Algebra 2 Solutions

Problem. Let p be prime and let \mathbb{F}_{p} be the field with p elements. Let G be the group $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ with $n \geq 2$ and let G act on $\left(\mathbb{F}_{p}^{n}\right)^{2}$ in the obvious way. How many orbits does G have on $\left(\mathbb{F}_{p}^{n}\right)^{2}$? (The "obvious way" is that, for $g \in \mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$, and $\vec{x}, \vec{y} \in \mathbb{F}_{p}^{n}$, we have $g *(\vec{x}, \vec{y})=(g \vec{x}, g \vec{y})$.
Solution. Let $V=\mathbb{F}_{p}^{n}$ with standard basis e_{1}, \ldots, e_{n}, and let $x, y \in V$. We consider several cases.
(1) If $x=y=0$ then G fixes (x, y), i.e., it makes up a single orbit.
(2) Suppose $x=0$ and $y \neq 0$. Since G acts transitively on $V \backslash\{0\}$, we can move y to e_{1}. Thus this case contributes a single orbit.
(3) Suppose $x \neq 0$ and y is linearly dependent on x, i.e., $y=c x$ for some $c \in \mathbb{F}_{p}$. The equation $y=c x$ is preserved by the group G, and so c is an invariant of the orbit of (x, y). Using G, we can then move x to e_{1}, and y will move to $c e_{1}$. We thus see that c is the only invariant of the orbit, and so there are p orbits in this case (amounting to the p choices of c).
(4) Finally, if x and y are linearly independent then we can move (x, y) to $\left(e_{1}, e_{2}\right)$. Thus there is one orbit in this case.
In total, there are $p+3$ orbits.
Problem. Let G be a group of order 2023. Show that G is abelian. We will helpfully tell you that $2023=7 \times 17^{2}$.
Solution. By the third Sylow theorem, the number of 7 -Sylows divides 17^{2} (and is thus 1,17 , or 17^{2}), and is congruent to 1 modulo 7 . Since $17 \equiv 3(\bmod 7)$, we have $17^{2} \equiv 2$ $(\bmod 7)$, and so the number of 7 -Sylows must be 1 . Similarly, the number of 17 -Sylows divides 7 and is congruent to 1 modulo 17 , and thus must be 1 .

Let H and K be the unique 7-Sylow and 17-Sylow. Then H and K are normal, $G=H K$ (look at orders), and $H \cap K=1$ (look at orders). Thus $G=H \times K$. Since any group of order p or p^{2} (with p prime) is abelian, we see that H and K are abelian, and so G is as well.

Problem. Let n be a positive integer. The dihedral group of order $2 n$, written $D_{2 n}$, is defined to be the group generated by two elements ρ and σ, modulo the relations $\sigma^{2}=\rho^{n}=e$ and $\sigma \rho=\rho^{-1} \sigma$. Show that the abelianization of $D_{2 n}$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$ if n is odd and is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ if n is even. (The abelianization of a group G is the quotient of G by the subgroup generated by all elements of the form $g h g^{-1} h^{-1}$.)

Solution. The abelianization is the quotient of $\mathbb{Z} \sigma \oplus \mathbb{Z} \rho$ by the relations

$$
2 \sigma=0, \quad n \rho=0, \quad \sigma+\rho=-\rho+\sigma .
$$

Of course, the third relation just amounts to $2 \rho=0$. We thus obtain $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} /(2, n) \mathbb{Z}$, where $(2, n)$ denotes the ideal of \mathbb{Z} generated by 2 and n. We have $(2, n)=(2)$ if n is even and $(2, n)=(1)$ if n is odd, and so the result follows.

Problem. Let L / \mathbb{Q} be a Galois extension of degree 2^{n} for some positive integer n. Show that there is some nonsquare rational number D such that $\sqrt{D} \in L$.

Solution. Let G be the Galois group of L / \mathbb{Q}, which has order 2^{n}. Since G is a non-trivial 2group, there is a surjection $G \rightarrow \mathbb{Z} / 2 \mathbb{Z}$. By Galois theory, this means there is an intermediate field E to L / \mathbb{Q} of degree 2 over \mathbb{Q}. By the classification of quadratic fields, $E=\mathbb{Q}(\sqrt{D})$ for some nonsquare $D \in \mathbb{Q}$.

Problem. Let L be the field $\mathbb{C}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$; in other words, the field of rational functions in n algebraically independent variables $x_{1}, x_{2}, \ldots, x_{n}$ with coefficients in \mathbb{C}. Let K be the subfield $\mathbb{C}\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{n}^{2}\right)$. Show that $K\left(x_{1}+x_{2}+\cdots x_{n}\right)=L$. (In other words, show that $x_{1}+x_{2}+\cdots+x_{n}$ is a primitive element for the extension L / K.)

Solution. Let σ_{i} be the field automorphism of L given by $\sigma_{i}\left(x_{i}\right)=-x_{i}$ and $\sigma_{i}\left(x_{j}\right)=x_{j}$ for $j \neq i$. The σ_{i} 's fix K, and generate a subgroup of $\operatorname{Gal}(L / K)$ isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{n}$. Since L / K has degree 2^{n}, this must be the full Galois group and L / K is Galois. Let σ be an arbitrary element of G. Write $\sigma=\sigma_{1}^{a_{1}} \cdots \sigma_{n}^{a_{n}}$ with $a_{i} \in\{0,1\}$. Put $\theta=x_{1}+\cdots+x_{n}$. Then

$$
\sigma \theta=(-1)^{a_{1}} x_{1}+\cdots+(-1)^{a_{n}} x_{n}
$$

We thus see that if $\sigma \neq 1$ then $\sigma \theta \neq \theta$. In other words, if $H \subset G$ then θ belongs to the fixed field L^{H} if and only if H is trivial. Thus $L=K(\theta)$ by Galois theory.

