
Algebra 2 Solutions

Problem. Let p be prime and let Fp be the field with p elements. Let G be the group
GLn(Fp) with n ≥ 2 and let G act on (Fn

p )
2 in the obvious way. How many orbits does

G have on (Fn
p )

2? (The “obvious way” is that, for g ∈ GLn(Fp), and x⃗, y⃗ ∈ Fn
p , we have

g ∗ (x⃗, y⃗) = (gx⃗, gy⃗).)

Solution. Let V = Fn
p with standard basis e1, . . . , en, and let x, y ∈ V . We consider several

cases.

(1) If x = y = 0 then G fixes (x, y), i.e., it makes up a single orbit.
(2) Suppose x = 0 and y ̸= 0. Since G acts transitively on V \ {0}, we can move y to e1.

Thus this case contributes a single orbit.
(3) Suppose x ̸= 0 and y is linearly dependent on x, i.e., y = cx for some c ∈ Fp. The

equation y = cx is preserved by the group G, and so c is an invariant of the orbit of
(x, y). Using G, we can then move x to e1, and y will move to ce1. We thus see that
c is the only invariant of the orbit, and so there are p orbits in this case (amounting
to the p choices of c).

(4) Finally, if x and y are linearly independent then we can move (x, y) to (e1, e2). Thus
there is one orbit in this case.

In total, there are p+ 3 orbits.

Problem. Let G be a group of order 2023. Show that G is abelian. We will helpfully tell
you that 2023 = 7× 172.

Solution. By the third Sylow theorem, the number of 7-Sylows divides 172 (and is thus
1, 17, or 172), and is congruent to 1 modulo 7. Since 17 ≡ 3 (mod 7), we have 172 ≡ 2
(mod 7), and so the number of 7-Sylows must be 1. Similarly, the number of 17-Sylows
divides 7 and is congruent to 1 modulo 17, and thus must be 1.

Let H and K be the unique 7-Sylow and 17-Sylow. Then H and K are normal, G = HK
(look at orders), and H ∩ K = 1 (look at orders). Thus G = H × K. Since any group of
order p or p2 (with p prime) is abelian, we see that H and K are abelian, and so G is as well.

Problem. Let n be a positive integer. The dihedral group of order 2n, writtenD2n, is defined
to be the group generated by two elements ρ and σ, modulo the relations σ2 = ρn = e and
σρ = ρ−1σ. Show that the abelianization of D2n is isomorphic to Z/2Z if n is odd and is
isomorphic to (Z/2Z)2 if n is even. (The abelianization of a group G is the quotient of G by
the subgroup generated by all elements of the form ghg−1h−1.)

Solution. The abelianization is the quotient of Zσ ⊕ Zρ by the relations

2σ = 0, nρ = 0, σ + ρ = −ρ+ σ.

Of course, the third relation just amounts to 2ρ = 0. We thus obtain Z/2Z ⊕ Z/(2, n)Z,
where (2, n) denotes the ideal of Z generated by 2 and n. We have (2, n) = (2) if n is even
and (2, n) = (1) if n is odd, and so the result follows.

Problem. Let L/Q be a Galois extension of degree 2n for some positive integer n. Show

that there is some nonsquare rational number D such that
√
D ∈ L.



Solution. Let G be the Galois group of L/Q, which has order 2n. Since G is a non-trivial 2-
group, there is a surjection G → Z/2Z. By Galois theory, this means there is an intermediate

field E to L/Q of degree 2 over Q. By the classification of quadratic fields, E = Q(
√
D) for

some nonsquare D ∈ Q.

Problem. Let L be the field C(x1, x2, . . . , xn); in other words, the field of rational functions
in n algebraically independent variables x1, x2, . . . , xn with coefficients in C. Let K be the
subfield C(x2

1, x
2
2, . . . , x

2
n). Show that K(x1 + x2 + · · ·xn) = L. (In other words, show that

x1 + x2 + · · ·+ xn is a primitive element for the extension L/K.)

Solution. Let σi be the field automorphism of L given by σi(xi) = −xi and σi(xj) = xj

for j ̸= i. The σi’s fix K, and generate a subgroup of Gal(L/K) isomorphic to (Z/2Z)n.
Since L/K has degree 2n, this must be the full Galois group and L/K is Galois. Let σ be an
arbitrary element of G. Write σ = σa1

1 · · ·σan
n with ai ∈ {0, 1}. Put θ = x1 + · · ·+ xn. Then

σθ = (−1)a1x1 + · · ·+ (−1)anxn.

We thus see that if σ ̸= 1 then σθ ̸= θ. In other words, if H ⊂ G then θ belongs to the fixed
field LH if and only if H is trivial. Thus L = K(θ) by Galois theory.


