Qualifying Exam Algebra May 2019 Morning

Instructions: Write your ID number in the upper right corner on each sheet that you hand in. Justify your answers.

- (1) Suppose that A is a complex 7×7 matrix that satisfies the relation $A^5 = 2A^4 + A^3$. Given that the rank of A is 5 and the trace of A is 4, what is the Jordan canonical form of A?
- (2) Let S be the set of all infinite sequences $(x_1, x_2, x_3, ...)$ in \mathbb{R} for which the limit $\lim_{n\to\infty} x_n$ exists. We define an addition and a multiplication on S by

$$(x_1, x_2, x_3, \dots) + (y_1, y_2, y_3, \dots) = (x_1 + y_1, x_2 + y_2, x_3 + y_3, \dots)$$

 $(x_1, x_2, x_3, \dots) \cdot (y_1, y_2, y_3, \dots) = (x_1y_1, x_2y_2, x_3y_3, \dots)$

- (a) Show that S is a commutative ring with identity.
- (b) Let $\mathfrak{m} \subseteq S$ be the set of all (x_1, x_2, x_3, \dots) with $\lim_{n \to \infty} x_n = 0$. Show that \mathfrak{m} is a maximal ideal of S.
- (3) Let $\alpha = \sqrt[3]{2}$ and consider the field $K = \mathbb{Q}(\alpha)$. Suppose that $\beta = p + q\alpha + r\alpha^2$. What are the trace $\operatorname{Tr}_{K/\mathbb{Q}}(\beta)$ and norm $\operatorname{N}_{K/\mathbb{Q}}(\beta)$ of β ? (Your answers should be polynomials in p, q, r with coefficients in \mathbb{Q} .)
- (4) A Hermitian complex matrix H is said to have signature (p,q,r) if there exists an invertible matrix P so that P^*HP is a real diagonal matrix whose diagonal has p positive entries, q negative entries and r zeroes. Here $P^* = \overline{P}^t$ is the complex transpose matrix. Let A be an $n \times n$ Hermitian matrix. Form the $2n \times 2n$ block matrix

$$M = \begin{pmatrix} 0 & A \\ A & 0 \end{pmatrix}$$

and let d be the nullity of A. Prove that the signature of M is (n-d, n-d, 2d).

- (5) Suppose that p > q are prime numbers, and that G is a group of order p^2q^2 .
 - (a) Show that p = 3 or G has a normal subgroup of order p^2 .
 - (b) If p=3 (and therefore q=2), show that G has a normal subgroup of order 3 or 9.

Qualifying Exam Algebra May 2019 Afternoon

Instructions: Write your ID number in the upper right corner on each sheet that you hand in. Justify your answers.

(1) Suppose that V is an n-dimensional K-vector space and $v \in V$ is nonzero.

(a) Show that for p with $0 \le p < n$ there exists a unique linear map

$$\varphi_p: \bigwedge^p V \to \bigwedge^{p+1} V$$

with the property that

$$\varphi_p(w_1 \wedge w_2 \wedge \cdots \wedge w_p) = v \wedge w_1 \wedge w_2 \wedge \cdots \wedge w_p.$$

- (b) What is the rank of φ_p ?
- (2) Suppose that L/K is a field extension, and $A, B \in \operatorname{Mat}_{n,n}(K)$ are $n \times n$ matrices with entries in K. Suppose that there exists an invertible matrix $C \in \operatorname{Mat}_{n,n}(L)$ with $CAC^{-1} = B$. Show that there exists an invertible matrix $D \in \operatorname{Mat}_{n,n}(K)$ with $DAD^{-1} = B$. (Hint: Think about the invariant factors or the rational canonical form of the matrix A.)
- (3) Let $a \in \mathbb{Q}$ and let $n \geq 2$ be an integer. Prove that the Galois group of $x^n a$ over \mathbb{Q} is solvable. Prove also that its order is at most n(n-1).
- (4) Suppose that \mathcal{P} is a property of some groups. We say that a group is *virtually* \mathcal{P} if it has a finite index subgroup which has property \mathcal{P} . Prove that if the group G is virtually solvable, then so is every subgroup and every quotient group of G.
- (5) Let R be a commutative ring with identity and M be an R-module (not necessarily finitely generated). Suppose that $a_1, a_2, \ldots, a_n \in R$ such that $(a_1, a_2, \ldots, a_n) = R$ and $a_i a_j M = 0$ for $i \neq j$. Show that we have a direct sum decomposition

$$M = a_1 M \oplus a_2 M \oplus \cdots \oplus a_n M.$$