Algebra 1 Solutions

Problem. Let a and b be relatively prime positive integers. Let R be a ring in which ab = 0. Show that $R \cong A \times B$, where A is a ring in which a = 0 and B is a ring in which b = 0. (The rings R, A and B need not be commutative.)

Solution. By the Chinese remainder theorem, we have

$$\mathbb{Z}/ab\mathbb{Z} = \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}.$$

Let $c, d \in \mathbb{Z}/ab\mathbb{Z}$ correspond to (1, 0) and (0, 1) under this isomorphism. Then c and d are central idempotent elements of R that multiply to zero and sum to 1. Letting A = cR and B = dR, we have $R = A \times B$. Since ac = 0 (in $\mathbb{Z}/ab\mathbb{Z}$, and thus in R) and c is the identity in A, we have a = 0 in A; similarly, b = 0 in B.

Problem. Let M be an $n \times n$ matrix with entries in \mathbb{Q} , such that $M^3 = 2 \operatorname{Id}_n$. Show that n is divisible by 3.

Solution. Let $a = \det(M) \in \mathbb{Q}$. From the given equation, we find $a^3 = 2^n$. Looking at the prime factorization of a, it follows that n is divisible by 3.

Second solution. Let $F = \mathbb{Q}[M]$ be the subring of the matrix ring $M_n(\mathbb{Q})$ generated by \mathbb{Q} and M. This is isomorphic to $\mathbb{Q}[x]/(x^3-2)$, which is a field of degree 3 over \mathbb{Q} , since x^3-2 is irreducible. Since \mathbb{Q}^n is a module over F, i.e., an F-vector space, it is isomorphic to F^m for some m. Since F is 3-dimensional over \mathbb{Q} , this gives n = 3m.

Problem. Let k be a field and let V be a finite dimensional vector space over k. Let u, v, x and y be nonzero vectors in V such that $u \otimes v = x \otimes y$ in the tensor product $V \otimes_k V$. Show that there is a nonzero scalar c in k such that x = cu and $y = c^{-1}v$.

Solution. Let u_1, \ldots, u_n be a basis for V with $u_1 = u$ and $x \in \text{span}(u_1, u_2)$. Let v_1, \ldots, v_n be a second basis for V with $v_1 = v$ and $y \in \text{span}(v_1, v_2)$. Then $u_i \otimes v_j$ is a basis for $V \otimes V$. Write $x = au_1 + bu_2$ and $y = cv_1 + dv_2$. Then the given equation becomes

$$u_1 \otimes v_1 = (au_1 + bu_2) \otimes (cv_1 + dv_2).$$

Equating coefficients of $u_i \otimes v_j$, we find b = d = 0 and ac = 1, which completes the proof.

Problem. Let A and B be principal ideal domains, with $A \subset B$. Let x and y be elements of A which are relatively prime in A. Show that x and y are relatively prime in B. (We say that two elements of an integral domain R are relatively prime in R if the only elements of R which divide both of them are units.)

Solution. In general, elements p and q in a PID R are relatively prime if and only if they satisfy the Bézout identity, i.e., there exist $a, b \in R$ such that ap + bq = 1. Applying this with R = A and p = x and q = y, we see that there are $a, b \in A$ such that ax + by = 1. This equation continues to hold in B, and so x and y are relatively prime there too.

Problem. Let R be an integral domain, and let S be a subring of R. Show that the following are equivalent:

- (1) The natural inclusion $\operatorname{Frac}(S) \hookrightarrow \operatorname{Frac}(R)$ is an isomorphism. (Here $\operatorname{Frac}(R)$ is the field of fractions of R, and likewise for $\operatorname{Frac}(S)$.)
- (2) The S-module R/S is torsion, meaning that, for every $x \in R/S$, there is a nonzero $s \in S$ with sx = 0.

Solution. Suppose (1) holds. Let x be an element of R. By assumption, x = a/s for some $a, s \in S$ with $s \neq 0$, which means $sx = a \in S$. Thus sx = 0 in R/S.

Now suppose (2) holds. Let x be an element of R. By assumption, there exists $s \in S$ non-zero such that sx = 0 in R/S, meaning sx = a holds in R for some $a \in S$. We thus see that x = a/s holds in Frac(R). If y is a second element of R that is non-zero, we can similarly write y = a'/s', and so x/y = (as')/(sa') belongs to Frac(S).