m, with

Un,m normal. Moreover, Gn,m = Tn,mUn,m and Tn,m∩Un,m = 1. Thus Gn,m is the semi-direct
product Tn,m ⋉ Un,m.

Now, the map
F×
p → Tn,m x 7→ [ x

n 0
0 xm ]

is an isomorphism; indeed, it is surjective by definition, and has trivial kernel since n and m
are coprime. Of course, the map

Fp → Un,m y 7→
[
1 y
0 1

]
is also an isomorphism. We have

[ x
n 0
0 xm ] ·

[
1 y
0 1

]
· [ xn 0

0 xm ]
−1

=
[
1 xn−my
0 1

]
.

We thus see that Gn,m is isomorphic to the semi-direct product F×
p ⋉n−m Fp, where the

subscript indicates that F×
p acts on Fp by x • y = xn−my.

In particular, the isomorphism class of Gn,m only depends on n−m. Thus G1,2 and G2,3

are isomorphic.
Now, the matrix [ −1 0

0 −1

]
belongs to G1,3, and is central of order two. In terms of the semi-direct product computation,
this corresponds to the fact that−1 ∈ T1,3 acts trivially on U1,3, since (−1)3−1 = 1. One easily
sees that the other Gn,m’s have trivial center, and so G1,3 is not isomorphic to them. (Here’s
how to see trivial center. Suppose x were a central element of Gn,m. Then x would conjugate
Un,m trivially. This conjugation action only depends on the image of x in Tn,m = Gn,m/Un,m.
For the relevant (n,m)’s other than (1, 3), the action of Tn,m on Un,m is faithful, by the above
computation. Thus we see that x maps to 1 in Tn,m, meaning x ∈ Un,m. But non-identity
elements of Un,m are clearly not central since Tn,m acts non-trivially on them.)

Finally we must decide if G1,2 and G2,1 are isomorphic. They are. This follows from the
semi-direct product description: the map

F×
p ⋉1−2 Fp → F×

p ⋉2−1 Fp, (x, y) 7→ (x−1, y)

is an isomorphism. In terms of matrices, this is the isomorphism

G1,2 → G2,1

[ x y
0 x2

]
7→

[
x−2 x−3y
0 x−1

]
.

Note that (x, y) in the semi-direct product description of Gn,m corresponds to the matrix

[ x
n 0
0 xm ]

[
1 y
0 1

]
=

[
xn xny
0 xm

]
.


