Algebra 2

Problem 1. Let p be prime and let \mathbb{F}_{p} be the field with p elements. Let G be the group $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ with $n \geq 2$ and let G act on $\left(\mathbb{F}_{p}^{n}\right)^{2}$ in the obvious way. How many orbits does G have on $\left(\mathbb{F}_{p}^{n}\right)^{2}$? (The "obvious way" is that, for $g \in \mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$, and \vec{x} and $\vec{y} \in \mathbb{F}_{p}^{n}$, we have $g *(\vec{x}, \vec{y})=(g \vec{x}, g \vec{y})$.

Problem 2. Let G be a group of order 2023. Show that G is abelian. We will helpfully tell you that $2023=7 \times 17^{2}$.

Problem 3. Let n be a positive integer. The dihedral group of order $2 n$, written $D_{2 n}$, is defined to be the group generated by two elements ρ and σ, modulo the relations $\sigma^{2}=\rho^{n}=e$ and $\sigma \rho=\rho^{-1} \sigma$. Show that the abelianization of $D_{2 n}$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$ if n is odd and is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ if n is even. (The abelianization of a group G is the quotient of G by the subgroup generated by all elements of the form $g h g^{-1} h^{-1}$.)

Problem 4. Let L / \mathbb{Q} be a Galois extension of degree 2^{n} for some positive integer n. Show that there is some nonsquare rational number D such that $\sqrt{D} \in L$.

Problem 5. Let L be the field $\mathbb{C}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$; in other words, the field of rational functions in n algebraically independent variables $x_{1}, x_{2}, \ldots, x_{n}$ with coefficients in \mathbb{C}. Let K be the subfield $\mathbb{C}\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{n}^{2}\right)$. Show that $K\left(x_{1}+x_{2}+\cdots x_{n}\right)=L$. (In other words, show that $x_{1}+x_{2}+\cdots+x_{n}$ is a primitive element for the extension L / K.)

