Algebra 1 Solutions

Problem. Let a and b be relatively prime positive integers. Let R be a ring in which $a b=0$. Show that $R \cong A \times B$, where A is a ring in which $a=0$ and B is a ring in which $b=0$. (The rings R, A and B need not be commutative.)
Solution. By the Chinese remainder theorem, we have

$$
\mathbb{Z} / a b \mathbb{Z}=\mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / b \mathbb{Z}
$$

Let $c, d \in \mathbb{Z} / a b \mathbb{Z}$ correspond to $(1,0)$ and $(0,1)$ under this isomorphism. Then c and d are central idempotent elements of R that multiply to zero and sum to 1 . Letting $A=c R$ and $B=d R$, we have $R=A \times B$. Since $a c=0$ (in $\mathbb{Z} / a b \mathbb{Z}$, and thus in R) and c is the identity in A, we have $a=0$ in A; similarly, $b=0$ in B.

Problem. Let M be an $n \times n$ matrix with entries in \mathbb{Q}, such that $M^{3}=2 \operatorname{Id}_{n}$. Show that n is divisible by 3 .
Solution. Let $a=\operatorname{det}(M) \in \mathbb{Q}$. From the given equation, we find $a^{3}=2^{n}$. Looking at the prime factorization of a, it follows that n is divisible by 3 .

Second solution. Let $F=\mathbb{Q}[M]$ be the subring of the matrix ring $M_{n}(\mathbb{Q})$ generated by \mathbb{Q} and M. This is isomorphic to $\mathbb{Q}[x] /\left(x^{3}-2\right)$, which is a field of degree 3 over \mathbb{Q}, since $x^{3}-2$ is irreducible. Since \mathbb{Q}^{n} is a module over F, i.e., an F-vector space, it is isomorphic to F^{m} for some m. Since F is 3 -dimensional over \mathbb{Q}, this gives $n=3 m$.

Problem. Let k be a field and let V be a finite dimensional vector space over k. Let u, v, x and y be nonzero vectors in V such that $u \otimes v=x \otimes y$ in the tensor product $V \otimes_{k} V$. Show that there is a nonzero scalar c in k such that $x=c u$ and $y=c^{-1} v$.

Solution. Let u_{1}, \ldots, u_{n} be a basis for V with $u_{1}=u$ and $x \in \operatorname{span}\left(u_{1}, u_{2}\right)$. Let v_{1}, \ldots, v_{n} be a second basis for V with $v_{1}=v$ and $y \in \operatorname{span}\left(v_{1}, v_{2}\right)$. Then $u_{i} \otimes v_{j}$ is a basis for $V \otimes V$. Write $x=a u_{1}+b u_{2}$ and $y=c v_{1}+d v_{2}$. Then the given equation becomes

$$
u_{1} \otimes v_{1}=\left(a u_{1}+b u_{2}\right) \otimes\left(c v_{1}+d v_{2}\right)
$$

Equating coefficients of $u_{i} \otimes v_{j}$, we find $b=d=0$ and $a c=1$, which completes the proof.
Problem. Let A and B be principal ideal domains, with $A \subset B$. Let x and y be elements of A which are relatively prime in A. Show that x and y are relatively prime in B. (We say that two elements of an integral domain R are relatively prime in R if the only elements of R which divide both of them are units.)

Solution. In general, elements p and q in a PID R are relatively prime if and only if they satisfy the Bézout identity, i.e., there exist $a, b \in R$ such that $a p+b q=1$. Applying this with $R=A$ and $p=x$ and $q=y$, we see that there are $a, b \in A$ such that $a x+b y=1$. This equation continues to hold in B, and so x and y are relatively prime there too.

Problem. Let R be an integral domain, and let S be a subring of R. Show that the following are equivalent:
(1) The natural inclusion $\operatorname{Frac}(S) \hookrightarrow \operatorname{Frac}(R)$ is an isomorphism. (Here $\operatorname{Frac}(R)$ is the field of fractions of R, and likewise for $\operatorname{Frac}(S)$.)
(2) The S-module R / S is torsion, meaning that, for every $x \in R / S$, there is a nonzero $s \in S$ with $s x=0$.

Solution. Suppose (1) holds. Let x be an element of R. By assumption, $x=a / s$ for some $a, s \in S$ with $s \neq 0$, which means $s x=a \in S$. Thus $s x=0$ in R / S.

Now suppose (2) holds. Let x be an element of R. By assumption, there exists $s \in S$ non-zero such that $s x=0$ in R / S, meaning $s x=a$ holds in R for some $a \in S$. We thus see that $x=a / s$ holds in $\operatorname{Frac}(R)$. If y is a second element of R that is non-zero, we can similarly write $y=a^{\prime} / s^{\prime}$, and so $x / y=\left(a s^{\prime}\right) /\left(s a^{\prime}\right)$ belongs to $\operatorname{Frac}(S)$.

