Algebra 2 Solutions

Problem. Let p be prime and let \mathbb{F}_p be the field with p elements. Let G be the group $\operatorname{GL}_n(\mathbb{F}_p)$ with $n \geq 2$ and let G act on $(\mathbb{F}_p^n)^2$ in the obvious way. How many orbits does G have on $(\mathbb{F}_p^n)^2$? (The "obvious way" is that, for $g \in \operatorname{GL}_n(\mathbb{F}_p)$, and $\vec{x}, \vec{y} \in \mathbb{F}_p^n$, we have $g * (\vec{x}, \vec{y}) = (g\vec{x}, g\vec{y})$.)

Solution. Let $V = \mathbb{F}_p^n$ with standard basis e_1, \ldots, e_n , and let $x, y \in V$. We consider several cases.

- (1) If x = y = 0 then G fixes (x, y), i.e., it makes up a single orbit.
- (2) Suppose x = 0 and $y \neq 0$. Since G acts transitively on $V \setminus \{0\}$, we can move y to e_1 . Thus this case contributes a single orbit.
- (3) Suppose $x \neq 0$ and y is linearly dependent on x, i.e., y = cx for some $c \in \mathbb{F}_p$. The equation y = cx is preserved by the group G, and so c is an invariant of the orbit of (x, y). Using G, we can then move x to e_1 , and y will move to ce_1 . We thus see that c is the only invariant of the orbit, and so there are p orbits in this case (amounting to the p choices of c).
- (4) Finally, if x and y are linearly independent then we can move (x, y) to (e_1, e_2) . Thus there is one orbit in this case.

In total, there are p + 3 orbits.

Problem. Let G be a group of order 2023. Show that G is abelian. We will helpfully tell you that $2023 = 7 \times 17^2$.

Solution. By the third Sylow theorem, the number of 7-Sylows divides 17^2 (and is thus 1, 17, or 17^2), and is congruent to 1 modulo 7. Since $17 \equiv 3 \pmod{7}$, we have $17^2 \equiv 2 \pmod{7}$, and so the number of 7-Sylows must be 1. Similarly, the number of 17-Sylows divides 7 and is congruent to 1 modulo 17, and thus must be 1.

Let H and K be the unique 7-Sylow and 17-Sylow. Then H and K are normal, G = HK (look at orders), and $H \cap K = 1$ (look at orders). Thus $G = H \times K$. Since any group of order p or p^2 (with p prime) is abelian, we see that H and K are abelian, and so G is as well.

Problem. Let *n* be a positive integer. The dihedral group of order 2n, written D_{2n} , is defined to be the group generated by two elements ρ and σ , modulo the relations $\sigma^2 = \rho^n = e$ and $\sigma \rho = \rho^{-1} \sigma$. Show that the abelianization of D_{2n} is isomorphic to $\mathbb{Z}/2\mathbb{Z}$ if *n* is odd and is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^2$ if *n* is even. (The abelianization of a group *G* is the quotient of *G* by the subgroup generated by all elements of the form $ghg^{-1}h^{-1}$.)

Solution. The abelianization is the quotient of $\mathbb{Z}\sigma \oplus \mathbb{Z}\rho$ by the relations

$$2\sigma = 0, \quad n\rho = 0, \quad \sigma + \rho = -\rho + \sigma.$$

Of course, the third relation just amounts to $2\rho = 0$. We thus obtain $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/(2, n)\mathbb{Z}$, where (2, n) denotes the ideal of \mathbb{Z} generated by 2 and n. We have (2, n) = (2) if n is even and (2, n) = (1) if n is odd, and so the result follows.

Problem. Let L/\mathbb{Q} be a Galois extension of degree 2^n for some positive integer n. Show that there is some nonsquare rational number D such that $\sqrt{D} \in L$.

Solution. Let G be the Galois group of L/\mathbb{Q} , which has order 2^n . Since G is a non-trivial 2group, there is a surjection $G \to \mathbb{Z}/2\mathbb{Z}$. By Galois theory, this means there is an intermediate field E to L/\mathbb{Q} of degree 2 over \mathbb{Q} . By the classification of quadratic fields, $E = \mathbb{Q}(\sqrt{D})$ for some nonsquare $D \in \mathbb{Q}$.

Problem. Let *L* be the field $\mathbb{C}(x_1, x_2, \ldots, x_n)$; in other words, the field of rational functions in *n* algebraically independent variables x_1, x_2, \ldots, x_n with coefficients in \mathbb{C} . Let *K* be the subfield $\mathbb{C}(x_1^2, x_2^2, \ldots, x_n^2)$. Show that $K(x_1 + x_2 + \cdots + x_n) = L$. (In other words, show that $x_1 + x_2 + \cdots + x_n$ is a primitive element for the extension L/K.)

Solution. Let σ_i be the field automorphism of L given by $\sigma_i(x_i) = -x_i$ and $\sigma_i(x_j) = x_j$ for $j \neq i$. The σ_i 's fix K, and generate a subgroup of $\operatorname{Gal}(L/K)$ isomorphic to $(\mathbb{Z}/2\mathbb{Z})^n$. Since L/K has degree 2^n , this must be the full Galois group and L/K is Galois. Let σ be an arbitrary element of G. Write $\sigma = \sigma_1^{a_1} \cdots \sigma_n^{a_n}$ with $a_i \in \{0, 1\}$. Put $\theta = x_1 + \cdots + x_n$. Then

$$\sigma\theta = (-1)^{a_1} x_1 + \dots + (-1)^{a_n} x_n.$$

We thus see that if $\sigma \neq 1$ then $\sigma \theta \neq \theta$. In other words, if $H \subset G$ then θ belongs to the fixed field L^H if and only if H is trivial. Thus $L = K(\theta)$ by Galois theory.